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We consider the transverse-momentum (qT ) distribution of Drell–Yan lepton pairs produced in hadron
collisions. At small values of qT , we resum the logarithmically-enhanced perturbative QCD contributions
up to next-to-next-to-leading logarithmic accuracy. At intermediate and large values of qT , we consis-
tently combine resummation with the known next-to-leading order perturbative result. All perturbative
terms up to order α2

S are included in our computation which, after integration over qT , reproduces the
known next-to-next-to-leading order result for the Drell–Yan total cross section. We show and discuss
the reduction in the scale dependence of the results with respect to lower-order calculations, estimating
the corresponding perturbative uncertainty. We present a preliminary comparison with Tevatron Run II
data.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The hadroproduction of the vector bosons W and Z/γ ∗ ,
also known as the Drell–Yan (DY) process [1], is the process to
which parton model ideas (previously developed for deep inelas-
tic lepton–hadron scattering) were first applied in the context of
hard-scattering processes in hadron–hadron collisions.

At high-energy hadron colliders, such as the Tevatron and
the LHC, vector bosons are produced with large rates and with
relatively-simple experimental signatures. The vector boson pro-
duction process is thus relevant for various reasons. It is important
for detector calibration; it provides us with strong tests of pertur-
bative QCD and, in particular, it gives stringent information on the
parton densities of the colliding hadrons; it represents an impor-
tant background for new-physics searches. Owing to these reasons,
it is essential to have accurate theoretical predictions for vector
boson production cross sections and related kinematical distribu-
tions.

These predictions are based on perturbative QCD and are ob-
tained as power series expansions in the strong coupling αS. The
total cross section [2] and the rapidity distribution of the vec-
tor boson [3] are known up to the next-to-next-to-leading order
(NNLO) in QCD perturbation theory. Fully exclusive NNLO calcula-
tions, including the leptonic decay of the vector boson, are also
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available [4–6]. Electroweak corrections up to O(α) have been
computed both for W [7] and Z/γ ∗ production [8].

In this Letter we consider the transverse-momentum (qT ) spec-
trum of the vector boson. The qT spectra of the W and Z bosons
are particularly important since the uncertainties in their shape
directly affect the measurement of the W mass. In the large-qT

region (qT ∼ mV ), where the transverse momentum is of the or-
der of the vector boson mass mV , perturbative QCD calculations
based on the truncation of the perturbative series at a fixed order
in αS are theoretically justified. In this region, the QCD radia-
tive corrections are known up to the next-to-leading order (NLO)
[9–11]. Nonetheless the bulk of the vector boson events is pro-
duced in the small-qT region (qT � mV ), where the convergence
of the fixed-order expansion is spoiled by the presence of large
logarithmic terms, αn

S lnm(m2
V /q2

T ). To obtain reliable predictions,
these logarithmically-enhanced terms have to be systematically re-
summed to all perturbative orders [12–20]. The resummed and
fixed-order calculations at small and large values of qT can then
be consistently matched at intermediate values of qT , to obtain
QCD predictions for the entire range of transverse momenta.

We use the transverse-momentum resummation formalism
proposed in Refs. [20,21]. The formalism is valid for a generic
process in which a high-mass system of non-strongly-interacting
particles is produced in hadron–hadron collisions. The method has
so far been applied to the production of the Standard Model (SM)
Higgs boson [22,21,23], single vector bosons [24], W W [25] and
Z Z [26] pairs, slepton pairs [27], and DY lepton pairs in polar-
ized collisions [28]. The study of Ref. [24] is mainly based on
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next-to-leading logarithmic (NLL) resummation at small qT and
on the leading-order (LO) calculation at large qT . In this Letter
we extend the analysis and the results of Ref. [24], combining
the most advanced perturbative information that is available at
present: next-to-next-to-leading logarithmic (NNLL) resummation
at small qT and the NLO calculation at large qT . Other phenomeno-
logical studies of the vector boson qT distribution, which combine
resummed and fixed-order perturbative results at various levels of
theoretical accuracy, can be found in Refs. [29].

The Letter is organized as follows. In Section 2 we briefly re-
view the resummation formalism of Refs. [20,21] and its applica-
tion to vector boson production. In Section 3 we present numerical
results for Z/γ ∗ production, and we comment on their compari-
son with the Tevatron Run II data [30,31]. We also study the scale
dependence of our results to the purpose of estimating the corre-
sponding perturbative uncertainty. In Section 4 we summarize our
results.

2. Transverse-momentum resummation

We briefly recall some of the main points of the transverse-
momentum resummation formalism of Refs. [20,21]. Here we con-
sider the specific case of DY lepton pair production, i.e. the produc-
tion of a vector boson V (V = W +, W −, Z/γ ∗) that subsequently
decays in a lepton pair.

The inclusive hard-scattering process is

h1(p1) + h2(p2) → V (M,qT ) + X → l1 + l2 + X, (1)

where h1 and h2 are the colliding hadrons with momenta p1
and p2, V is the vector boson (which decays in the lepton pair
l1, l2) with invariant mass M and transverse momentum qT , and X
is an arbitrary and undetected final state.

According to the QCD factorization theorem the qT differential
cross section dσV /dq2

T can be written as

dσV

dq2
T

(qT , M, s) =
∑
a,b

1∫
0

dx1

1∫
0

dx2 fa/h1

(
x1,μ

2
F

)
fb/h2

(
x2,μ

2
F

)

× dσ̂V ab

dq2
T

(
qT , M, ŝ;αS

(
μ2

R

)
,μ2

R ,μ2
F

)
, (2)

where fa/h(x,μ2
F ) (a = q, q̄, g) are the parton densities of the col-

liding hadron h at the factorization scale μF , dσ̂ V
ab/dq2

T are the per-
turbative QCD partonic cross sections, s (ŝ = x1x2s) is the square
of the hadronic (partonic) centre-of-mass energy, and μR is the
renormalization scale.

In the region where qT ∼ M (in practice, we always consider
the case in which M is close to the mass mV of the vector boson),
the QCD perturbative series is controlled by a small expansion pa-
rameter, αS(M), and fixed-order calculations are theoretically jus-
tified. In this region, the QCD radiative corrections are known up
to next-to-leading order (NLO) [9].

In the small-qT region (qT � M), the convergence of the fixed-
order perturbative expansion is spoiled by the presence of powers
of large logarithmic terms, αn

S lnm(M2/q2
T ). To obtain reliable pre-

dictions these terms have to be resummed to all orders.
We perform the resummation at the level of the partonic cross

section, which is decomposed as

dσ̂V ab

dq2
T

= dσ̂
(res.)
V ab

dq2
T

+ dσ̂
(fin.)

V ab

dq2
T

. (3)

The first term on the right-hand side contains all the logarithmical-
ly-enhanced contributions, which have to be resummed to all or-
ders in αS, while the second term is free of such contributions and
can thus be evaluated at fixed order in perturbation theory. Using
the Bessel transformation between the conjugate variables qT and
b (b is the impact parameter), the resummed component dσ̂

(res.)
V ab

can be expressed as

dσ̂
(res.)
V ab

dq2
T

(
qT , M, ŝ;αS

(
μ2

R

)
,μ2

R ,μ2
F

)

= M2

ŝ

∞∫
0

db
b

2
J0(bqT )W V

ab

(
b, M, ŝ;αS

(
μ2

R

)
,μ2

R ,μ2
F

)
, (4)

where J0(x) is the 0th-order Bessel function. Considering the
Mellin N-moments WN of W with respect to the variable z =
M2/ŝ at fixed M , the resummation structure of W V

ab,N can be or-

ganized in exponential form1

W V
N

(
b, M;αS

(
μ2

R

)
,μ2

R ,μ2
F

)
= H V

N

(
M,αS

(
μ2

R

); M2/μ2
R , M2/μ2

F , M2/Q 2)
× exp

{
GN

(
αS

(
μ2

R

)
, L; M2/μ2

R , M2/Q 2)}, (5)

were we have defined the logarithmic expansion parameter L ≡
ln(Q 2b2/b2

0), and b0 = 2e−γE (γE = 0.5772 . . . is the Euler num-
ber). The scale Q (Q ∼ M), which appears on the right-hand side
of Eq. (5), is the resummation scale [21]. Although W V

N (i.e., the
product H V

N × exp{GN }) does not depend on Q when evaluated
to all perturbative orders, its explicit dependence on Q appears
when W V

N is computed by truncation of the resummed expression
at some level of logarithmic accuracy (see Eq. (6) below). Varia-
tions of Q around M can thus be used to estimate the size of yet
uncalculated higher-order logarithmic contributions.

The universal2 form factor exp{GN } contains all the terms that
order-by-order in αS are logarithmically divergent as b → ∞ (or,
equivalently, qT → 0). The resummed logarithmic expansion of the
exponent GN is defined as follows:

GN
(
αS, L; M2/μ2

R , M2/Q 2)
= Lg(1)(αSL) + g(2)

N

(
αSL; M2/μ2

R , M2/Q 2)
+ αS

π
g(3)

N

(
αSL, M2/μ2

R , M2/Q 2) + · · · (6)

where the term Lg(1) collects the leading logarithmic (LL) contri-
butions, the function g(2)

N includes the next-to-leading logarithmic

(NLL) contributions [17], g(3)
N controls the NNLL terms [32–34] and

so forth. The explicit form of the functions g(1) , g(2)
N and g(3)

N can
be found in Ref. [21]. The process dependent function H V

N does
not depend on the impact parameter b and it includes all the per-
turbative terms that behave as constants as b → ∞. It can thus be
expanded in powers of αS = αS(μ

2
R):

H V
N

(
M,αS; M2/μ2

R , M2/μ2
F , M2/Q 2)

= σ
(0)
V (M)

[
1 + αS

π
H V (1)

N

(
M2/μ2

F , M2/Q 2)

+
(

αS

π

)2

H V (2)
N

(
M2/μ2

R , M2/μ2
F , M2/Q 2) + · · ·

]
, (7)

1 For the sake of simplicity we consider here only the case of the diagonal terms
in the flavour space of the partonic indices a,b. For the general case and a detailed
discussion of the resummation formalism, we refer to Ref. [21].

2 The form factor does not depend on the type of produced vector boson. More
generally, all the hard-scattering processes initiated by quark–antiquark annihilation
have the same form factor.
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where σ
(0)
V is the partonic cross section at the Born level. The

first-order coefficients H V (1)

qq̄←ab,N in Eq. (7) are known since a long

time [32], while the second-order coefficients H V (2)

qq̄←ab,N were com-
puted only recently [5].

Within a straightforward (‘naive’) implementation of Eq. (5), the
resummation of the large logarithmic contributions would affect
not only the small-qT region, but also the region of large values of
qT . This can easily be understood by observing that the logarith-
mic expansion parameter L diverges also when b → 0. To reduce
the impact of unjustified higher-order contributions in the large-
qT region, the logarithmic variable L in Eq. (5) is actually replaced
by L̃ ≡ ln(Q 2b2/b2

0 +1) [21,22]. This replacement has an additional
and relevant consequence: after inclusion of the finite component
(see Eq. (8)), we exactly recover the fixed-order perturbative value
of the total cross section upon integration of the qT distribution
over qT (i.e., the resummed terms give a vanishing contribution
upon integration over qT ).

We now turn to consider the finite component of the trans-
verse-momentum cross section (see Eq. (3)). Since dσ

(fin.)
V does not

contain large logarithmic terms in the small-qT region, it can be
evaluated by truncation of the perturbative series at a given fixed
order. In practice, the finite component is computed starting from
the usual fixed-order perturbative truncation of the partonic cross
section and subtracting the expansion of the resummed part at the
same perturbative order. Introducing the subscript f.o. to denote
the perturbative truncation of the various terms, we have:

[
dσ̂

(fin.)

V ab

dq2
T

]
f.o.

=
[

dσ̂V ab

dq2
T

]
f.o.

−
[

dσ̂
(res.)
V ab

dq2
T

]
f.o.

. (8)

This matching procedure between resummed and finite contribu-
tions guarantees to achieve uniform theoretical accuracy over the
region from small to intermediate values of transverse momenta.
At large values of qT , the resummation (and matching) procedure
is eventually superseded by the customary fixed-order calculations
(their theoretical accuracy in the large-qT region cannot be im-
proved by resummation of the logarithmic terms that dominate in
the small-qT region).

In summary, the inclusion of the functions g(1) , g(2)
N , H V (1)

N in
the resummed component, together with the evaluation of the fi-
nite component at LO (i.e. at O(αS)), allows us to perform the
resummation at NLL + LO accuracy. This is the theoretical accuracy
used in our previous study [24] of the DY qT distribution. Including
also the functions g(3)

N and H V (2)
N , together with the finite compo-

nent at NLO (i.e. at O(α2
S )) leads to full NNLL + NLO accuracy. The

perturbative coefficient A(3) , which contributes to the NNLL func-
tion g(3)

N (see, e.g., Eq. (24) in Ref. [21]), is not yet known. In the
following, we assume that the value of A(3) is the same as the
one [35,36] that appears in resummed calculations of soft-gluon
contributions near partonic threshold. Using the recently computed
H V (2)

N coefficient [5], we are thus able to present the complete re-
sult for the DY qT -distribution up to NNLL + NLO accuracy. We
point out that the NNLL + NLO (NLL + LO) result includes the full
NNLO (NLO) perturbative contribution in the small-qT region. In
particular, the NNLO (NLO) result for the total cross section is ex-
actly recovered upon integration over qT of the differential cross
section dσV /dqT at NNLL + NLO (NLL + LO) accuracy.

We conclude this section with some comments on the nu-
merical implementation of our calculation. Within our formalism,
the resummation factor W V

N (b, M) is directly defined, at fixed
M , in the space of the conjugate variables b and N . To obtain
the hadronic cross section, we have to perform inverse integral
transformations: the Bessel transformation in Eq. (4) and an in-
verse Mellin transformation. These integrals are carried out nu-
merically. The Mellin inversion requires the numerical evaluation
of some basic N-moment functions that appear in the expression
of the second-order coefficients H V (2)

qq̄←ab,N [5]: this evaluation has
to be performed for complex values of N , and we use the numer-
ical results of Ref. [37]. We recall [21] that the resummed form
factor exp{GN (αS(μ

2
R), L̃)} is singular at the values of b where

αS(μ
2
R)L̃ � π/β0 (β0 is the first-order coefficient of the QCD β

function). Performing the Bessel transformation with respect to the
impact parameter b (see Eq. (4)), we deal with this singularity
as we did in Ref. [21], by using the regularization prescription of
Refs. [38,39]: the singularity is avoided by deforming the integra-
tion contour in the complex b space.

3. Numerical results for Z/γ ∗ production at the Tevatron

In this section we consider Z/γ ∗ production in pp̄ collisions
at Tevatron energies. We present our resummed results at NNLL +
NLO accuracy, we compare them with the NLL + LO results (the
NLL + LO results in Ref. [24] were obtained by using the MRST2004
NLO parton densities [40]), and we comment on the comparison
with Tevatron Run II data [30,31].

The hadronic qT cross section at NNLL + NLO (NLL + LO) ac-
curacy is computed by using the MSTW2008 NNLO (NLO) parton
densities [41], with αS(μ

2
R) evaluated at 3-loop (2-loop) order. This

choice of the order of the parton densities and αS is fully justified
both in the small-qT region (where the calculation of the partonic
cross section includes the complete NNLO (NLO) result and is con-
trolled by NNLL (NLL) resummation) and in the intermediate-qT

region (where the calculation is constrained by the value of the
NNLO (NLO) total cross section).

As for the electroweak couplings, we use the so-called Gμ

scheme, where the input parameters are G F , mZ , mW . In particu-
lar, we use the PDG 2008 [42] values G F = 1.16637 × 10−5 GeV−2,
mZ = 91.1876 GeV, ΓZ = 2.4952 GeV, mW = 80.398 GeV. Our cal-
culation implements the decays γ ∗ → l+l− and Z∗ → l+l− at fixed
value of the invariant mass of the l+l− pair. In particular, we in-
clude the effects of the γ ∗ Z interference and of the finite width
of the Z boson. Nonetheless, the numerical results presented be-
low are obtained by simply using the narrow-width approximation
and neglecting the photon contribution. We find that this approxi-
mation works to better than 1% accuracy in the inclusive region of
lepton invariant mass that is covered by the D0 data.3

As discussed in Section 2, the resummed calculation depends
on the factorization and renormalization scales and on the re-
summation scale Q . Our convention to compute factorization and
renormalization scale uncertainties is to consider independent
variations of μF and μR by a factor of two around the cen-
tral values μF = μR = mZ (i.e. we consider the range mZ /2 �
{μF ,μR} � 2mZ ), with the constraint 0.5 � μF /μR � 2. Similarly,
we follow Ref. [24] and we choose Q = mZ /2 as central value of
the resummation scale, considering scale variations in the range
mZ /4 < Q < mZ .

In Fig. 1 (left panel) we present the NLL+LO qT spectrum at the
Tevatron Run II (

√
s = 1.96 TeV).4 The NLL + LO result (solid line)

at the default scales (μF = μR = mZ , Q = mZ /2) is compared with
the corresponding LO result (dashed line). The LO finite component
of the spectrum (see Eq. (3)), multiplied by a factor of 10 to make

3 The measured qT spectra are inclusive over the following regions of lepton in-
variant mass: 70–110 GeV [30] and 65–115 GeV [31].

4 Analogous results at the Tevatron Run I (
√

s = 1.8 TeV), obtained by using
the MRST2004 parton densities [40], were presented in the left panel of Fig. 6 of
Ref. [24].
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it more visible, is also shown for comparison (dotted line). We see
that the LO result diverges to +∞ as qT → 0. The resummation
of the small-qT logarithms leads to a well-behaved distribution: it
vanishes as qT → 0, has a kinematical peak at qT ∼ 2 GeV, and
tends to the corresponding LO result at large values of qT . The
finite component smoothly vanishes as qT → 0 and gives a small
contribution to the NLL + LO result in the low-qT region.

The results in the right panel of Fig. 1 are analogous to those in
the left panel, although systematically at one order higher. The qT

spectrum at NNLL+NLO accuracy (solid line) is compared with the
NLO result (dashed line) and with the NLO finite component of the
spectrum (dotted line). The NLO result diverges to −∞ as qT → 0
and, at small values of qT , it has an unphysical peak (the top of
the peak is above the vertical scale of the plot) that is produced
by the numerical compensation of negative leading and positive
subleading logarithmic contributions. The contribution of the NLO
finite component to the NNLL + NLO result is smaller than 1% at
the peak and becomes more important as qT increases: it is about
8% at qT ∼ 20 GeV, about 20% at qT ∼ 30 GeV and about 53% at
qT ∼ 50 GeV. A similar quantitative behaviour is observed by con-
sidering the contribution of the NLO finite component to the NLO
result; the contribution is about 10% at qT ∼ 20 GeV, about 22%
at qT ∼ 30 GeV and about 60% at qT ∼ 50 GeV. In the region of
intermediate values of qT (say, around 20 GeV), the difference be-
tween the NNLL + NLO and NLO results is larger than the size of
the NLO finite component. This difference is produced by the loga-
rithmic terms (at NNLO and beyond NNLO) that are included in the
resummed calculation at NNLL accuracy. At large values of qT the
contribution of the NLO finite component sizeably increases. This
behaviour indicates that the logarithmic terms are no longer dom-
inant and that the resummed calculation cannot improve upon the
predictivity of the fixed-order expansion.

Comparing the left and right panels of Fig. 1, we see that the
qT spectrum is slightly harder at NNLL + NLO accuracy than at
NLL + LO accuracy. The height of the peak at NNLL + NLO is lower
than at NLL + LO. This is mainly due to the fact that the NNLO
total cross section, which fixes the value of the qT integral of our
NNLL + NLO result, is only about 3% larger than the NLO total cross
section, whereas in the region of intermediate values of qT the
cross section at NLO (and, correspondingly, at NNLL + NLO) is def-
initely larger than at LO (and, correspondingly, at NLL + LO); this
leads to a reduction of the cross section at small qT .

In Fig. 2 we show the scale dependence of the NLL+LO (dashed
lines) and NNLL + NLO (solid lines) results. In the left panel we
consider variations of the renormalization and factorization scales.
The bands are obtained by varying μR and μF as previously de-
scribed in this section. We note that, in the region of small and
intermediate transverse momenta (qT � 30 GeV), the NNLL + NLO
and NLL + LO bands overlap. This feature, which is not present in
the case of the fixed-order perturbative results at LO and NLO (see
Figs. 2 and 3 in Ref. [24]), confirms the importance of resumma-
tion to achieve a stable perturbative prediction. In the region of
small and intermediate values of qT , the main difference between
the NNLL + NLO and NLL + LO predictions is in the size of the scale
variation bands. Going from NLL + LO to NNLL + NLO accuracy, we
observe a reduction of the scale dependence from ±4% to ±3% at
the peak, from ±7% to ±3% at qT ∼ 20 GeV, and from ±7% to ±5%
at qT ∼ 50 GeV. We point out that the qT region where resummed
perturbative predictions are definitely significant is a wide region
from intermediate to relatively-small (say, close to the peak of
the distribution) values of qT . In fact, at very small values of qT

(e.g. qT � 5 GeV) the size of non-perturbative effects is expected
to be important, while in the high-qT region (e.g. qT � 60 GeV)
the resummation of the logarithmic terms cannot improve the pre-
dictivity of the fixed-order perturbative expansion. The inset plot
in the left panel of Fig. 2 shows the region from intermediate to
large values of qT . At large qT , the NLL + LO and NNLL + NLO re-
sults deviate from each other, and the deviation increases as qT

increases. As previously stated, this behaviour is not particularly
worrying since, in the large-qT region, the resummed results loose
their predictivity and can (should) be replaced by customary fixed-
order results.

In the right panel of Fig. 2 we consider resummation scale
variations. The bands are obtained by fixing μR = μF = mZ and
varying Q between mZ /4 and mZ . Performing variations of the
resummation scale, we can get further insight on the size of yet
uncalculated higher-order logarithmic contributions at small and
intermediate values of qT . We find that the scale dependence at
NNLL + NLO (NLL + LO) is about ±5% (±12%) in the region of the
peak, and about ±5% (±16%) in the region where qT ∼ 20 GeV. We
note that in a wide region of qT values, 5 GeV � qT � 50 GeV, the
resummation scale dependence is reduced by, roughly, a factor of
2 in going from the NLL + LO to the NNLL + NLO result. Comparing
the left and right panels of Fig. 2, we see that, at NNLL + NLO ac-
curacy, the resummation scale dependence is larger than (though,
comparable to) the μF and μR dependence.

The integral over qT of the resummed NNLL + NLO (NLL + LO)
spectrum is in agreement (for any values of μR ,μF and Q ) with
the value of the corresponding NNLO (NLO) total cross section to
better than 1%, thus checking the numerical accuracy of our code.
We also note that the large-qT region gives a little contribution to
the total cross section (see some numerical results in Section 3.2
of Ref. [24]); therefore, the total cross section constraint mainly
acts as a perturbative constraint on the resummed spectrum in the
region from intermediate to small values of qT .

The D0 Collaboration has measured the normalized qT dis-
tribution, 1

σ
dσ
dqT

, from data at the Tevatron Run II in the e+e−

[30] and μ+μ− [31] channels. In the left panel of Fig. 3 we re-
port the D0 data and our corresponding results at NNLL + NLO
accuracy. The NNLL + NLO band represents our estimate of the
perturbative uncertainty, and it is obtained by performing scale
variations as follows. We independently vary μF ,μR and Q in
the ranges mZ /2 � {μF ,μR} � 2mZ and mZ /4 � Q � mZ , with
the constraints 0.5 � μF /μR � 2 and 0.5 � Q /μR � 2. The con-
straint on the ratio μF /μR is the same as used in the left panel
of Fig. 2; it has the purpose of avoiding large logarithmic contribu-
tions (powers of ln(μ2

F /μ2
R)) that arise from the evolution of the

parton densities. Analogously, the constraint on the ratio Q /μR

avoids large logarithmic contributions (powers of ln(Q 2/μ2
R)) in

the perturbative expansion of the resummed form factor5 exp{GN }
(see Eq. (6)). We recall (see e.g. Eq. (19) of Ref. [21]) that the
exponent GN of the form factor is obtained by q2 integration of
perturbative functions of αS(q2) over the range b2

0/b2 � q2 � Q 2.
To perform the integration with systematic logarithmic accuracy,
the running coupling αS(q2) is then expressed in terms of αS(μR)

(and ln(q2/μ2
R)). As a consequence, the renormalization scale μR

should not be too different from the resummation scale Q , which
controls the upper bound of the q2 integration.

The D0 data and the NNLL + NLO band are presented in the left
panel of Fig. 3. The inset plot shows the region from qT = 30 GeV
up to qT = 100 GeV. A quick inspection of the figure shows that
the data are described quite well by the NNLL + NLO perturbative
predictions.

Differences and similarities between theoretical calculations
and the data are more clearly visible by considering their frac-
tional difference with respect to a ‘reference’ theoretical result. We

5 We do not apply additional constraints on the ratio Q /μF , since the form factor
does not depend on μF .
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Fig. 1. The qT spectrum of Z bosons at the Tevatron Run II: results at NLL + LO (left panel) and NNLL + NLO (right panel) accuracy. Each result is compared to the
corresponding fixed-order result (dashed line) and to the finite component (dotted line) in Eq. (8).

Fig. 2. The qT spectrum of Z bosons at the Tevatron Run II. The bands are obtained by varying μF and μR (left panel) and Q (right panel) as described in the text.
choose the NNLL + NLO result at central values of the scales (i.e.
μF = μR = mZ , Q = mZ /2) as ‘reference’ theory, and we show the
ratio (X-theory)/theory in the right panel of Fig. 3. The label X
refers to either the experimental data or the NNLL + NLO (solid
lines) and NLO (dashed lines and dotted line) results, including
their scale dependence.

Considering the right panel of Fig. 3, we first comment on the
scale uncertainty band of the NNLL + NLO result (solid lines). Such
uncertainty is about ±6% at the peak, it decreases to about ±4–5%
in the region up to qT = 10 GeV, and then it increases, reach-
ing the size of about ±12% at qT = 50 GeV. In the region beyond
qT ∼ 60 GeV the resummed result looses predictivity, and its per-
turbative uncertainty becomes large. The right panel of Fig. 3 also
shows the scale variation band of the NLO result. The NLO band
(dashed lines) is obtained by varying μF and μR (the NLO cal-
culation does not depend on the resummation scale Q ) as in the
NNLL + NLO calculation. We comment on the comparison between
the NLO and NNLL + NLO bands. At large values6 of qT , the NLO
and NNLL + NLO bands overlap (the NLO and NNLL + NLO are cer-
tainly consistent), and the NLO result has a smaller uncertainty.
At intermediate values of transverse momenta, the NLO result is
lower than the NNLL + NLO result, and the corresponding scale
variation bands do not overlap. We recall (see the discussion in
Section 3.1 of Ref. [24]) that in this region the NLO band un-
derestimates the true perturbative uncertainty of the NLO result;
indeed, the NLO band and the corresponding LO band do not over-
lap at intermediate values of qT (see Figs. 3 and 5 in Ref. [24]).
To get some quantitative insight into the ‘true’ perturbative uncer-
tainty of the NLO calculation in this qT region, we can consider
wider scale variations and, in particular, we can lower the values

6 The available D0 data in the region 100 GeV < qT < 250 GeV are consistent
with the NLO result (see Refs. [30,31] and Fig. 5 in Ref. [24]).
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Fig. 3. The normalized qT spectrum of Z bosons at the Tevatron Run II. The NNLL + NLO result is compared with the D0 data of Refs. [30,31]. The bands are obtained as
described in the text.
of μF and μR . In the right panel of Fig. 3, we show the NLO band
that we obtain by independently varying μF and μR in the range
mZ /4 � {μF ,μR} � 2mZ , with the constraint 0.5 � μF /μR � 2:
this band is delimited by the dotted line and the lower dashed
line (the region between the dotted line and the central values
of the dashed band roughly corresponds to scale variations in the
range mZ /4 � {μF ,μR} � mZ ). We note that lowering the scales at
NLO improves the consistency between the NLO and NNLL + NLO
results. We also note that we have considered similar enlarged
scale variations at NNLL + NLO accuracy, and we have checked
that they do not significantly modify the NNLL + NLO band in
the intermediate-qT region. This confirms the better stability of
the NNLL + NLO calculation with respect to scale variations. In the
small-qT region, the NLO result is theoretically unreliable. The NLO
band quickly deviates from the NNLL + NLO band as qT decreases.

The right panel of Fig. 3 shows that the NNLL + NLO result is
consistent with the D0 data, even at very low values of qT . We
note that the resummed result is obtained in a perturbative frame-
work. At low values of qT , non-perturbative effects are important
and are expected (see, e.g., the final part of Section 5 in Ref. [24])
to shift the resummed result such as to improve the agreement
with the data. In the region where qT � 50 GeV, the experimen-
tal errors and the corresponding NNLL + NLO errors overlap, with
the sole exception of a couple of data points at very low qT . In
the same region, the perturbative uncertainty of the NNLL + NLO
result turns out to be comparable with the size of the experimen-
tal errors. As pointed out by the D0 Collaboration [30,31], the NLO
result tends to undershoot the data in the region of intermediate
values of qT : NNLL resummation improves the agreement with the
data in this qT region.

4. Summary

In this Letter we have considered the qT spectrum of DY lepton
pairs produced in hadron collisions, and we have presented a per-
turbative QCD study based on transverse-momentum resummation
at the NNLL order.

We have followed the formalism developed in Refs. [20,21],
which is valid for the production of a generic high-mass system
of non-strongly-interacting particles in hadron collisions. The for-
malism combines small-qT resummation at a given logarithmic
accuracy with the fixed-order calculations. It implements a uni-
tarity constraint that guarantees that the integral over qT of the
differential cross section coincides with the total cross section at
the corresponding fixed-order accuracy. This leads to QCD predic-
tions with a controllable and uniform perturbative accuracy over
the region from small up to large values of qT . At large values of
qT , the resummation formalism is superseded by customary fixed-
order calculations.

We have considered the explicit case of DY lepton pairs from
the decay of a Z boson produced at the Tevatron Run II. Using the
recently computed NNLL coefficient H V (2)

N [5], we have extended
the NLL + LO resummed calculation presented in Ref. [24] to the
NNLL+NLO accuracy. The NNLL corrections are not large and make
the qT spectrum slightly harder. We have performed a study of the
scale dependence of the calculation to estimate the corresponding
perturbative uncertainty. In a wide region of transverse momenta
(5 GeV � qT � 50 GeV) the size of the scale uncertainties is con-
siderably reduced in going from NLL + LO to NNLL + NLO accuracy.

We have compared the resummed calculation with the results
of measurements [30,31] of the normalized qT spectrum at the
Tevatron Run II. The perturbative uncertainty of the NNLL+NLO re-
sults turns out to be comparable with the experimental errors. The
NNLL + NLO results (without the inclusion of any non-perturbative
effects) are consistent with the experimental data in a wide region
of transverse momenta. Comparing the NNLL + NLO and NLO re-
sults, we have also shown that NNLL resummation improves the
agreement with the data at intermediate values of qT . As is well
known (and theoretically expected), the NLO result fails to describe
the data at small values of qT .

More detailed comparisons with available data on vector boson
production and further studies of theoretical uncertainties, includ-
ing the impact of non-perturbative effects, are left to future inves-
tigations.

Note added

After the completion of this Letter, the value of the coefficient A(3) (see the
related comment in the final part of Section 2) for qT resummation was derived in
Ref. [43]. We have checked the quantitative effect of this value of A(3) on our results
for the qT distribution of Z bosons. We find that the effect is generally very small.
The largest effect is produced in the region of very low values of qT ; for instance,
in the case of Z production at the Tevatron, the quantitative effect is at the level of
about 2% (4%) at qT 
 2 GeV (1 GeV).
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