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Local temperatures and heat flow in quantum driven systems
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We discuss the concept of local temperature for quantum systems driven out of equilibrium by ac pumps
showing explicitly that it is the correct indicator for heat flow. We also show that its use allows for a generalization
of the Wiedemann-Franz law.
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I. INTRODUCTION

In the last years growing research activity has focused on
the search for a better understanding of the mechanisms for
heat production and energy flow in nonequilibrium quantum
systems at the microscopic level. Examples are thermoelectric
effects in quantum point contacts,1 quantum pumps under driv-
ing induced with ac voltages acting at the walls,2 “quantum”
capacitors,3 driven small-size heterostructures,4 atomic and
molecular junctions,5 nanomechanical systems,6 and photonic
systems.7 The understanding of the entropy production and
its connection with the nonequilibrium dynamics has also
been a central subject of research in other areas of physics,
including aging regimes in glassy systems, sheared glasses,
granular materials, and colloids.8–10 A very successful concept
in the characterization of nonequilibrium states concerns the
definition of an “effective temperature.” In glassy systems
the definition of an effective temperature was introduced via
generalized fluctuation-dissipation relations8 and the validity
of such a temperature as a physical meaningful concept was
further supported by showing that such a temperature coincides
with the one that the measurement with a thermometer casts
for that system.9

The definition of an effective temperature from a
fluctuation-dissipation relation in quantum models was intro-
duced in Ref. 11 for glassy systems and later explored for
electronic systems in Ref. 12. In this last work a ring threaded
by a linear-in-time-dependent magnetic flux in contact to a
reservoir was studied. The underlying physics is the induction
of a constant electromotive force and generation of a current
with a dc component, with the concomitant heat dissipation
into the reservoir by the Joule effect. On the basis of a
numerical analysis, it was found that the so-defined effective
temperature of the driven ring was larger than that of the
reservoir, in consistency with the idea that the driving heats
the ring and the energy is dissipated toward the reservoir.

In a recent work13 we have addressed the issue of
identifying effective temperatures in the context of transport
in electronic quantum systems driven out of equilibrium by
external (periodic) pumping potentials. Examples of this type
of system are quantum dots with ac voltages acting at the
walls (quantum pumps)14 and quantum capacitors,15 which
display energy transport regimes much richer than the case of
the ring described above. In fact, these systems can not only
dissipate energy in the form of heat but can also pump energy
between the different reservoirs, generating refrigeration. We
have defined a “local” temperature along these setups by
introducing a thermometer, i.e., a macroscopic system which

is in local equilibrium with the system, even when the system
itself is out of equilibrium. This is the thermal analog of the
voltage probe discussed in Refs. 16 and 17. On the other hand
we have also defined an effective temperature by analyzing
a local fluctuation-dissipation relation. Interestingly enough,
we have been able to show that the two definitions of the
temperature coincide when the ac driving is weak, i.e., for low
amplitude and frequency of the ac voltages. The behavior of
the local temperature along the setup is also very interesting
on its own. It displays oscillations modulated by 2kF , kF

being the Fermi vector. This feature has been also observed
in the behavior of the local temperature in systems under
stationary transport5 and must be interpreted as a signature
of the coherent nature of the electronic transport along the
structure, where scattering processes with the ac potentials
generate an interference pattern. It is the counterpart in the
framework of the energy propagation to the Friedel oscillations
detected when the structure is sensed with a local voltage
probe.16,17 Remarkably, in some situations, it is possible to
distinguish regions of the structure with a local temperature
that is cooler than that of the reservoirs.

The aim of the present work is to further investigate the
scope of the concepts of local and effective temperature in
quantum driven systems. In particular, our goal is to show
that such a parameter verifies the thermodynamical properties
of a temperature, in the sense that it signals the direction for
heat flow. We also slightly generalize the definition of the
thermometer, by allowing it to act simultaneously as a thermal
probe and a voltage probe. Finally, we show that the effective
temperature plays a fundamental role in a generalization of the
Wiedemann-Franz law to an out of equilibrium setup.

The work is organized as follows. In Sec. II, we present
the model and summarize the theoretical treatment. In Sec. III
we present results. In Sec. IV we generalize the model for
the thermometer. Section V is devoted to discussion and
conclusions. We give some details of the calculation in the
Appendix.

II. MODEL AND THEORETICAL TREATMENT

We consider here the same setup as in Ref. 13, which we
display in Fig. 1. This is a quantum driven system described
by a Hamiltonian Hsys(t) and a thermometer characterized by
a Hamiltonian HP that are locally coupled via HcP in such a
way that the total Hamiltonian can be written as

H (t) = Hsys(t) + HcP + HP . (1)
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FIG. 1. (Color online) Scheme of the setup. The central device is
a wire connected to the left and right reservoirs. The third reservoir (P)
represents the thermometer, which consists of a macroscopic system
weakly coupled to a given point of the central device.

For the driven system we take a device composed of a central
part [HC(t)] and two reservoirs (HL,HR), coupled to the
central part via contacts (HcL,HcR),

Hsys(t) = HL + HcL + HC(t) + HcR + HR. (2)

The Hamiltonian describing the central system (C) con-
tains the ac driving fields, HC(t) = H0 + HV (t). We as-
sume that H0 is a Hamiltonian for noninteracting electrons
while HV (t) is harmonically time dependent, i.e., HV (t) =∑+∞

n=−∞ e−i�0ntHV (n). We leave further details of the model
for the moment undetermined in order to make the coming
discussion as model independent as possible.

Both reservoirs and the local probe are modeled by systems
of noninteracting electrons with many degrees of freedom:
Hα =∑kα εkαc

†
kαckα , where α = L,R,P . The corresponding

contacts are Hcα = wcα(c†kαclα + c
†
lαckα), where lα denotes the

coordinate of C at which the reservoir α is connected. As in
previous works,13,16,17 we consider a noninvasive probe, which
implies that wcP is small enough to be treated at the lowest
order of perturbation theory when necessary.

To describe the dynamics of the system we use the
Schwinger-Keldysh-Green functions formalism. This involves
the calculation of the Keldysh and retarded Green functions,

GK
l,l′ (t,t

′) = i〈c†l′ (t ′)cl(t) − cl(t)c
†
l′(t

′)〉,
GR

l,l′ (t,t
′) = −i�(t − t ′)〈cl(t)c

†
l′(t

′) + c
†
l′ (t

′)cl(t)〉, (3)

where the indexes l,l′ denote spatial coordinates of the central
system. These Green functions can be evaluated after solving
the Dyson equations. For the case of harmonic driving it is
convenient to use the Floquet-Fourier representation of the
Green functions: 18

G
K,R
l,l′ (t,t − τ ) =

∞∑
k=−∞

∫ ∞

−∞

dω

2π
e−i(k�0t+ωτ )G

K,R
l,l′ (k,ω).

(4)

III. DEFINING THE TEMPERATURE

A. Local temperature determined by a thermometer

Heat transport through the central system can occur due
to a temperature or chemical potential difference between the

reservoirs as well as as the result of pumping by the external
sources. In a generic situation, if the probe is connected to
the central system, there is also heat exchange between the
system and the probe. In Ref. 13 the local temperature TlP was
defined as the value of TP (i.e., the temperature of the probe)
such that heat exchange between the central system and the
probe vanishes.

It can be shown2 that, given HC(t) without many-body
interactions, the heat current from the central system and the
thermometer can be expressed as (h̄ = kB = e = 1)

J
Q
P =

∑
α=L,R,P

∞∑
k=−∞

∫ ∞

−∞

dω

2π

{
[fα(ω) − fP (ωk)]

×(ωk − μ)	P (ωk)	α(ω)
∣∣GR

lP,lα(k,ω)
∣∣2 }, (5)

where ωk = ω + k�0 and 	α(ω) = −2π |wα|2∑kα δ(ω −
εkα) are the spectral functions that determine the escape to
the reservoirs (α = L,R,P ), and fα(ω) = 1/[eβα (ω−μα) + 1]
is the Fermi function, which depends on Tα = 1/βα and μα

the temperature and the chemical potential of the reservoir α.
Thus, the local temperature TlP corresponds to the solution of
the equation

J
Q
P (TlP ) = 0. (6)

In Ref. 13 the value of μP was kept fixed (and equal
to that of the reservoirs, μL = μR = μP ). Our thermometer,
however, is a reservoir not only for energy but also for particles.
In fact, the same setup but with the role of temperature and
chemical potential exchanged was considered in Refs. 16
and 17 to define the local voltage of a driven structure. One
question that arises is how the situation gets modified when
we allow both the temperature and the voltage of the probe to
adjust simultaneously to define the local temperature and the
local voltage. Such a procedure has been followed in Ref. 19.
Thus, in an analogous way as we did before, we now define
the local temperature T ∗

lP (where we use the ∗ symbol to
distinguish it from the definition above) and local voltage
μ∗

lP , respectively, as the temperature and the voltage of the
probe that vanish simultaneously both the charge and the heat
currents between the system and the probe, i.e.,{

J
Q
P (T ∗

P ,μ∗
P ) = 0,

J e
P (T ∗

P ,μ∗
P ) = 0,

(7)

where (see Refs. 18 and 17)

J e
P =

∑
α=L,R,P

∞∑
k=−∞

∫ ∞

−∞

dω

2π

{
[fα(ω) − fP (ωk)]

×	P (ωk)	α(ω)
∣∣GR

lP,lα(k,ω)
∣∣2 }. (8)

B. Effective temperature from a fluctuation-dissipation relation

For systems in equilibrium, the fluctuation-dissipation the-
orem establishes a relation between the Keldysh (correlation)
and retarded Green functions. Indeed, for a system like the one
under consideration, but without the time-dependent fields, it
can be shown that the relation between the fluctuations in the
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system, iG0,K
l,l (ω), with the dissipation term of the bath, 	α(ω),

is 11,12

iG
0,K
l,l (ω) = tanh

[
β(ω − μ)

2

]
ϕ0

l (ω), (9)

ϕ0
l (ω) = −2Im

[
G

0,R
l,l (ω)

]
=
∑

α=L,R

∣∣G0,R
l,lα(ω)

∣∣2	α(ω), (10)

where the index 0 indicates that we are considering the
equilibrium system, i.e., with the term HV (t) = 0 and all the
reservoirs at the same temperature T = 1/β.

In the presence of time-dependent voltages it can be shown
that

iGK
l,l(0,ω) =

∞∑
k=−∞

tanh

[
β(ω−k − μ)

2

]
ϕl(k,ω−k), (11)

ϕl(k,ω) =
∑

α=L,R

∣∣GR
l,lα(k,ω)

∣∣2 	α(ω). (12)

In Ref. 13 we have shown that within the weak-driving–
adiabatic regime, where the term HV (t) is treated as a
perturbation and the driving frequency is smaller than the dwell
time of the electrons within the central system,20 it is possible
to define an effective temperature T

eff

l = 1/β
eff

l through the
following relation:

iGK
l,l(0,ω) − iGK

l,l(0,μ) = tanh

[
β

eff

l (ω − μ)

2

]
ϕl(ω), (13)

with ϕl(ω) = −2Im
[
GR

l,l(0,ω)
] =∑k ϕl(k,ω−k). A similar

relation in the time domain has been studied numerically for a
driven ring in contact with a reservoir. 12

IV. RESULTS

In this section we present results for a central device
consisting of noninteracting electrons in a one-dimensional
lattice:

H0 = −w
∑
l,l′

(c†l cl′ + H.c.), (14)

where w denotes a hopping matrix element between neigh-
boring positions l,l′ on the lattice and a driving term of the
form

HV (t) =
2∑

j=1

eVj (t)c†lj clj , (15)

with Vj (t) = V0 cos(�0t + δj ), lj being the positions at where
two ac fields oscillating with the same frequency and a phase-
lag are applied. This defines a simple model for a quantum
pump where two ac gate voltages are applied at the walls of a
quantum dot.14,18,20

A. Equivalence between the different definitions of the
temperature at weak driving

In Ref. 13 we have analyzed the weak driving, which
corresponds to the ac voltage amplitudes lower than the
kinetic energy of the electrons in the structure and the driving
frequency lower than the inverse of the dwell time of these

electrons. We have analytically shown in this case that the
local temperature defined from Eq. (6), with the chemical
potential of the reservoir kept fixed, is identical to the effective
temperature defined from the local fluctuation-dissipation
relation given by Eq. (13). That is,

T
eff

lP = TlP . (16)

In Sec. I of the Appendix we summarize the main steps
leading to this result and we also show that within the weak-
driving regime the local temperature can be expressed as

T 2
lP ∼ T 2 + 3

π2
λ

(0)
lP (μ)�2

0 + 2λ
(1)
lP (μ)T 2�0 − 1

2
λ

(2)
lP (μ)T 2�2

0,

(17)

with

λ
(n)
l (ω) = 1∑1

k=−1 ϕl(k,ω)

1∑
k=−1

(k)n+2 dn[ϕl(k,ω)]

dωn
, (18)

ϕl(k,ω) =
∑

α=L,R

∣∣GR
l,lα(k,ω)

∣∣2 	α(ω). (19)

By keeping only the lowest order in �0, the local temperature
TlP can be cast into the form

TlP = T
[
1 + λ

(1)
lP (μ)�0

]
. (20)

Analytical expressions for T ∗
lP defined in Eqs. (7) are consid-

erable harder to obtain than those for TlP . Nevertheless, we
have been able to show that within the regime of interest (see
Sec. II of the Appendix for details)

T ∗
lP = T

⎡
⎣1 + �0

d

dω

(∑1
k=−1 kϕlP (k,ω)∑1
k=−1 ϕlP (k,ω)

)
ω=μ

⎤
⎦ . (21)

It is easy to see that for d
dω

	α

∣∣
ω=μ

∼ 0, which is in general
satisfied for metallic electrodes with a featureless band,
Eq. (21) becomes

T ∗
lP = T

[
1 + λ

(1)
lP (μ)�0

]
= TlP . (22)

Thus, it is possible to prove that all the three definitions of the
local temperature, Teff from a fluctuation-dissipation relation,
TlP from a thermometer, and T ∗

lP from a thermometer that is
also a voltage probe, coincide within the weak-driving regime.

B. Temperature and the direction for heat flow

We now turn to explore the relation between the local
temperature and heat flow between the central system and
the left and right reservoirs.

In Fig. 2 we show a typical temperature profile along the
structure. The value of Tl is plotted for each point of the chain,
for TL = TR = T , μL = μR = μ, and a particular low value
�0. We can distinguish two regions within the central structure,
denoted as “Left” and “Right” regions in Fig. 1, which are
defined between the contact with the left (right) reservoir
and the left (right) pumping centers. The local temperature
at weak driving is constant within these regions but different
from the one of the reservoirs. In the internal region between
the two pumping centers, the local temperature displays 2kF

Friedel-like oscillations, kF being the Fermi vector of the
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FIG. 2. (Color online) Local temperature along a one-
dimensional model of N = 50 sites with two ac fields operating with
a phase lag of δ = π/2 at the positions indicated by dotted lines. The
system is in contact with reservoirs with chemical potentials μ = 0.2
and temperature T = 0.025. The driving frequency is �0 = 0.05 and
the amplitude is V0 = 0.05.

electrons leaving the reservoirs. This feature is similar to the
one observed in other small size structures under stationary
driving5 and has the same origin as the oscillations in the
local voltage profile sensed by a voltage probe,16,17 namely,
the interference generated by elastic scattering processes at
the two pumping centers.

We would like to explore whether heat flow through the
contacts to the reservoirs is described by a relation of the type

JQ
α = Kα�Tα, (23)

as it happens in systems where the heat flow is induced by
an explicit temperature gradient. In our case, the gradient is
defined as �Tα = Tlα − Tα , Tlα being the local temperature at
the point of the central device connected to the α reservoir,
while Kα is a positive effective contact thermal conductance.
Thus, we evaluate independently the dc components of the
heat currents between the system and each of the reservoirs, as
well as the local temperatures at the contacts. Results for heat
flow and local temperature gradients �Tα are shown in Fig. 3,
as functions of the pumping frequency for reservoirs with the
same temperature T and the same chemical potential μ. Since
the dc heat current is ∝ V 2

0 for low driving amplitudes, we
found it convenient to show JQ/V 2

0 in the figure. The flow is
defined as positive (negative) when the heat flows to (from)
the reservoir.

The behavior of the heat flow at the left reservoir (L)
corresponds to a situation in which heat enters the reservoir.
This is associated with the idea of heat flowing from a hot
region to a colder one. Correspondingly, the local temperature
at the contact point of the system is higher than TL.

Nevertheless, in a pumping regime, we expect to find
situations in which heat can be extracted from one reservoir
to be pumped into the system and the other reservoir. This is
indeed the situation for the right lead (R), where for very low
frequencies the heat flow is negative. In the same figure we
show that the corresponding gradient of temperature along the

FIG. 3. (Color online) dc heat current divided by V 2
0 (solid) and

local temperature difference (dashed) between the system and the
left reservoir (blue) or the right reservoir (red) as a function of
driving frequency �0. The phase lag is δ = 1.88 and the driving
amplitude is V0 = 0.05. The temperature and the chemical potential
of the reservoirs are T = 0.025 and μ = 0.2.

contact shows a behavior compatible with the heat flow. That
is, TlR is lower than TR .

For higher frequencies, the heat flows into the two
reservoirs. This is the most common situation, where the
central system becomes heated by the driving voltage and
the generated heat is dissipated into the reservoirs. In this
regime, the behavior of the gradient of temperature along the
contact also exactly follows the direction of the heat flow. In
particular, notice in the figure that both J

Q
R and �TR change

the sign exactly at the same frequency.
The existence of the pumping regime requires a delicate

interplay between pumping frequency, temperature, and phase
lag but in all cases we found that the behavior of �Tα agrees
with that expected from considerations of heat flow. In Fig. 4
we show the heat flow as a function of T and as a function
of phase lag δ. As expected from the symmetries of the setup,
a change of phase δ → 2π − δ enforces L → R. In all the
cases, the behavior of the heat flow is in complete agreement
with Eq. (23).

C. Generalized Wiedemann-Franz law

Another interesting property which points toward the
identification of Tlα with a bona fide temperature concerns a
generalization of the Wiedemann-Franz law which we discuss
next. In addition to the thermal conductance defined above,
we can consider the voltage probes as in Refs. 16 and 17 to
calculate the local voltage at the contact and define the effective
electrical contact conductance as follows:

Gα = J e
α

�μα

, (24)

where

�μα = μα − μlα, (25)

where μα is the chemical potential of reservoir α and μlα is the
local chemical potential of the central system site connected
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FIG. 4. (Color online) Upper panel: Heat flow (solid) and local
temperature difference (dashed) between the system and the left
reservoir (blue) or the right reservoir (red) as a function of the
temperature T of the reservoirs. The phase lag is δ = π/2, the driving
frequency is �0 = 0.01 and the amplitude is V0 = 0.05. The chemical
potential of the reservoirs is μ = 0.2. Lower panel: Heat flow (solid)
and local temperature difference (dashed) between the system and
the left reservoir (blue) or the right reservoir (red) as a function of the
phase lag. The driving frequency is �0 = 0.01 and the amplitude
is V0 = 0.05. The temperature and the chemical potential of the
reservoirs are T = 0.025 and μ = 0.2.

to reservoir α. As in the previous section we consider Tα = T

and μα = μ for α = L,R.
In order to calculate Kα we need the heat current JQ

α that
flows into the reservoir α and �Tα . We focus on the weak-
driving regime. For noninvasive thermometers, the heat current
that flows into the reservoir α is

JQ
α =

∑
k

∫
dω

2π
[f (ω) − f (ωk)](ωk − μ)ϕ̃α(k,ω), (26)

where

ϕ̃α(k,ω) =
∑

β=L,R

	α(ωk)
∣∣GR

lα,lβ(k,ω)
∣∣2 	β(ω). (27)

If the temperature T of the reservoirs is small compared to
their Fermi energy, we can apply the Sommerfeld expansion
up to order T 2. The low-driving-frequency assumption is
introduced by expanding all the terms of Eq. (26) in powers of

�0. Under these conditions, the heat current can be rewritten as
follows:

JQ
α = 1

4π

∑
k

{
k2�2

0ϕ̃α(k,μ) + T 2 π2

3

[
2
dϕ̃α

dω
(k,μ)

− 1

2

d2ϕ̃α

dω2
(k,μ)k�0

]
k�0

}
. (28)

For high temperature compared to the driving (T 
 �0),
JQ

α and �Tα [see Eqs. (22) and (28)] are

JQ
α = T 2 π

6

∑
k

k
dϕ̃α

dω
(k,μ)�0, (29)

�Tα = T λ
(1)
lα (μ)�0. (30)

Using the definitions of ϕ̃α and λ
(1)
l given in Eqs. (27)

and (18), respectively, it is easy to show that the thermal
conductance is

Kα = π

6
ϕ̃α(μ)T , (31)

where

ϕ̃α(μ) =
∑

k

ϕ̃α(k,μ). (32)

The electrical conductance can be calculated in an analo-
gous way. Applying the Sommerfeld expansion, expanding all
the terms in powers of �0, and keeping up to first order, the
charge current that flows into reservoir α can be written in the
following way:

J e
α = 1

2π

∑
k

kϕ̃α(k,μ)�0. (33)

For �μα , the expression is [see Eq. (A37)]

�μα =
∑

k kϕlα(k,μ)∑
k ϕlα(k,μ)

�0. (34)

Hence, the electrical conductance Gα is

Gα = 1

2π
ϕ̃α(μ). (35)

It is possible to show that this result for the electrical
conductance is actually valid for all temperatures.

At this point it may be convenient to restate units in
order to make it easier to extract useful information from
this result. Then, from Eqs. (31) and (35) it follows that
for the weak-driving regime, where T 
 �0, the thermal and
electrical conductances satisfy the Wiedemann-Franz law

Kα

Gα

= π2

3

(
kB

e

)2

T . (36)

In Fig. 5 we show the ratio Kα/Gα for α = R as a function
of temperature T . The curve for the left reservoir is identical
and it is not shown. We see that for very low T , the Wiedemann-
Franz law is not satisfied. In the low-temperature regime where
T � �0, from Eqs. (28) and (A37) it follows that JQ

α and �Tα

can be written as

JQ
α = 1

4π

∑
k

k2�2
0ϕ̃α(k,μ), (37)

165419-5



ALVARO CASO, LILIANA ARRACHEA, AND GUSTAVO S. LOZANO PHYSICAL REVIEW B 83, 165419 (2011)
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K
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α

FIG. 5. (Color online) K/G for the right contact (red crosses)
as a function of temperature. The black dashed line represents the
Wiedemann-Franz law. Inset: The black dotted line represents the
behavior of the quotient K/G (red line) for very low temperatures, as
depicted in Eq. (40). The phase-lag is δ = π/2, the driving frequency
is �0 = 0.005 and the amplitude is V0 = 0.05. The chemical potential
of the reservoirs is μ = 0.2.

�Tα =
√

3

π2
λ

(0)
lα (μ)�0 − T . (38)

Hence, the effective thermal conductance Kα is

Kα = 1

4
√

3

∑
k k2ϕ̃α(k,μ)√

λ
(0)
lα (μ)

�0 + π

12
ϕ̃α(μ)T . (39)

In this equation it is important to remark that the thermal
conductance is finite even when the temperature T of the
reservoirs equals zero.

From Eqs. (35) and (39) it follows that for low temperature
the quotient Kα/Gα , to the lowest order in �0 and T , is

Kα

Gα

= π

2
√

3

√
λ̃

(0)
α (μ) �0 + π2

6
T , (40)

where

λ̃(0)
α (ω) = 1∑

k ϕ̃α(k,ω)

∑
k

k2ϕ̃α(k,ω). (41)

Using the value of �Tα for T = 0 given in Eq. (A37) we can
rewrite Eq. (40), with units restated, as

Kα

Gα

= π2

6

(
kB

e

)2

[�Tα|T =0 + T ] . (42)

From this equation we can see that as the temperature T of
the reservoirs goes to zero, the quotient Kα/Gα approaches
linearly a finite value, explaining the behavior observed in
Fig. 5.

V. SUMMARY AND CONCLUSIONS

In this work we have analyzed the relation between
different definitions of temperature in a nonequilibrium setup
and its physical meaning, mainly in connection with heat
flow. More specifically, we have generalized the definition
of local temperature introduced in Ref. 13 to allow for the

thermometer to act also as a voltage probe and we have
shown that in the situation of interest, i.e, weak driving (small
deviations from equilibrium) and weak system-thermometer
coupling (i.e., noninvasive probe), both definitions coincide,
and consequently, both definitions give the same value as the
effective temperature introduced by the fluctuation-dissipation
relation.

We have also shown that within the low-driving regime, it
is possible to define an effective contact thermal conductance
as the quotient between the dc heat current flowing through
a given contact to a reservoir and the effective temperature
gradient defined as the difference between the local tempera-
ture at the contact point of the system and the temperature of
the reservoir. The behavior of such an effective temperature
gradient exactly follows the direction of the heat flow between
the system and the reservoirs. This is consistent with the idea
that the local temperature at the contact does behave as a bona
fide temperature.
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APPENDIX : ANALYTICAL EXPRESSION FOR
LOCAL TEMPERATURE

A. Local temperature determined with fixed chemical potential
of the thermometer

In this section we present the detailed calculation of the
local temperature, within the adiabatic, low-temperature, and
weak-driving regimes.

In the weak-driving regime we only keep the terms up
to order (V0)2 (i.e., Floquet-Fourier components with k =
−1,0,1). Treating the coupling to the thermometer wcP at
the lowest order in perturbation theory and considering that
the spectral function of the thermometer 	P (ω) is roughly
constant, the heat current that flows into the thermometer can
be written as follows:

J
Q
P ∝

1∑
k=−1

∫
dωφ

Q
lP (k,ω) [f (ω) − fP (ωk)] , (A1)

where

φ
Q
l (k,ω) = (ωk − μ)ϕl(k,ω), (A2)

ϕl(k,ω) =
∑

α=L,R

∣∣GR
l,lα(k,ω)

∣∣2 	α(ω). (A3)

If the temperature T of the reservoirs is small compared to
their Fermi energy, we can apply the Sommerfeld expansion
up to order T 2. Under this condition the heat current can be
rewritten as

J
Q
P ∝

1∑
k=−1

{∫ μ

μ−k�0

dωφ
Q
lP (k,ω) + π2

6
T 2F

Q
lP (k,μ)

− π2

6
(TlP )2F

Q
lP (k,μ − k�0)

}
, (A4)
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where

F
Q
l (k,ω) = d

dω
φ

Q
l (ω). (A5)

The local temperature TlP corresponds to the solution of
the equation J

Q
P (TlP ) = 0. Directly from the expression for

the heat current given in Eq. (A4) we can obtain TlP :

(TlP )2 ∼
6
π2

∑
k �lP (k) + T 2∑

k F
Q
lP (k,μ)∑

k F
Q
lP (k,μ − k�0)

, (A6)

where

�l(k) =
∫ μ

μ−k�0

dωφ
Q
l (k,ω). (A7)

The adiabatic condition is introduced by expanding all the
terms of Eq. (A6) in powers of the driving frequency �0. It is
easy to show that the first term of the numerator is of second
order in �0:

1∑
k=−1

�lP (k) ≈ 1

2
�2

0

1∑
k=−1

k ϕlP (k,μ). (A8)

The second term of the numerator of Eq. (A6) is

1∑
k=−1

FlP (k,μ) =
1∑

k=−1

[
ϕlP (k,μ) + k�0

dϕlP

dω
(k,μ)

]
. (A9)

Expanding the denominator of Eq. (A6) up to second order
in �0 we obtain

1∑
k=−1

F
Q
lP (k,μ − k�0) ≈

1∑
k=−1

[
ϕlP (k,μ) − k

dϕlP

dω
(k,μ)�0

+1

2
k2 d2ϕlP

dω2
(k,μ)�2

0

]
. (A10)

Thus, keeping up to second order in �0 in Eq. (A6) for the
local temperature we obtain

(TlP )2 ∼ 3

π2
λ

(0)
lP (μ)�2

0

+ T 2

(
1 + 2λ

(1)
lP (μ)�0 − 1

2
λ

(2)
lP (μ)�2

0

)
, (A11)

where

λ
(n)
l (ω) = 1∑1

k=−1 ϕl(k,ω)

1∑
k=−1

(k)n+2 dn[ϕl(k,ω)]

dωn
, (A12)

and ϕl(k,ω) is given in Eq. (A3).
In particular, for the case of finite temperature T of the

reservoirs, and high temperature compared to the driving (T 

�0), Eq. (A11) reduces to

TlP = T
[
1 + λ

(1)
lP (μ)�0

]
. (A13)

For the case of reservoirs at very low temperature (T �
�0), Eq. (A11) leads to

�TlP =
√

3

π2
λ

(0)
lP (μ)�0 − T . (A14)

B. Local temperature determined simultaneously with local
chemical potential of the thermometer

An alternative definition of local temperature to the one
given in Sec. I is the following: the local temperature T ∗

lP

and the local chemical potential μ∗
lP are the values of the

temperature and the chemical potential of the probe that vanish
simultaneously J

Q
P and J e

P :{
J

Q
P (T ∗

lP ,μ∗
lP ) = 0,

J e
P (T ∗

lP ,μ∗
lP ) = 0.

(A15)

As we did in Sec. I we only keep terms up to order (V0)2

for the weak-driving regime. Treating the coupling to the
thermometer wcP at the lowest order in perturbation theory
and considering that the spectral function of the thermometer
	P (ω) is roughly constant, the energy and charge currents that
flow into the thermometer can be written as follows:

JX
P ∝

1∑
k=−1

∫
dωφX

lP (k,ω) [f (ω) − fP (ωk)] , (A16)

where X = Q,e and

φ
Q
l (k,ω) = (wk − μP )ϕl(k,ω), (A17)

φe
l (k,ω) = ϕl(k,ω), (A18)

where ϕl(k,ω) is given in Eq. (A3).
Applying the Sommerfeld expansion up to order T 2 and

defining μ∗
lP ≡ μ + �μ∗

lP , Eq. (A16) can be rewritten as

JX
P ∝

1∑
k=−1

{∫ μ

μ−k�0+�μ∗
lP

dωφX
lP (k,ω) + π2

6
T 2FX

lP (k,μ)

−π2

6
(T ∗

lP )2FX
lP (k,μ − k�0 + �μ∗

lP )

}
, (A19)

where

FX
l (k,ω) = d

dω
φX

l (ω). (A20)

We expect �μ∗
lP to be at least of order �0. We expand the

first term of Eq. (A19) up to second order in �0:∫ μ

μ−k�0+�μ∗
lP

dωφX
lP (k,ω)

= −φX
lP (k,μ)(�μ∗

lP − k�0) − 1

2
FX

lP (k,μ)(�μ∗
lP − k�0)2.

(A21)

In the case of finite temperature T of the reservoirs, we
define T ∗

lP ≡ T + �T ∗
lP and expect �T ∗

lP to be at least of
order �0. Hence, to the lowest order in �0, J e and JQ become{

J e
P (T ∗

lP ,μ∗
lP ) ∝ −a�μ∗

lP − b�T ∗
lP + α�0,

J
Q
P (T ∗

lP ,μ∗
lP ) ∝ −c�μ∗

lP − d�T ∗
lP + β�0,

(A22)

where

a =
1∑

k=−1

[
ϕlP (k,μ) + π2

6
T 2 d2ϕlP

dω2
(k,μ)

]
, (A23)
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b = π2

3
T

1∑
k=−1

dϕlP

dω
(k,μ), (A24)

c = T

1∑
k=−1

dϕlP

dω
(k,μ), (A25)

d =
1∑

k=−1

ϕlP (k,μ), (A26)

α =
1∑

k=−1

k

[
ϕlP (k,μ) + π2

6
T 2 d2ϕlP

dω2
(k,μ)

]
, (A27)

β = T

1∑
k=−1

k
dϕ

dω
(k,μ). (A28)

Within the approximations, the solution of the equations
given in Eq. (A15) is⎧⎨

⎩
�μ∗

lP = 1
�

(dα − bβ)�0,

�T ∗
lP = 1

�
(aβ − cα)�0,

(A29)

where

� = ad − bc =
(∑

k

ϕlP (k,μ)

)2

+ O(T )2. (A30)

Hence,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�μ∗
lP =

(∑
k kϕlP (k,μ)∑
k ϕlP (k,μ) + O(T )2

)
�0,

�T ∗
lP = T

[
d

dω

(∑
k kϕlP (k,ω)∑
k ϕlP (k,ω)

)
ω=μ

+ O(T )2

]
�0.

(A31)

Considering that d
dω

	α

(
ω)|ω=μ ∼ 0, then T ∗

lP becomes

T ∗
lP = T

[
1 + λ

(1)
lP (μ)�0

]
, (A32)

which coincides with Eq. (A13).
For the case of T � �0, we propose the following ansatz

for �μ∗
lP and �T ∗

lP :⎧⎨
⎩

�μ∗
lP = �μ0 + k1T ,

�T ∗
lP = �T0 + k2T .

(A33)

We introduce in Eq. (A19) the values of �μ∗
lP and �T ∗

lP

given in Eq. (A33). The result of this is expressions for the
currents J e

α and JQ
α in powers of T . Keeping terms up to first

order in T we can write the currents as

J e
α = J e,(0)

α + J e,(1)
α T , (A34)

JQ
α = JQ,(0)

α + JQ,(1)
α T . (A35)

The equations to be satisfied are four:

JX,(n) = 0, (A36)

where X = e,Q and n = 0,1. The equations with n = 0 lead
to the values of �μ0 and �T0. While the equations with n = 1
lead to k1 = 0 and k2 = −1. Hence, �μ∗

lP and �T ∗
lP can be

written as ⎧⎪⎨
⎪⎩

�μ∗
lP =

∑
k kϕlP (k,μ)∑
k ϕlP (k,μ) �0,

�T ∗
lP =

√
3
π2 λ

(0)
lP (μ)�0 − T .

(A37)

The value obtained for �T ∗
lP coincides with the one

obtained with the definition of local temperature given in
Sec. I [see Eq. (A14)].
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