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Abstract: The aim of this paper is to explore D-dimensional theories of pure gravity whose

space of solutions contains certain class of AdS-waves, including in particular Schrödinger

invariant spacetimes. This amounts to consider higher order theories, and the natural case

to start with is to analyze generic square-curvature corrections to Einstein-Hilbert action.

In this case, the Schrödinger invariant sector in the space of solutions arises for a special

relation between the coupling constants appearing in the action. On the other hand, be-

sides the Schrödinger invariant configurations, logarithmic branches similar to those of the

so-called Log-gravity are also shown to emerge for another special choice of the coupling

constants. Interestingly enough, these Log solutions can be interpreted as the superposi-

tion of the massless mode of General Relativity and two scalar modes that saturate the

Breitenlohner-Freedman bound (BF) of the AdS space on which they propagate. These so-

lutions are higher-dimensional analogues of those appearing in three-dimensional massive

gravities with relaxed AdS3 asymptotic, which are candidates to be gravity duals for loga-

rithmic CFTs. Other sectors of the space of solutions of higher-curvature theories correspond

to oscillatory configurations, which happen to be below the BF bound. Also, there is a

fully degenerated sector, for which any wave profile is admitted. We comment on the re-

lation between this degeneracy and the non-renormalization of the dynamical exponent of

the Schrödinger spaces. Our analysis also includes more general gravitational actions with

non-polynomial corrections consisting of arbitrary functions of the square-curvature invari-

ants. By establishing a correspondence with the quadratic gravity model, the same sectors of

solutions are shown to exist for this more general family of theories. We finally consider the

parity-violating Chern-Simons modified gravity in four dimensions, for which we derive both

the Schrödinger invariant as well as the logarithmic sectors.

Keywords: Gauge-gravity correspondence, Higher-curvature corrections, Log gravity.

This paper is dedicated to the memory of Laurent Houart.
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1. Introduction

The AdS/CFT correspondence [1, 2, 3, 4] provides a dictionary to relate conformal field

theories in flat space to higher-dimensional gravitational theories. In this framework, the

gravitational description is weakly coupled when the relativistic CFT is strongly coupled,

and thus it becomes a promising tool to explore fundamental physics in the non-perturbative

regime. However, in spite of the enormous mathematical success of AdS/CFT correspondence,

the experimental applications of this idea have somewhat been braked by the fact that only

few relativistic conformal field theories at strong coupling are accessible experimentally.

Nevertheless, unlike what happens in the relativistic case, there exists a plenitude of non-

relativistic conformal field models that govern physics in different experimentally accessible

areas such as condensed matter physics and atomic or nuclear physics. From this perspective,

the idea of generalizing AdS/CFT correspondence to the case of non-relativistic conformal

field theories has been proposed [5, 6]. In the non-relativistic case, the symmetry group is

identified with the conformal extension of the Galilei group, often called the Schrödinger
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group. This identification is due to the fact that there exist some analogies between the

Minkowski conformal algebra and the Schrödinger algebra in one dimension less. This anal-

ogy between both algebras has motivated the search of a geometric framework to understand

the Schrödinger algebra. One pioneer work in this direction was the one done by Havas and

Plebański [7], where they proposed to introduce the Schrödinger symmetry as a sub-group

of the infinite-dimensional group of Galilean conformal transformations of flat spacetime. A

geometric picture of the Schrödinger algebra and its relations with the conformal algebra

have been explained in [8], and this result was used in [9] to derive the invariant Schrödinger

metric in the context of the non-relativistic AdS/CFT correspondence. In turn, following the

philosophy of the AdS/CFT holographic correspondence, the hope is that backgrounds whose

(asymptotic) isometry group agrees with the Schrödinger group would represent the gravity

duals of some conformal quantum mechanical systems with applications to condensed matter

physics.1 Owing to this expectation, there has been an increasing interest in constructing

solutions of string theory inspired models whose (asymptotic boundary) isometry group is

given by the Schrödinger group. For instance, the embedding of such solutions and their ana-

logues at finite temperature in string theory were considered in [12, 13, 14] (see also references

thereof). The effects of string inspired higher-curvature corrections of these spaces were first

analyzed in [15], where it was shown that such higher order corrections lead to renormal-

ize the dynamical exponent of the dual conformal field theory. Here, we go deeper into the

discussion on higher-curvature actions and we argue that Schrödinger invariant backgrounds

arise as solutions of different theories of pure gravity in four and higher dimensions. It is

relatively easy to show that Schrödinger invariant spacetimes arise as solutions of Einstein

gravity with negative cosmological constant, provided the support of matter fields. This can

be achieved with the introduction of some reasonable physical source, like a Proca field [5]

and/or an Abelian Higgs field in its broken phase [6]. However, solutions enjoying Schrödinger

symmetry are also possible in theories of gravity in absence of matter. The simplest example

of a pure gravity theory for which solutions possessing full Schrödinger symmetry have been

found is three–dimensional Topologically Massive Gravity (TMG) with negative cosmological

constant [16]. This theory of gravity has attracted considerable attention the last three years,

and, in particular, one of the interesting features of TMG is precisely that it admits exact AdS

wave solutions [17, 18, 19, 20, 21, 22]; see below for a precise definition of such spacetimes.

While for generic values of the topological mass µ and the cosmological constant Λ = −1/l2

these AdS wave solutions are only partially Schrödinger invariant 2, it turns out that for

the special fine tuning µl = 3 the solution exhibits the full Schrödinger symmetry. This

fine tuning corresponds to the critical point of the space of parameters at which the warped

AdS3 solution of the theory has isometry group SL(2,R) × U(1) with a null U(1) direction

[23]. More recently, in Ref. [24], the authors of the present paper have shown the existence

of Schrödinger invariant spaces for the so-called New Massive Gravity (NMG) introduced in

Ref. [25].

1See [10] and [11] for interesting discussions on holography in Schrödinger spaces.
2As shown below, this corresponds to the Galilei transformations together with an anisotropic rescaling

– 2 –



Nevertheless, while the Schrödinger invariant solutions of TMG and NMG are interest-

ing in their own right, their relevance concerning the non-relativistic holographic correspon-

dence one is trying to construct is somewhat questionable. This is basically because its

non-relativistic dual model would correspond to a theory with zero spatial dimensions. In

turn, it is natural to ask for a higher-dimensional extension of this construction: Is there a

theory of pure gravity in four (or higher) dimensions that admits solutions with Schrödinger

isometry group? Actually, one can answer in the affirmative. One of the ideas of this paper is

to look for such theories and go deepen into the Schrödinger invariant sector of pure gravity.

We will argue that it is actually large the class of theories of higher-curvature gravity

that admits solutions with Schrödinger isometry group in four and higher dimensions. To

construct a theory of pure gravity that admits exact solutions with Schrödinger isometry

group in D > 3 dimensions, one can follow two different strategies: The first one is resorting

to the results of Ref. [15]. There, it was shown that the inclusion of higher-curvature terms

in the gravitational action leads to renormalize the dynamical exponent of the Schrödinger

symmetric spaces (this exponent is usually denoted by z = ν+1). Then, one could in principle

make inverse engineering and use the running equation that relates the coupling constants

of the gravitational Lagrangian to the dynamical exponent ν in order to design the model.

Here, instead, we will follow a rather different strategy. We will scan a wider class of higher-

order gravitational Lagrangians and exhaustively analyze the sectors of solutions that belong

to a special type of Siklos spacetimes. This will lead us to find several sectors of the space

of solutions including, in particular, Schrödinger spaces, together with logarithmic solutions

similar to those found in three dimensions.

The study of the higher-dimensional case starts in Sec. 3 with an analysis of the most

general modified theory of gravity with quadratic dependence on the curvature. We find the

explicit configurations for generic dimension, which allow us to identify several different sec-

tors, apart from the Schrödinger invariant one. For example, there are critical points in the

space of coupling constants for which a full degeneracy arises and the field equations are not

only satisfied for any dynamical exponent z but even for any AdS-wave profile function F .

The corresponding set of theories includes (but is not limited to) the usual degenerate case

of Chern-Simons gravity in D = 5. In analogy with the three-dimensional configurations of

TMG [17, 20] and NMG [24],3 we observe also the existence of other critical values of the cou-

pling constants for which Schrödinger invariance is broken by the appearance of logarithmic

behaviors associated to the existence of scalar wave modes that saturate the Breitenlohner-

Freedman bound (BF) of the AdSD space on which the wave propagates. Some of these

logarithmic decays are candidate to relax the usual AdS boundary conditions [28, 29, 30] in

the context of theories with higher-curvature corrections, in perfect analogy with what occurs

in three-dimensional massive gravities [31, 32].

In Sec. 4, we further generalize the results of section 3 by studying non-polynomials

gravity modifications which depend arbitrarily on the squared-curvature invariants; this is

3See Refs. [26, 27] for similar configurations appearing in bi-gravity and Born-Infeld gravity.
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done by establishing a correspondence between such a theory and the one with standard

quadratic modifications. Since Siklos spacetimes are conformally equivalent to pp-waves,

the metric configurations turn out to be persistent when a wide class of higher-curvature

corrections are included, provided a suitable redefinition of the parameters. Within this

context, and even if the existence of Schrödinger invariant sectors is not specially related

to conformal invariance, we find illustrative to explore in Sec. 5 the particular example of

adding to the D-dimensional Einstein-Hilbert action the conformally invariant deformation

proportional to (CµναβC
µναβ)D/4, where Cµναβ is the Weyl tensor. Interestingly enough, we

observe that only in four dimensions the Schrödinger invariant sector, the logarithmic sector,

and the sector below the BF bound are genuinely new configurations, while in arbitrary

D > 4 the resulting solutions turn out to coincide with those of General Relativity. We

will also consider a rather different model of higher-curvature gravity in Sec. 6, given by the

parity-violating Chern-Simons modification of General Relativity proposed by Jackiw and Pi

[33], and we will show that Schrödinger invariant and Log configurations are also admitted as

solutions in this theory. Finally, Section 7 is devoted to our conclusions and further prospect.

We include an Appendix describing the behavior of higher-order curvature terms in presence

of AdS waves.

Note added. When our paper was being prepared for publication, Refs. [34] and [35] ap-

peared, which consider some of the configurations studied in this work, including the relevant

ones for the recently proposed critical gravity theories [36, 37].

2. Schrödinger isometry group and the Siklos spacetimes

For the presentation to be self-contained, let us begin by reviewing some aspects of the

Schrödinger group. The Schrödinger group has been defined in [38, 39, 40] as the largest

group of space-time transformations which leaves the Schrödinger equation for a free par-

ticle invariant. Schrödinger invariance has been considered in a wide variety of situations,

including celestial mechanics [8], non-relativistic field theory [41, 42], non-relativistic quan-

tum mechanics [43], and hydrodynamics [44, 45, 46, 47, 48]. Mathematical aspects of the

Schrödinger symmetry have been analyzed, for instance, in [49]. The Schrödinger group can

be viewed as the semi-direct product of the connected static Galilei group together with the

SL(2,R) group, which includes time translation, dilatation, and special conformal transforma-

tions. This is an extension of the Lifshitz group, which is also considered in the holographic

description of non-relativistic models [50].

As mentioned, the main idea of the proposal for a non-relativistic version of the AdS/CFT

correspondence [5, 6] is to consider a metric whose isometry is given by the non-relativistic

conformal Schrödinger symmetry. In this context, we will be concerned with the following

class of metrics

ds2 =
l2

r2

(

− dt2

r2ν
+ 2dtdξ + dr2 + d~x2

)

, (2.1)
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where ~x is a d-dimensional vector, l is a constant associated to the curvature of the space, and

ν is the so-called dynamical exponent (this is also usually denoted by z = ν+1). For ν = 0, the

metric (2.1) corresponds to anti-de Sitter spacetime and enjoys the full relativistic conformal

symmetry. For an arbitrary value of the exponent ν, this metric exhibits as isometries the

Galilei transformations on the space (t, ~x) as well as the dilatations transformations. Indeed,

apart from the spacetime translations (t, ~x) 7→ (t + b, ~x + ~δ) and spatial rotations in the

~x-planes, ~x 7→ R~x with R ∈ SO(d), the metric (2.1) is invariant under the Galilean boosts

ϕ~v(t, ξ, r, ~x) = (t, ξ + ~v · ~x− 1

2
|~v|2t, r, ~x− t~v), (2.2)

as well as under dilations

ϕa(t, ξ, r, ~x) = (e(1+ν)a t, e(1−ν)a ξ, ea r, ea ~x). (2.3)

For the special value ν = 1 of the dynamical exponent, the metric admits additionally a

special conformal transformation given by the diffeomorphism

ϕκ(t, ξ, r, ~x) =

(

t

1− κt
, ξ − κ(|~x|2 + r2)

2(1 − κt)
,

r

1− κt
,

~x

1− κt

)

, (2.4)

and it is only in this case that the metric is said to enjoy the full Schrödinger symmetry.

The symmetry transformations above are generated for each of its infinitesimal parame-

ters ǫ by a Killing vector K in the standard way, namely ϕǫ = ϕ0 + iǫK +O(ǫ2), which gives

rise to the following set of Killing vectors

Mij = −i(xi∂j − xj∂i), Ki = −i(xi∂ξ − t∂i),

Pi = −i∂i, H = −i∂t, N = −i∂ξ,

D = −i[(1 + ν)t∂t+ (1− ν)ξ∂ξ + r∂r + xi∂i]. (2.5)

For ν = 1 (i.e. z = 2), we find the additional special conformal generator

C = −i

(

t2∂t −
|~x|2 + r2

2
∂ξ + tr∂r + txi∂i

)

. (2.6)

These Killing vectors realize the algebra whose non-vanishing commutation relations are

[Mij ,Mkl] = i(δikMjl − δjkMil + δilMkj − δjlMki),

[Mij , Pk] = i(δikPj − δjkPi), [Mij ,Kk] = i(δikKj − δjkKi),

[Pi,Kj ] = −iδijN, [H,Ki] = iPi, [D,Pi] = iPi,

[D,Ki] = −iνKi [D,H] = i(1 + ν)H, [D,N ] = i(1− ν)N. (2.7)

Besides, when ν = 1,

[D,C] = −2iC, [H,C] = −iD, (2.8)

and in this case the algebra corresponds to the Schrödinger algebra.
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Notice that the case ν = 1 is special not only because it allows for the additional special

conformal generator C, but also because the generator N becomes a central element of the

algebra, as it commutes additionally with the dilation generator D in this case.

In what follows, we will refer to the set of transformations involving the Galilei transfor-

mations Mij, Ki Pi, H, N and the dilatations D as the partial Schrödinger symmetry. In the

applications to condensed matter physics, each conformal system turns out to be character-

ized by the value of ν its symmetry corresponds to. This helps to identify the candidates to be

the corresponding gravity duals of the form (2.1). For example, models describing itinerant

(anti)ferromagnetic materials are thought to be described by the model with ν = 2 (resp.

with ν = 1).

Here, we are mainly interested in the class of metrics admitting the full (or partial)

Schrödinger symmetry (2.1). Nevertheless, from the gravity viewpoint, it is interesting to

consider first a more general (less symmetric) setting. This is important to understand what

is the appropriate setup these configurations arise in. With this motivation, we consider an

ansatz of the following form

ds2 =
l2

r2
[

−F (r)dt2 + 2dtdξ + dr2 + d~x2
]

, (2.9)

where F is the only undetermined structural metric function, and it only depends on the

coordinate r. This ansatz corresponds to a particular class of the so-called Siklos spacetimes

[51]. To be more precise, Siklos spacetimes correspond to metric (2.9) with a function F

that depends on all the variables except the null coordinate ξ. In particular, for a vanishing

structural function F = 0, we recover the metric of anti-de Sitter space in Poincaré coordi-

nates, while for F ≪ 1 this metric describes just a perturbation of AdS. In fact, the metric

(2.9) and, more generally, the Siklos spacetimes, can also be obtained from the AdS one by a

generalized Kerr-Schild transformation (see Appendix). Consequently, they can be though as

describing exact gravitational waves propagating along the AdS spacetime [52] (AdS-waves).

In fact, they become the particular case, admitting a Killing field, of the more general exact

gravitational waves propagating in presence of a cosmological constant originally found by

Garćıa and Plebański [53].4

In the context of higher-order gravity theories it has been observed in many cases that

the on-shell profile function F of exact gravitational waves behaves as an exact scalar massive

mode [57, 20, 24], since it satisfies a Klein-Gordon equation

�F = m2F, (2.10)

for some effective mass m, and where � stands for the d’Alambertian operator. For example,

in the case of the profile F defining the spacetimes (2.1), the corresponding mass is defined

in terms of the dynamical exponent as

m2 =
2ν(2ν +D − 1)

l2
, (2.11)

4See Refs. [54, 55, 56] for further generalizations.
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and this will allow us to establish a correspondence between many of the gravity configurations

we study and exact scalar massive modes propagating on these backgrounds.

3. Square-curvature corrections in arbitrary dimensions

The existence of an abundant Schrödinger symmetric sector in higher-dimensional pure grav-

ity becomes clear from the analysis of Ref. [15] where, besides their general arguments, an

explicit example was worked out for a particular five-dimensional quadratic modification to

the Einstein-Hilbert action. Here, we provide explicitly the general configurations for arbi-

trary dimension. In particular, this will lead us to observe the existence of special critical

points in the space of coupling constants at which logarithmic dependences that necessar-

ily break Schrödinger symmetry appear. Such logarithmic falling-off that emerges at these

special points potentially leads to the definition of weakened asymptotically AdS boundary

conditions. The results of this section can be thought of as a higher-dimensional general-

ization of the recent results of Ref. [24] for the three-dimensional parity-preserving massive

gravity introduced in Ref. [25].

Unlike the three or four-dimensional cases, in higher dimensions, three different invariants

have to be used to write the most general quadratic action; namely

S[gµν ] =

∫

dDx
√−g

(

R− 2λ+ β1R
2 + β2RαβR

αβ + β3RαβµνR
αβµν

)

. (3.1)

Here, we denote the cosmological constant by λ for reasons that will become clear later. The

constants βi are the coupling constants for the different curvature square modifications. The

field equations obtained by varying the action (3.1) with respect to the metric read

Gµν + λgµν + (β2 + 4β3)�Rµν +
1

2
(4β1 + β2) gµν�R− (2β1 + β2 + 2β3)∇µ∇νR

+ 2β3RµγαβR
γαβ
ν + 2 (β2 + 2β3)RµανβR

αβ − 4β3RµαR
α
ν + 2β1RRµν

− 1

2

(

β1R
2 + β2RαβR

αβ + β3RαβγδR
αβγδ

)

gµν = 0. (3.2)

Before deriving the different class of solutions, we first fix the cosmological constant λ

such that the AdS spacetime of radius l is a solution of the equations (3.2). By doing so, we

find the following constraint between the cosmological constant λ, the AdS radius l, and the

coupling constants βi

λ = −(D − 1)(D − 2)

2l2
+

(D − 1)(D − 4)

2l4
[(D − 1) (Dβ1 + β2) + 2β3] . (3.3)

From this, we notice that only in four dimensions the cosmological constant is related to the

AdS radius in the usual way, without involving the couplings βi.
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With the choice (3.3) for the cosmological constant, Einstein equations (3.2) for the AdS

waves (2.9) yield the following equations (see details in the Appendix)
{

(β2 + 4β3)
[

r4F ′′′′ − 2(D − 4)r3F ′′′
]

+
[

l2 − 2D(D − 1)β1 + (D − 2)(D − 8)β2 + 4(D − 2)(D − 5)β3
]

r2F ′′

−(D − 2)
[

l2 − 2D(D − 1)β1 − (3D − 4)β2 − 8β3
]

rF ′

}

δtµδ
t
ν

2l2r2
= 0. (3.4)

In what follows, we provide a detailed analysis of the equation (3.4) in order to survey

the different solutions exhaustively.

3.1 The second order sector

The first case we will explore is the one for which the fourth-order differential equation (3.4)

reduces to a second-order equation. This occurs for the special election β2 = −4β3, yielding

1

l2
[

l2 − 2D(D − 1)β1 + 12(D − 2)β3
] [

r2F ′′ − (D − 2)rF ′
]

= 0. (3.5)

It is clear from this equation that, if additionally one chooses β1 = [l2+12(D−2)β3]/[2D(D−
1)], a full degeneracy appears and the field equations are satisfied for any profile F ; this

degenerate class will be analyzed in details in Subsec. 3.4. Then, for β1 6= [l2 + 12(D −
2)β3]/[2D(D − 1)] the resulting equations are of second order as in the Lovelock case [58];

actually, the Lovelock theory which corresponds to β2 = −4β3 and β1 = β3, appears as a

particular case in this analysis. More precisely, for the above inequality (up to an additive

constant that can be removed by coordinate transformations) the solution is given by

F (r) = c0r
D−1, (3.6)

and coincides with the solution of General Relativity, i.e. the one with all the constants βi = 0.

This solution can be thought of as the usual General Relativity exact massless scalar mode

since the field equation (3.5) is proportional to the wave equation

�F = 0. (3.7)

It is also interesting to note that the solution (3.6) preserves only the partial Schrödinger

symmetry and not the full one. In the next subsection, we shall establish explicitly the

existence of a higher order sector enjoying the full Schrödinger symmetry.

3.2 The Schrödinger invariant sector

For β2 6= −4β3, the field equation (3.4) is a fourth-order Euler differential equation. In the

generic case, the space of linearly independent solutions is spanned in power-laws F ∝ rα,

where the exponents α are the roots of the following fourth-degree characteristic polynomial

α(α −D + 1)

[

(

α− D − 1

2

)2

− (D − 1)2

4
− l2 − 2(D − 1)(Dβ1 + β2) + 4(D − 4)β3

β2 + 4β3

]

= 0.

(3.8)
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Since the constant solution, i.e. α = 0, can be removed by coordinate transformations, the

general solution is then given by

F (r) = c0r
D−1 + c+r

α+ + c−r
α
− , (3.9a)

where

α± =
D − 1

2
±

(

(D − 1)2

4
+

2(D − 1)(Dβ1 + β2)− 4(D − 4)β3 − l2

β2 + 4β3

)1/2

, (3.9b)

and where c0 and c± are integrations constants. It is worth noticing that the solutions (3.9)

generate an exact scalar massive excitation (2.10) of mass

m2 =
2(D − 1)(Dβ1 + β2)− 4(D − 4)β3 − l2

l2(β2 + 4β3)
. (3.10)

To be more precise, the solution (3.9) describes the superposition of three exact scalar modes

given by the massless mode of General Relativity (3.6) and two other modes generated by the

squared modifications and both sharing the same mass (3.10). It is worth pointing out that

the solution (3.9) is valid only when the roots (3.9b) are real. This in turn constraints the

mass (3.10) to obey strictly the Breitenlohner-Freedman bound associated to the AdS space

where the waves are propagating on [59, 60]

m2 > −(D − 1)2

4l2
. (3.11)

It is also easy to see that taking any pair of the integrations constants in (3.9) to zero, the

isometry group of the resulting background gets enhanced to the partial Schrödinger group.

The full Schrödinger isometry can only be achieved by choosing c0 = 0 and c+ = 0 while the

coupling constants must be constrained by

β2 =
D(D − 1)

2
β1 − (3D − 2)β3 −

l2

4
, (3.12)

and this value corresponds to a mass (3.10) given by (see also (2.11) for ν = 1)

m2 =
2(D + 1)

l2
. (3.13)

3.3 The Logarithmic sectors

We now turn to the cases for which the roots of the characteristic polynomial (3.8) may have

some multiplicities. As it is well-known, for multiple roots the power laws fail to span all the

linearly independent solutions to Eq. (3.4) and additional behaviors exhibiting logarithmic

dependence typically occur. The existence of such exact logarithmic behaviors has been

established for TMG in Refs. [17, 20]. Moreover, some of the logarithmic configurations of

TMG have been shown to be compatibles with some relaxed AdS asymptotic [31, 32] and

define a sector of the theory currently known as the Log Gravity sector [61]; see also [62].
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The relevance of this sector is that, in three dimensions, it may be holographically dual at

the quantum level to a Logarithmic CFT [63, 64, 65]. We have shown in [24] that a similar

exact Log sector exists also within the context of NMG.5

The first source of multiplicity appears when the roots (3.9b) become one single root,

which occurs for

β2 =
4
[

l2 − 2D(D − 1)β1 − (D2 − 6D + 17)β3
]

(D + 7)(D − 1)
, (3.14)

and the related double multiplicity solution turns to be

F (r) = c0r
D−1 + r

D−1
2 (c1 ln r + c2) . (3.15)

For c1 = 0, two residual sectors having the partial Schrödinger symmetry still remain, taking

either c0 = 0 or c2 = 0. In contrast, the full Schrödinger symmetry is forbidden for all sectors

of the solution.

The global interpretation of the solution (3.15) is also of interest. The configuration

represents the superposition of the massless mode of GR plus two additional exact scalar

modes saturating the BF bound of the AdS space where the waves are propagating on [59, 60],

since the related profile satisfies

�F = m2
BFF, m2

BF ≡ −(D − 1)2

4l2
. (3.16)

Notice that this value for the mass is included in the range (3.10) with β2 given by (3.14).

The other multiplicities may appear when one of the two generic roots (3.9b) either

vanishes or takes the value D − 1. In fact, these two possibilities occur simultaneously and

in this case the coupling constants must be restricted as follows

β2 =
l2 − 2D(D − 1)β1 + 4(D − 4)β3

2(D − 1)
. (3.17)

The solution with simultaneous double multiplicity is then of the form

F (r) = c0r
D−1 +

(

c1r
D−1 + c2

)

ln r. (3.18)

At this point of the space of parameters there is no sector compatible with the partial

Schrödinger invariance except the trivial mode of General Relativity, i.e. c1 = c2 = 0. In

addition of being incompatible with the Schrödinger symmetry, the modes generated by these

higher-curvature modifications can not be interpreted as exact scalar modes as they do not

satisfy the Klein-Gordon equation. However, interesting enough, the profile (3.18) can be

understood as a “local” superposition

F = r
D−1

2

[

1

r
D−1

2

F |c2=0

]

+
1

r
D−1

2

[

r
D−1

2 F |c0=0,c1=0

]

, (3.19)

of exact massive scalar modes saturating the BF bound [those between brackets].

5See Refs. [66, 67] for the linearized case and Refs. [26, 27] for the case of other theories as bi-gravity and

Born-Infeld gravity. Log gravity was also studied in higher dimensions recently [68].
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3.4 Below the Breitenlohner-Freedman bound

As it was mentioned in Subsec. 3.2 the generic solution (3.9) is only valid for mass values above

the Breitenlohner-Freedman bound [59, 60], which constraints the scalar modes propagating

on AdS. However, the modes we consider here are of gravitational nature and there are it

a priori no reasons for which they must obey the celebrated BF bound. Hence, the sector

having a mass below the Breitenlohner-Freedman bound (3.16),

m2 < m2
BF, (3.20)

might be considered as well, as it has been done in [69] in the context of non-relativistic

holographic correspondence. In this case, the roots (3.9b) take complex conjugate values and

the solution acquires the following oscillatory behavior

F (r) = c0r
D−1 + r

D−1
2

[

c1 sin

(

l
√

m2
BF −m2 ln r

)

+ c2 cos

(

l
√

m2
BF −m2 ln r

)]

, (3.21)

where m2 is again given by Eq. (3.10).

3.5 The degenerate sector

Now, let us discuss the degeneracy in space of solutions and its relation with the non-

renormalization of the dynamical exponent ν. As it was previously mentioned, it is remarkable

that when the coupling constants are tied in the following manner

β1 =
l2 + 12(D − 2)β3

2D(D − 1)
, β2 = −4β3, (3.22)

the metrics (2.9) solves the equations of motion (3.2) for any wave profile F (r). In particular,

solutions with full Schrödinger symmetry are admitted in this case. The specific theories

allowing this kind of degeneracy are described by the following Lagrangian

R− 2λ+ β3LGB +
l2 − 2(D − 3)(D − 4)β3

2D(D − 1)
R2, (3.23)

where LGB = R2−4RαβR
αβ +RαβµνR

αβµν is the usual quadratic Gauss-Bonnet Lagrangian,

and the cosmological constant is fixed as

λ = −(D − 1)

4l2

(

D − 4(D − 3)(D − 4)

l2
β3

)

. (3.24)

There are two interesting cases included within this family of degenerate theories. The sim-

plest one is achieved for β3 = 0 and is described by

R− 2λ− 1

8λ
R2. (3.25)

Such fine-tuning in the coupling constant of the quadratic term is crucial in order to obtain

full Schrödinger invariant configurations and more general profiles; for any other coupling
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constant the theory belongs to the ones considered in Subsec. 3.1 and the full Schrödinger

invariance is forbidden. It is interesting to note that the Lagrangian (3.25) is the precise

combination that allows the existence of Lifshitz black holes [70, 71] for the gravity theory

with R2−corrections. It is also remarkable that for such a fine-tuning of the coefficients,

the Lagrangian, which adopts the f(R)-form, can not be reduced to a scalar-tensor theory

through the standard frame-changing trick [71].

Another interesting case occurs for

β3 =
l2

2(D − 3)(D − 4)
,

and in this case the Lagrangian becomes

R− 2λ− (D − 1)(D − 2)

8(D − 3)(D − 4)λ
LGB. (3.26)

This last case includes the point of the space of parameters where the Einstein-Gauss-Bonnet

gravity coincides with the Chern-Simons gravity in D = 5 [72], that is β1 = −β2/4 = β3 =

−3/(4λ). At this point, the theory exhibits local gauge invariance under the AdS group

SO(4, 2). A particular feature of Chern-Simons (CS) gravity is that its space of solutions is

highly degenerate, and thus it is not necessarily surprising that all the metrics (2.9) solve

the equations of motion.6 It is worth pointing out that the degeneracy that appears at

β1 = −β2/4 = β3 = −3/(4λ) in D = 5 is exactly what happens in the case c = 0 and

aΛ = 3/4 of Ref. [15] (see Eq. (2.25) therein), where degenerate solutions arise.

We have confirmed by explicit calculation that a similar feature is found in arbitrary num-

ber of dimensions as long as one choose the coupling constants for the Lovelock Lagrangian

to exhibit local gauge invariance. More precisely, if one considers the theory defined by the

action
∫

dDx
√−g

[D−1
2 ]

∑

n=0

βn
2nn!

δµ1

[σ1
δν1ρ1 . . . δ

µn
σn

δνnρn]

n
∏

r=1

Rσrρr
µrνr , (3.27)

there always exists a special choice of coupling constants β1, β2, β3, . . . , such that the

above Lagrangian can be written as a Chern-Simons form in odd dimensions [72] and as a

Pfaffian form in even dimensions. For the theories defined with such fine tuning, it turns

out that the metric (2.1) is admitted as solution for arbitrary ν. In the language of [15]

this would mean that, if such a precise tuning between coupling constants βi is considered,

the dynamical exponent z = ν + 1 does not get renormalized. Here, we point out that this

non-renormalization is associated to the enhancement of local (AdS) symmetry at the Chern-

Simons point. The question remains whether all the cases (3.22) exhibit enhancement of

symmetry that permits to explain the non-renormalization of the dynamical exponent in a

natural way. To answer this question one has to be reminded of the fact that the enhancement

of symmetry that occurs at the Chern-Simons point may also explain the existence of other

6In fact, a similar behavior occurs for statics configurations [73].
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degenerate points in the moduli space. That is, the Schrödinger invariant backgrounds are

such that changes in the values of βi may be absorbed in a redefinition of the parameters. In

turn, the family of theories that admit solutions with arbitrary ν would be parameterized by

those changes of the couplings βi that induce renormalization of l leaving ν unchanged.

It is worth mentioning that the AdS wave-like solutions we found here also appear in

other theories with higher-curvature (and not only square-curvature) terms. A particular

case is the family of theories considered in [74]. In the next section we will consider another

type of theories which consists of non-polynomial corrections of the invariants.

4. Non-polynomial corrections

In this section we will extend our previous results by considering a gravity theory including

modifications that are more general than the quadratic curvature terms discussed above. In

fact, we will consider the most general action depending on the three curvature invariants R,

RαβR
αβ and RαβµνR

αβµν , namely7

S[gµν ] =

∫

dDx
√−g

[

R− 2λ̃+ f
(

R,RαβR
αβ, RαβµνR

αβµν
)]

, (4.1)

where f is a smooth function of the three quadratic curvature invariants.

Now, let us denote the cosmological constant by λ̃ to emphasize the difference with the

previous case (3.1). The field equations obtained by varying the action (4.1) give rise to

fourth order equations8

Gµν + λ̃gµν −
f

2
gµν + (gµν�−∇µ∇ν +Rµν) f1 +� (f2Rµν) + 2f2RµανβR

αβ

+
1

2
gµν∇α

(

2Rαβ∇βf2 + f2∇αR
)

−∇(µ

(

2R α
ν) ∇αf2 + f2∇ν)R

)

+ 2f3

(

2�Rµν −∇µ∇νR+RµγαβR
γαβ
ν + 2RµανβR

αβ − 2RµαR
α
ν

)

+ 4
(

Rµανβ∇β + 2∇αRµν − 2∇(µRν)α

)

∇αf3 = 0, (4.2)

where

f1 ≡
∂f

∂R
, f2 ≡

∂f

∂RαβRαβ
, f3 ≡

∂f

∂RαβµνRαβµν
. (4.3)

We will now argue that in the particular case of AdS-waves (2.9) the previous equations can

be translated into the equations arising from a square-curvature modification (3.2) as studied

in the previous section. Notice that the curvature invariants of an AdS-wave in any dimension

7It can be seen that similar results are obtained if one allows for more general modifications, like Lagrangians

with functions f(X) of other invariants like X = RαµβνR
αβRµν .

8It is also possible to consider gravity actions depending on invariants constructed with orther-kth deriva-

tives of the curvature. In this case the resulting equations would be of order 2(k + 2).
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are independent of the specific profile function F and thus are specified by the AdS space

constant invariants

R = −D(D − 1)

l2
, RαβR

αβ =
D(D − 1)2

l4
, RαβµνR

αβµν =
2D(D − 1)

l4
. (4.4)

This in turn implies that both the function f and its derivatives fi, i = 1, 2, 3, evaluated on

AdS-waves solutions (conformally pp-waves) become constants denoted by

f̃ ≡ f |ds2
AdS

, f̃i ≡ fi|ds2
AdS

. (4.5)

These two properties imply that the resulting equations coincide exactly with those of the

square-modified gravity (3.2) with the following identifications

β1 =
f̃1
2R

= − l2f̃1
2D(D − 1)

, β2 = f̃2, β3 = f̃3, (4.6)

while the cosmological constant is given by

λ = λ̃− f̃

2
− D(D − 1)

4l2

{

f̃1 −
2

l2

[

(D − 1)f̃2 + 2f̃3

]

}

. (4.7)

The relations above establish a correspondence between the configurations of square-modified

gravity and those considered in (4.1). Starting from this observation, we can easily summarize

some properties relative to this generic theory of modified gravity. The first observation is

that an AdS space of radius l is a vacuum configuration of the generalized modified gravity

(4.1) if the cosmological constant is constrained to be

λ̃ = −(D − 1)(D − 2)

2l2
+

f̃

2
+

(D − 1)

l2

{

f̃1 −
2

l2

[

(D − 1)f̃2 + 2f̃3

]

}

. (4.8)

Being the cosmological constant fixed by (4.8), we can continue our analysis following the

lines of the previous section. For example, the second-order sector of this theory is found for

f̃1 6= −1− 12(D − 2)f̃3
l2

, f̃2 = −4f̃3, (4.9)

while the full degeneracy is obtained for

f̃1 = −1− 12(D − 2)f̃3
l2

, f̃2 = −4f̃3. (4.10)

In contrast, if f̃2 6= −4f̃3, the field equations are of fourth order, and the generic configurations

turn out to be the mode superposition (3.9), where the roots defining the power-law massive

modes are now given by

α± =
D − 1

2
±

(

(D − 1)2

4
+

−l2(1 + f̃1) + 2(D − 1)f̃2 − 4(D − 4)f̃3

f̃2 + 4f̃3

)1/2

, (4.11)
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and the mass associated to the scalar excitation F reads

m2 =
−l2(1 + f̃1) + 2(D − 1)f̃2 − 4(D − 4)f̃3

l2(f̃2 + 4f̃3)
. (4.12)

These configurations contain sub-sectors which have partial Schrödinger symmetry, exhibiting

the full symmetry only for

f̃2 = − l2

4
(1 + f̃1)− (3D − 2)f̃3, (4.13)

with the corresponding mass (3.13) in this case.

The logarithmic sector which includes the modes saturating the BF bound (3.15) appears

for a generic gravity modification satisfying

f̃2 =
l2(1 + f̃1)− (D2 − 6D + 17)f̃3

(D + 7)(D − 1)
. (4.14)

The other Log sector allowing a “local” superposition of modes saturating the BF bound [see

Eqs. (3.18) and (3.19)] is possible if

f̃2 =
l2(1 + f̃1) + 4(D − 4)f̃3

2(D − 1)
. (4.15)

5. Conformally invariant corrections

Even though the existence of Schrödinger invariant solutions is not particularly attached to

the conformal invariance of the higher-curvature corrections, we find interesting to investigate

the particular case of the Einstein gravity supplemented by the conformal Weyl Lagrangian

in D-dimensions; namely

S[gµν ] =

∫

dDx
√−g

[

R− 2Λ +
1

2αw

(

CαβµνC
αβµν

)D/4
]

, (5.1)

where αw is a coupling constant and Cαβµν is the Weyl tensor, whose quadratic contraction

reads

CαβµνC
αβµν =

2

(D − 1)(D − 2)
R2 − 4

D − 2
RαβR

αβ +RαβµνR
αβµν . (5.2)

It is easy to verify that the term in the action (5.1) that involves the contraction of the

quadratic Weyl tensor is conformally invariant.

Using the notation introduced in the previous section [see Eq. (4.3)], we obtain

f1 =
DR

2(D − 1)(D − 2)αw

(

CαβµνC
αβµν

)(D−4)/4
,

f2 = − D

2(D − 2)αw

(

CαβµνC
αβµν

)(D−4)/4
, (5.3)

f3 =
D

8αw

(

CαβµνC
αβµν

)(D−4)/4
.
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For dimensions D > 4, the above scalars fi are proportional to a positive power of the square

of the Weyl tensor. The related constants f̃ and f̃i, being obtained by evaluating the scalars

in their AdS values (4.5), vanish since AdS space is conformally flat and hence the Weyl

tensor vanishes identically. This means that, in what regards to the AdS-wave solutions,

the conformally invariant modification of Einstein gravity gives no correction for dimensions

D > 4. This case is described by the branch (4.9) and the resulting configuration is the

one of General Relativity (3.6) which yields only the partial Schrödinger symmetry. In four

dimensions the situation is quite different since the resulting theory (5.1)-(5.2) corresponds

to the square-curvature corrections that we have considered in Sec. 3 with

β1 =
1

6αw
, β2 = − 1

αw
, β3 =

1

2αw
.

As a consequence, except for the second-order and degenerate sectors which require β2 =

−4β3, all the other sectors of solutions described in Sec. 3 are present for this four-dimensional

Einstein-Weyl gravity theory.

6. Parity-violating Chern-Simons modification

Now, let us move to study another interesting example of gravitational model in four dimen-

sions. This is the Jackiw-Pi theory [33], usually referred to as the Chern-Simons modified

gravity in four dimensions. This model is defined by supplementing the Einstein-Hilbert ac-

tion with a different (parity violating) quadratic term in the curvature, yielding the total

action

Ŝ[gµν ] =

∫

d4x
√−g

(

R− 2Λ +
θ

4
∗RαβµνR

αβµν

)

. (6.1)

Here θ is a local Lagrange multiplier that couples to the Pontryagin density ∗RαβµνR
αβµν ,

constructed via the dual curvature tensor ∗Rα µν
β = 1

2η
ρσµνRα

βρσ, where ηρσµν is the volume

4-form.9 The coupling is such that θ has dimensions of [length]2. Note that the action (6.1)

has to be distinguished from the Chern-Simons gravitational theories of Ref. [72], which exist

in odd dimensions and correspond to a particular case of Lovelock Lagrangian [58].

The inclusion of the non-dynamical field θ comes from the fact that the Pontryagin form
∗RαβµνR

αβµν is a total derivative. As a consequence, the variation with respect to the metric

brings an additional piece to the Einstein equations, which corresponds to a four-dimensional

version of the Cotton tensor whose definition obviously depends on θ. Since the field θ can be

fixed arbitrarily, the diffeomorphism invariance is broken. Nevertheless, the conservation of

the equations of motion makes diffeomorphism symmetry to be restored dynamically. That

is, the consistency of the theory imposes that only geometries with vanishing Pontryagin form

are allowed as solutions. The same conclusion is obtained by considering the non-dynamical

field θ as a Lagrange multiplier; see Ref. [75] for a careful digression on this point.

9Here ηtξrx =
√

−g (ηtξrx = −1/
√

−g).
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The equations of motion derived from the Jackiw-Pi action (6.1) then take the form

Cµν +Gµν −
3

l2
gµν = 0, (6.2)

where, as mentioned above, Cµν is a sort of generalization of the three-dimensional Cotton

tensor that appears in the equations of motion of TMG, given by10

Cµν = ∇α

(

∇βθ
∗Rα(µ|β|ν)

)

. (6.3)

The conservation of the Einstein equations yields the additional constraint

∇µCµν =
1

8
∗RαβρσR

αβρσ∇νθ = 0, (6.4)

which imposes that all solutions of the Jackiw-Pi theory (6.1) must obey ∗RµνρσR
µνρσ = 0. It

is worth noticing that all Siklos spacetimes, being AdS waves, satisfy this necessary condition

as they have vanishing Pontryagin invariant. In fact, we have ∗CµνρσC
µνρσ = 0 which in

turn implies that ∗RµνρσR
µνρσ = 0 since both invariants agree (for a detailed analysis, see

the first Appendix of Ref. [77]). This is a promising scenario for the search of Schrödinger

symmetric configurations. Indeed, we will now show that the Jackiw-Pi theory (6.1) admits

solutions with Schrödinger symmetry. In order to realize this task, the first step is to make

an “educated” choice for the breaking of diffeomorphism invariance by considering11

θ =
1

αp

x

r
, (6.5)

where αp is a coupling constant with dimensions of [length]−2. This choice reduces the

variational Cotton-like tensor (6.3) to the single expression

Cµν = − r2

2αpl2

(

F ′′

r

)′

δtµδ
t
ν . (6.6)

Taking all this into account, the Jackiw-Pi equations (6.2) become

− r2

2αpl2

[

1

r1−αpl2

(

F ′

rαpl2

)′]′

δtµδ
t
ν = 0. (6.7)

For generic values of the coupling constant αp, with αp 6= −1/l2 and αp 6= 2/l2, the solution

of this equation is given by

F (r) = c0r
3 + c1r

1+αpl2 , (6.8)

where we have discarded the additive constant removable through a coordinate transforma-

tion. On the other hand, for the critical values αp = −1/l2 and αp = 2/l2, we obtain the

following logarithmic branches

F (r) = c0r
3 + c1 ln r, (6.9)

F (r) = c0r
3 + c1r

3 ln r, (6.10)

10There are other generalizations of the Cotton tensor in higher dimensions, see e.g. Ref. [76].
11It is possible to show that there exists an infinite family of elections compatible with the existence of

Schrödinger symmetry, and we are just presenting the simplest one.
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respectively. Solutions (6.9) and (6.10) enjoy the partial Schrödinger symmetry for c1 = 0

while the generic solution (6.8) is also partially Schrödinger invariant as long as one of the

two constants is set to zero. The analogy with the theories studied previously is complete

since the generic solution (6.8) have the full Schrödinger symmetry for the special fine tuning

αp = − 3

l2
.

There also exists a close relation to TMG: Identifying the three-dimensional topological mass

in term of the four-dimensional coupling constant as µ = αpl,
12 both the generic solution

(6.8) and the critical one (6.9) can be represented for c0 = 0 as a warped product having as

base the corresponding TMG configurations of Refs. [17, 18, 19, 20, 21, 22] with a real line

fiber generated by the spatial direction along the coordinate x; namely

ds2JP = ds2TMG +
l2

r2
dx2. (6.11)

The other critical solution (6.10) which corresponds to αp = 2/l2, does not allow such

a simple representation in term of the remaining three-dimensional critical TMG solution

with topological mass µ = 1/l. However, since this three-dimensional case turns out to

be a consistent asymptotically AdS configuration in TMG despite its weakened logarithmic

decay [31, 32], it would be very interesting to check if the above critical solution (6.10)

for αp = 2/l2 is also an asymptotically AdS solution of the Jackiw-Pi theory, relaxing the

standard asymptotic conditions known for General Relativity [28].

7. Conclusions

In this paper, we have been concerned with a special class of Siklos spacetimes that contains

the Schrödinger invariant metrics as particular cases. Our main purpose was to identify pure

gravity theories that exhibit solutions of this special kind. We began by considering the

Einstein gravity augmented by square-curvature corrections in arbitrary dimensions D. In

this case, we have shown that for a particular choice of the coupling constants Schrödinger

invariant metrics are allowed as solutions, while other choice yields to a sector of solutions

with logarithmic falling-off. We have also observed the existence of a degenerate sector whose

space of solutions contains all these particular Siklos spacetimes, without restricting the

profile function F that appears in the metric. We discussed the relation of this degeneracy

to the non-renormalization of the dynamical exponent z = ν + 1 observed at special points

of the moduli space. We further extended our results to a larger set of gravity theories,

whose Lagrangians are given by arbitrary functions of the square-curvature invariants. This

was achieved by establishing a correspondence with square-curvature models discussed first.

All the sectors studied for the square-curvature actions were shown to also appear in this

more general class of models. As a special example, we considered the theory defined by

12Notice we are using here the definition of the topological mass for example of Ref. [32]
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adding to the Einstein-Hilbert action non-polynomial conformally invariant corrections in

arbitrary dimension D. In this case, we observed that only in D = 4, which corresponds to a

particular case of square-curvature action, this theory presents genuinely new features, as for

the case of higher dimensions the type of solution we discuss simply reduces to the solutions

of D-dimensional General Relativity. Finally, we have also analyzed a completely different

higher-order theory of gravity, the so-called Chern-Simons modification of four-dimensional

General Relativity proposed by Jackiw and Pi. This model involves a non-dynamical field

that plays the role of a Lagrange multiplier which forces the Pontryagin density to vanish.

We have shown that for some precise choices of the non-dynamical field, the parity-violating

Chern-Simons modification of General Relativity exhibits both the Schrödinger invariant and

the logarithmic sectors as exact solutions.

In two recent papers, [71] and [78], we have shown that the Einstein gravity together

with appropriated square-curvature corrections in arbitrary dimensions D admits black holes

configurations that asymptote the Lifshitz spacetimes [50]. A natural continuation of the

work would be finding black holes with Schrödinger asymptotic for (some of) the higher

order gravity theories considered in this paper. It would be interesting to obtain black hole

configurations which asymptote the metrics (2.1) for arbitrary ν 6= 1 and, consequently, to get

black holes with partial Schrödinger asymptotic. This question is of physical relevance as the

black hole solutions that have been derived so far in the context of string theory and through

the null Melvin twist (see [14] and [12]) possess the full Schrödinger symmetry asymptotically

by construction and hence correspond only to the class of solutions with ν = 1. This prevents

us from the possibility to use an holographic description for the finite temperature effects of

condensed matter systems having ν 6= 1.

Finally, let us conclude with few words about some classes of metrics that depends on

time, and therefore the time translation is not longer an isometry, while the dilatation (2.3)

or the special conformal transformations (2.4) still act as isometries [79]. A particular class

of such metrics can be written in the following form

ds2 =
l2

r2

[

−G

(

t

r1+ν

)

dt2

r2ν
+ 2dtdξ + dr2 + d~x2

]

, (7.1)

where G is an arbitrary function of the argument t/r1+ν . In the sectors of solutions studied

in this paper, the solutions depend on arbitrary constants denoted by ci or c±. However, it

is easy to see that these constants can be replaced by arbitrary functions of the time t. As

a consequence, all the power law solutions derived previously of the form F (r) = c rα can

be extended to F (t, r) = c(t) rα where c(t) is an arbitrary function of t. Therefore, choosing

c(t) = c̃/t
2ν+α
1+ν , where c̃ is a constant, makes the solution dilatation invariant for ν 6= 1, while

for ν = 1 the solution admits the special conformal transformation as isometry but not the

dilatation.
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A. AdS-waves and higher order terms

Let us consider an AdS-wave of the type (2.9). It is worth noticing that the following formulae

is valid even when the profile has a more general dependence F = F (u, r, ~x). We use the

null geodesic vector kµ∂µ = (r/l)∂ξ that allows the reinterpretation of these backgrounds as

generalized Kerr-Schild transformations of AdS

gµν = gAdS
µν − Fkµkν . (A.1)

We start with the Ricci tensor, which for a D-dimensional AdS-wave is written as

Rµν = −(D − 1)

l2
gµν +

1

2
kµkν�F, (A.2)

yielding the scalar curvature R = −D(D − 1)/l2, exactly the same as for AdS space. This

gives the Einstein tensor

Gµν =
(D − 1)(D − 2)

2l2
gµν +

1

2
kµkν�F, (A.3)

and the squared-curvature combinations

RRµν =
D(D − 1)2

l4
gµν −

D(D − 1)

2l2
kµkν�F, (A.4)

RµαR
α
ν =

(D − 1)2

l4
gµν −

(D − 1)

l2
kµkν�F. (A.5)

The following squared-curvature combinations involve explicitly the Riemann tensor

RµανβR
αβ =

(D − 1)2

l4
gµν −

(D − 2)

2l2
kµkν�F, (A.6)

RµγαβR
γαβ
ν =

2(D − 1)

l4
gµν −

2

l2
kµkν�F. (A.7)

Using the expression for the Ricci tensor (A.2), together with the null and geodesic

properties of kµ, it is not hard to verify that

�Rµν =
1

2
kµkν�

(

�− 2

l2

)

F. (A.8)

If we denote by Kµν the modification to the Einstein equations (3.2) coming from the

squared curvatures, the expressions above allow to write this tensor as

Kµν = −(D − 1)(D − 4)

2l2
[(D − 1)(Dβ1 + β2) + 2β3] gµν

+
1

2
kµkν�

{

(β2 + 4β3)�− 2

l2
[(D − 1)(Dβ1 + β2)− 2(D − 4)β3]

}

F.
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Now the Einstein equations (3.2) become

{

λ+
(D − 1)(D − 2)

2l2
− (D − 1)(D − 4)

2l4
[(D − 1) (Dβ1 + β2) + 2β3]

}

gµν

+
1

2
kµkν�

{

(β2 + 4β3)�− 1

l2
[

2(D − 1)(Dβ1 + β2)− 4(D − 4)β3 − l2
]

}

F = 0,

from which it follows that the cosmological constant must be chosen as in Eq. (3.3). Since

the d’Alembertian of any function Φ = Φ(r) depending only in the front-wave coordinate r

becomes

�Φ =
1

l2
[

r2Φ′′ − (D − 2)rΦ′
]

, (A.9)

we obtain finally equation (3.4).
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[55] A. Garćıa, Nuovo Cim. B 78, 255 (1983).

[56] I. Ozsvath, I. Robinson, and K. Rozga, J. Math. Phys. 26, 1755 (1985).

[57] E. Ayón-Beato and M. Hassaine, Phys. Rev. D 71, 084004 (2005).

[58] D. Lovelock, J. Math. Phys. 12, 498 (1971).

[59] P. Breitenlohner and D. Z. Freedman, Phys. Lett. B 115, 197 (1982); Annals Phys. 144, 249

(1982).

[60] L. Mezincescu and P. K. Townsend, Annals Phys. 160, 406 (1985).

[61] A. Maloney, W. Song and A. Strominger, Phys. Rev. D 81, 064007 (2010).

[62] G. Giribet, M. Kleban and M. Porrati, JHEP 0810 (2008) 045.

[63] D. Grumiller, I. Sachs, JHEP 1003, 012 (2010).

[64] D. Grumiller, O. Hohm, Phys. Lett. B686, 264-267 (2010).

[65] D. Grumiller, N. Johansson, J. Phys. Conf. Ser. 222, 012047 (2010).

[66] Y. Liu and Y. W. Sun, JHEP 0905, 039 (2009)

[67] Y. Liu and Y. W. Sun, Phys. Rev. D 79, 126001 (2009)

[68] E. Bergshoeff, O. Hohm, J. Rosseel and P. Townsend, Modes of Log Gravity, arXiv:1102.4091.

[69] S. Moroz, Phys. Rev. D 81, 066002 (2010)

[70] R. G. Cai, Y. Liu, Y. W. Sun, JHEP 0910, 080 (2009).

[71] E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, JHEP 1004, 030 (2010).

[72] J. Zanelli, Lecture notes on Chern-Simons (super-)gravities, 2nd Ed. (2008),

arXiv:hep-th/0502193.

[73] G. Dotti, J. Oliva, R. Troncoso, Phys. Rev. D75, 024002 (2007).

[74] J. Oliva and S. Ray, Class. Quant. Grav. 27 (2010) 225002; Phys. Rev. D82 (2010) 124030.

[75] R. Jackiw, Lorentz Violation in a Diffeomorphism-Invariant Theory, arXiv:0709.2348.

[76] A. Garcia, F. W. Hehl, C. Heinicke and A. Macias, Class. Quant. Grav. 21 (2004) 1099.
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