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ABSTRACT: The G-particle-hole hypervirial (GHV) equation has been recently
reported (Valdemoro et al., Sixth International Congress of the International Society for
Theoretical Chemical Physics Vancouver: Canada, 2008. Alcoba et al., Int J Quantum Chem
2009, 109, 3178; Valdemoro et al., Int J Quantum Chem 2009, 109, 2622). This equation is the
newest member of the family of equations which can be obtained by applying a
matrix-contracting mapping (Valdemoro, An R Soc Esp Fís 1983, 79, 106; Valdemoro, Phys
Rev A 1985, 31, 2114; Valdemoro, in Density Matrices and Density Functionals, Reidel:
Dordrecht, 1987; p 275.) to the matrix representation in the N-electron space of the
Schrödinger, Liouville and hypervirial equations. The procedure that we have applied in
order to solve the GHV equation exploits the stationary property of the hypervirials
(Hirschfelder, J Chem Phys 1960, 33, 1462; Hirschfelder and Epstein, Phys Rev 1961, 123,
1495) and follows the general lines of Mazziotti’s variational approach for solving the
anti-Hermitian contracted Schrödinger equation (ACSE) (Mazziotti, Phys Rev Lett 2006,
97, 143002; Mazziotti, Phys Rev A 2007, 75, 022505; Mazziotti, J Chem Phys 2007, 126,
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184101). In this article, we report how the method’s convergence has been significantly
enhanced and how its computational scaling has been considerably reduced (in both
floating-point operations and storage). The results for a variety of atomic and molecular
calculations confirming these methodological improvements are reported here. © 2010
Wiley Periodicals, Inc. Int J Quantum Chem 00: 000–000, 2010

Key words: correlation matrix; G-matrix; reduced density matrix; electronic correlation
effects; contracted Schrödinger equation; hypervirial of the G-particle-hole matrix

1. Introduction

T he 2-order Correlation Contracted Schrödinger
Equation (2-CCSE) [1] and its anti-Hermitian

part, which is identical to the G-particle-hole hyper-
virial (GHV) equation [2–4], have recently been
proposed for studying the electronic structure of an
N-electron system. The development of the method-
ology based on these two equations continues a
line of research which started long ago: to look
for an accurate description of the electronic struc-
ture of the N-electron systems through the use of
two-body physico-mathematical objects, the 2-order
Reduced Density Matrices (2-RDM), which should
be determined directly without recourse to the N-
body wave-function. This search started more than
fifty years ago with the remarkable papers by Husimi
[5] and by Löwdin [6]. Since then, huge advances
have been performed and many valuable works have
contributed to enlightening the 2-RDM theory. Let us
especially recall the outstanding 1963 paper by Cole-
man [7], as well as the 1964 one by Garrod and Percus
[8], which set up a firm ground for the research
which was to follow and which generated an exten-
sive bibliography. The books by Davidson [9] and
by Coleman and Yukalov [10], as well as the com-
prehensive reviews on the RDM theory [11–15] are
a valuable record of the advances carried out in this
line of research.

In 1976, the Schrödinger Equation (SE) was inte-
grated over the variables of (N − 2) electrons by
Nakatsuji [16] and by Cohen and Frishberg [17].
In 1986, Valdemoro [18] applied to the matrix rep-
resentation in the N-electron space of the SE a
matrix-contracting mapping (MCM) [18–20], and
obtained what this author denoted 2-order Con-
tracted Schrödinger equation (2-CSE). These equa-
tions can be shown to be equivalent and are at the ori-
gin of the late developments in this line of research.
The relevance of these equations was enhanced by
a theorem of Nakatsuji (1976) [16], later verified by
Mazziotti (1998) [21], who showed that the 2-RDM
which solves the 2-CSE equation coincides with that

which would be obtained by integrating the
N-electron density matrix, solution of the SE, over
the variables of (N − 2) electrons. Although the 2-
CSE is represented in the 2-electron space and its
solution is the 2-RDM, it also depends on the 3-and
4-RDMs in an averaged way, which renders it oper-
ationally indeterminate. This drawback was solved
by approximating the 3- and 4-RDMs in terms of the
1- and 2-RDMs [22], which permitted the 2-CSE to be
approximately solved iteratively by Colmenero and
Valdemoro in 1994 [23]. This method has been signif-
icantly optimized later on (e.g., see Refs. [10, 14, 15],
and references therein). When the MCM is applied
to the matrix representation of the SE, and involves
the 2-order correlation operator instead of the 2-
order density one, the 2-CCSE is generated [3, 4].
A noteworthy result was reported by Alcoba, who
demonstrated in 2002 [1] that a theorem similar to
Nakatsuji’s and Mazziotti’s concerning the exactness
of the 2-CSE, also holds in the 2-CCSE case.

Since the MCM is a general mapping, it has been
applied in the past not only to the matrix represen-
tation in the N-electron space of the SE but also
to the matrix representations of the Hamiltonian
operator [18, 20], the Liouville, and hypervirial equa-
tions [18], and the spin-squared eigenequation [24].
A general property of the resulting family of p-order
contracted equations is that they are hierarchy ones.
That is, they involve contractions of matrices of a
higher order than p. The type of contracted equa-
tions which involve less unknowns are the p-order
contracted hypervirial ones. A large literature on the
hypervirial conditions has been developed [25–33],
thus establishing this name to refer to the expectation
value of the commutator between the Hamiltonian
and any linear operator, which vanishes when the
state considered is a Hamiltonian eigenstate [25]. In
1994, Colmenero and Valdemoro [23] realized that
the 2-order density hypervirial (2-HV) equation was
the anti-Hermitian part of the 2-CSE and discussed
in some detail its derivation as well as the attrac-
tive properties of this equation. These first studies
have been subsequently extended by Valdemoro
and coworkers, who investigated the hypervirial
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properties and its possible applications and limita-
tions as a tool for the direct calculation of reduced
density matrices [34–37]. In 2006, Mazziotti [38–40]
proposed an excellent iterative method for solving
the 2-HV, which he denoted anti-Hermitian con-
tracted Schrödinger equation (ACSE), and obtained
excellent results [38–45]. Two important advantages
of this approach were that the ACSE did not depend
on the 4-RDM and that the N-representability prop-
erties [7] of the 2-RDM were practically preserved
during the iterative process.

When the MCM which is applied to the N-electron
density hypervirial equation involves the correla-
tion operator or, equivalently, the G-particle-hole
operator, one obtains the GHV equation, which can
be identified with the anti-Hermitian part of the 2-
CCSE [2–4]. It should be noted that since the 2-order
density operator and the G-particle-hole operator
are very different, the 2-order contracted hyper-
virial equations which they respectively generate,
the ACSE and the GHV, are mathematically differ-
ent. They present different basic properties which,
when approximately solved, give rise to different
convergence problems. Thus, we have shown [3] that
while solving the GHV implies that the ACSE is also
solved, the inverse is not true. In other words, the
GHV is a different and more demanding equation.
Moreover, in the p-order ACSE and p-order GHV
case, with N > p > 2, it has been shown [4] that
the p-GHV equation implies a sufficient condition to
guarantee that there is a one-to-one correspondence
between the p-GHV solutions and the SE ones, which
is not true in the p-ACSE case.An iterative procedure
leads to an accurate solution of the GHV equation.
In view of the G-particle-hole operator structure, an
evolution operator different to the one devised by
Mazziotti in the ACSE case [38] had to be looked
for [3, 4]. Our approach here, which is an alterna-
tive to that reported in [38–40], while following the
general lines of Mazziotti’s continuous variational
formulation [38], is based on the stationary property
of the Hamiltonian against a unitary transformation.

The preliminary results obtained with the GHV
method were very accurate and satisfying [2, 3],
and showed at least as efficient as the set of results
obtained in the ACSE case. Nevertheless, the conver-
gence, although very smooth, was very slow. More-
over, the time of each iteration was proportional to
K7, where K is the number of orbitals in the basis
set. On the other hand, the computational memory
storage scaling was proportional to K6. The study
reported here describes the new optimizing imple-
mentations introduced in order to enhance both the

convergence and the computational efficiency of this
method.

The article is organized as follows: In next section,
the notation, definitions, and necessary background
information are summarized. In section 3, the main
features of the theory at the base of the GHV method-
ology are briefly recalled. The new techniques which
we propose here in order to render the GHV method
fully competitive are then reported in section 4. First,
the procedure through which the iteration time and
memory storage are rendered proportional to K6 and
K4, respectively, is described in some detail, and a
set of comparative results are given. To accelerate
the convergence of the iterative procedure and to
simultaneously improve the precision of the solu-
tion, a new iterative methodology, based on applying
Fehlberg’s algorithm [46, 47] to the solution of a sys-
tem of differential equations associated to the GHV
equation, is reported and numerically tested in the
second part of this section. A graph confirms that
the convergence enhancement is noteworthy. Finally,
section 5 is mainly devoted to asses the exactness and
competitiveness of the new methodology. In the first
part of this section, we study two different conver-
gence stopping criteria and the dependence of the
results thus obtained on the size and type of sys-
tem studied, as well as on the kind and extension
of the atomic orbitals basis used. In the second part
of this section, the performance of the GHV is com-
pared with that of other ab initio methods. A brief
discussion on the possible ways which may permit
to optimize and further extend the GHV method
concludes this section.

2. Theoretical background

2.1. GENERAL NOTATION

The systems considered have a fixed number N
of electrons and the finite number of orthonormal
spin-orbitals spanning the one-electron space is 2K.

The RDMs and the correlation matrices (CMs) are
the matrices at the center of the reported theoreti-
cal approach. Their respective structures are defined,
in the occupation number representation of second
quantization, as:

• A p-RDM, pD, is a matrix whose elements have
the form:

pDi1i2...ip ;m1m2..mp

= 1
p!

〈
�

∣∣a†
i1

a†
i2

. . . a†
ip amp . . . am2am1

∣∣�〉
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≡ 1
p!

〈
�

∣∣p
�̂i1i2...ip ;m1m2..mp

∣∣�〉
(1)

where p�̂ is a p-electron density operator. That
is, a p-RDM is the expectation value of p�̂ in the
state � considered.

• Similarly, an element of the p-order hole-RDM
(p-HRDM), pD̄, is

pD̄i1i2..ip ;m1m2...mp

= 1
p!

〈
�

∣∣ amp . . . am2am1 a†
i1

a†
i2

. . . a†
ip

∣∣�〉
(2)

• The 2-CCSE and the GHV equation depend on
the 2-, 3-, and 4-order CMs which are respec-
tively defined as [1, 48, 49]:
• The 2-CM and the G-particle-hole matrices

[8], 2C and 2G, respectively, have the form:

2Cij;lm =
∑
�′ �=�

〈
�

∣∣1
�̂i;l

∣∣� ′〉〈� ′∣∣1
�̂j;m

∣∣�〉 ≡ 2Gil;mj

(3)

The 2-CM and the G-particle-hole operator
definitions are therefore:

2Ĉij;lm = 1�̂i;lQ̂1�̂j;m = 2Ĝil;mj (4)

where

Q̂ ≡
∑
�′ �=�

|� ′〉〈� ′| = Î − |�〉〈�| (5)

The 2Ĝ and 2Ĉ operators are very different
to the 2-electron density operator, as they
contain information, in an averaged way, on
the whole spectrum of states, due to the role
played by the Q̂ operator. This important fea-
ture reflects on the CMs. A complementary
way of looking at these matrices is to realize
that they are formed by sums of products of
transition RDM’s elements.

Note that Eq. (3) shows that the 2-CM
matrix and the G-particle-hole matrix share
the same elements, which are, however, iden-
tified by different (row; column) labels. Thus,
while the 2-CM element’s labels coincide
with those of the 2-RDM, this is not the case
for the G-particle-hole matrix. Both matri-
ces have remarkable properties which will
be considered below.

• There are three different types of 3-CMs
whose structure can be defined as:

(3;1,1,1)Cijl;pqr = 〈
�

∣∣ 1�̂i;p Q̂ 1�̂j;q Q̂ 1�̂l;r

∣∣�〉
(6a)

(3;2,1)Cijl;pqr = 〈
�

∣∣ 2�̂ij;pq Q̂ 1�̂l;r

∣∣�〉
(6b)

(3;1,2)Cijl;pqr = 〈
�

∣∣ 1�̂i;p Q̂ 2�̂jl;qr

∣∣�〉
(6c)

• The seven different types of the 4-CMs
are: (4;1,1,1,1)C, (4;1,1,2)C, (4;1,2,1)C, (4;2,1,1)C, (4;2,2)C,
(4;3,1)C, and (4;1,3)C. In a more general way, a
p-CM is indicated by the notation (p;p1,p2,...)C
with p = p1 + p2 + . . .. The structure of
these matrices is easily deduced by apply-
ing the same notation rules as in the 3-CMs
case [1, 48].

2.2. MAIN RDMS PROPERTIES AND
INTER-RELATIONS LINKING THE RDMS AND
THE CMS

The set of the 1-, 2-, 3-…, (N − 1)-RDMs prop-
erties is not completely known. Indeed, the set of
sufficient mathematical conditions that these matri-
ces must satisfy in order to ascertain that there exists
an N-electron wave-function from which they can be
derived by integration over the variables of (N − 1),
(N−2), ... electrons is what Coleman [7] defined as N-
representability conditions, which is the core of the
research in RDM theory. However, those RDM prop-
erties which are at present known, coupled with the
physical properties of the quantum mechanical oper-
ators, enable us to approximate fairly well the 1- and
2-RDMs corresponding to states whose zero-order
function may be described by a single Slater deter-
minant. The properties which may be considered
essential are that all RDMs and the corresponding
HRDMs are Hermitian positive semi-definite matri-
ces (D- and Q-condition) and antisymmetric with
regard to the permutation of the one-electron indices
in the row/column labels [6, 7].

Another interesting and essential feature is that
the p-RDMs, with p > 1, are interrelated with the p-
CM matrices [1, 48, 49]. Let us just recall here how the
2-RDM is linked with the 2-CM. Thus, it can easily
be shown that

2!2Dij;ml = 1Di;m
1Dj;l − 1Dj;m

1Di;l − 1Dj;m
1D̄i;l

+ 〈
�

∣∣ 1�̂i;m Q̂ 1�̂j;l

∣∣�〉
(7)

where 1D̄i;l = δi;l − 1Di;l is an element of the
1-HRDM.
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In Eq. (7), the last term is the 2Cij;ml element, or,
equivalently, the 2Gim;lj element. The G-particle-hole
matrix has two important N-representability prop-
erties which are not shared by the 2-CM. Thus, 2G
is a Hermitian positive semi-definite matrix [8]. This
important matrix, and its counterpart the 2-CM, are
at the center of the methodology reported here.

3. The GHV Equation Methodology

For a particular state of a system of N electrons
with up to pairwise interactions, the 2-RDM or,
equivalently, the 2-CM or the G-particle-hole matrix
contain all the useful information to predict its prop-
erties without previous knowledge of the N-electron
wave-function. For such a system, the Hamiltonian
is written as

Ĥ = 1
2

0Hpq;rs a†
p a†

q as ar (8)

where the Einstein’s convention of summation over
common indices is and will be applied through-
out this article except when otherwise stated. The
2-order matrix 0H collects the integrals over the
2K spin-orbitals and the total electronic energy is
calculated as a contraction of this matrix with the
2-RDM.

E = tr
(0H 2D

)
(9)

Similar expressions have been obtained for the 2-CM
and the G-particle hole matrix [3, 4]. In this article the
GHV methodology will be used to calculate any of
these matrices.

3.1. THE 2-CCSE AND THE GHV EQUATION

The compact form of the 2-CCSE may be
expressed as [1]:

〈
�

∣∣Ĥ 2Ĉij;ml

∣∣�〉 = E 〈
�

∣∣ 2Ĉij;ml

∣∣�〉 ∀i, j, m, l (10)

When developing this equation, it takes the form:

E 2Cij;ml = 1
2

0Hpq;ir
(3;2,1)Cpqj;mrl − 1

2
0Hpq;ri

(3;2,1)Cpqj;mrl

+ 1
2

0Hpq;rs
(4;3,1)Cpqij;mrsl ≡ E 2Gim;lj (11)

which shows the dependence of the 2-CCSE on the
3- and 4-CMs.

As was mentioned in the introduction, Alcoba
showed that there is a one-to-one correspondence
between the solution of this equation and that of the
SE [1].

The anti-Hermitian part of the 2-CCSE coincides
with the GHV equation, whose compact form is [3, 4]:

〈
�

∣∣ [ 2Ĉij;ml , Ĥ
]∣∣�〉

≡ 〈
�

∣∣ [ 2Ĝim;lj , Ĥ
] ∣∣�〉 = 0 ∀ i, j, m, l. (12)

From a theoretical point of view, this equation may
also be obtained from a direct contraction of the well-
known hypervirial equation of the N-order density
operator into the 2-body space by applying to it
a linear general MCM [18–20]. To show this, let
us consider the set of the transition 2-CM matrices
between two orthonormal states spanning the N-
electron space, for instance the complete set of Slater
determinants �, �, ....

2C(��)

ij;ml = 〈
�

∣∣ a†
i am Q̂ a†

j al

∣∣�〉 ≡ 〈
�

∣∣ 2Ĉij;ml

∣∣�〉
(13)

where Q̂ is, as in the previous section, the projector
on the complementary space to the � state under
study. Let us now consider the matrix representation
of the hypervirial equation of the N-order density
operator in this same space:

NM�;� ≡ 〈
�

∣∣ [
N�̂�;�, Ĥ

] ∣∣�〉 = 0 (14)

Let us now contract this matrix equation into the 2-
body space by multiplying both sides of the equation
by 2C(��)

ij;ml and taking the trace over the N-electron
states: ∑

�,�

NM�;�
〈
�

∣∣ 2Ĉij;ml

∣∣�〉 = 0 (15)

After performing some simple algebra, one obtains
the compact form of the GHV equation given in
Eq. (12).

When the GHV equation is represented in a real
spin-orbital basis one has:

0Hrs;pq
(3;2,1)Cpqj;rsl

1Di;m − 0Hpq;rs
(3;2,1)Crsm;pqi

1Dl;j

+ 2 0Hrs;pm
(3;2,1)Cipj;rsl + 2 0Hpq;jr

(3;2,1)Clrm;pqi

+ 2 0Hir;pq
(3;2,1)Cpqj;mrl + 2 0Hql;rs

(3;2,1)Crsm;jqi = 0
(16)

When compared with the 2-CCSE given in Eq.
(11), this equation is significantly simpler to solve
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because in the GHV equation the dependence on the
4-CM cancels out.

It must be recalled here that Alcoba et al. recently
reported [3, 4] a set of theorems proving that the 3-,
2-, and 1-order matrices satisfying the GHV also sat-
isfy the ACSE, the 1-order CSE (1-CSE) [18] and the
hypervirial of the 1-order density operator (1-HV)
[18]; and that, in general, the converse is not true.

To take advantage of the RDMs’ elements anti-
symmetry with respect to permutation of their
row/column labels, it is convenient to transform Eq.
(16) into an equivalent one which depends on the
1-, 2-, and 3-RDMs instead of on the 3-CM. Because
we do not know an exact algorithm for building the
3-order matrices, these matrices are approximated
in terms of the lower-order ones. Then, the GHV
equation is solved through an iterative process as
follows [2–4]: the initial matrices entering the equa-
tion correspond to a 0-order approximation to the
state one is interested in. In consequence, the r.h.s.
of Eq. (12) does not initially vanish and what one
obtains is:

〈
�

∣∣ [2Ĝim;lj , Ĥ
] ∣∣�〉 = Aim;lj ∀ i, j, m, l (17)

where the error-matrix A is necessarily anti-
Hermitian, since, by construction, the GHV equation
is anti-Hermitian. The operator Â representing this
error-matrix may be expressed as:

Â = Apr;sq
2Ĝpr;sq (18)

Having all these features in mind, and applying
the criteria developed in [3], one may propose the
following iterating algorithm:

2G(n)

im;lj = 1
E

〈
�

∣∣ [Â(n−1), 2Ĝim;lj
] ∣∣�〉 + 2G(n−1)

im;lj (19)

This equation may be solved using all the infor-
mation in the (n − 1) iteration to build up a new
G-particle-hole matrix for the next iteration until
convergence.

3.2. AN ALTERNATIVE SOLUTION OF THE
GHV EQUATION

An alternative to the previous straightforward
solution of Eq. (12) is here reported. This approach,
whose general lines follow, as mentioned above, the
continuous formulation for solving the ACSE pro-
posed by Mazziotti in [38–40], is based on the station-
ary condition of the eigenstates of the Hamiltonian

against any unitary transformation. These transfor-
mations, which preserve the norm, may be selected
in a continuous way. Under this proposed alternative
solution, the 2-RDM and the other matrices associ-
ated to the same state evolve in a continuous manner
until they become stationary.

In Eq. (17) the inaccuracy of the description of the
state implies that the error matrix A does not vanish.
The problem is, therefore, to modify the state under
study until the GHV equation is fulfilled.

Because the elements of the 2-RDM, the 2-CM,
and the G-particle-hole matrices are, respectively, the
expectation values of the density, the correlation and
the G-particle-hole operators, their modifications
may be interpreted as caused by the modification
of the operators.

A unitary transformation may be represented by
an exponential operator eλB̂, provided that the B̂
operator is anti-Hermitian. The real parameter λ is
used to indicate the extent of the transformation.
The transformation is close to an identity when-
ever the B̂ operator gets closer to the null-operator.
The unitary modification of the density, the correla-
tion and the G-particle-hole operators by this unitary
transformation is given by,

2�̂′
ij;ml = eλB̂ 2�̂ij;ml e−λB̂ (20)

2Ĉ′
ij;ml = eλB̂ 2Ĉij;ml e−λB̂ = eλB̂ 2Ĝim;lj e−λB̂ = 2Ĝ′

im;lj

(21)

The first-order variation in their expectation values
is then

d 2Dij;ml

dλ
= 〈

�
∣∣ [ B̂, 2�̂ij;ml

] ∣∣�〉
λ

(22)

d 2Cij;ml

dλ
= 〈

�
∣∣ [ B̂, 2Ĉij;ml

] ∣∣�〉
λ

= 〈
�

∣∣ [ B̂, 2Ĝim;lj
] ∣∣�〉

λ
= d 2Gim;lj

dλ
(23)

Then, the problem is to select an operator B̂ that
becomes the null-operator as the state approaches
an eigenstate of the Hamiltonian and guarantees that
the associated 2-RDM, 2-CM, and the G-particle-hole
matrix fulfill the N-representability conditions.

Out of the many possible choices for the B̂ oper-
ator, a linear combination of all the G-particle-hole
operators, similar to the one given in Eq. (18), has
been shown to be adequate for the solution of the
GHV equation.

6 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 00, NO. 0



G-PARTICLE-HOLE HYPERVIRIAL EQUATION

B̂ = Bpr;sq
1�̂p;r Q̂ 1�̂q;s = Bpr;sq

2Ĝpr;sq (24)

where the sum over the common indices is implicit.
The numerical coefficients must form an anti-
Hermitian matrix

Bsq;pr = − Bpr;sq

for the B̂ operator to be anti-Hermitian. They must
vanish as the state approaches an eigenstate of the
Hamiltonian, that is, the state reaches the stationary
condition and the modification becomes an identity.

The construction of the B-matrix by the algorithm

Bpr;sq = 〈
�

∣∣ [ 1�̂p;r Q̂ 1�̂q;s, Ĥ
] ∣∣�〉

λ

= 〈
�

∣∣ [ 2Ĝpr;sq, Ĥ
] ∣∣�〉

λ
(25)

guarantees that, on convergence, it will vanish; for
it is an expression of the GHV equation. In addi-
tion, the fulfillment of the GHV equation enforces
those of the 1-CSE, of the ACSE and of the 1-HV. At
this point, it must be noted that Mazziotti’s continu-
ous formulation proposed in [38–40] differs from the
one proposed here, as it uses a different algorithm
than the one given by Eqs. (24)–(25), thus enforcing
a weaker stationarity condition, theACSE one [3, 39].

To render the GHV method competitive with
other ab initio approaches, two very effective
methodological implementations, which are expla-
ined in some detail in the following section, have
been introduced into the GHV general scheme just
described.

4. Convergence and Computational
Enhancements of the GHV Method

To increase the efficiency of the computations,
two optimizing implementations are proposed here.
They have been applied to the study of a series
of electron systems that include the Be isoelec-
tronic atomic series (Be through O4+) in a Clementi’s
Double-Zeta basis and the LiH, Li2, BeH2, BH, CH4,
NH3, H2O, and HF molecules in their singlet ground
states, at their experimental geometries and with
both the STO-3G and the 6-31G orbital basis. The
PSI3 program [50] has been used to calculate the inte-
grals matrix 0H, the orthonormal MOs and the initial
values, at the HF level of approximation, of all the
matrices required for the iterative GHV process.

4.1. RENDERING THE ITERATION TIME
PROPORTIONAL TO K 6 AND THE MEMORY
STORAGE TO K 4

As previously mentioned, the present version of
our computational code implements Eq. (16) in the
form which explicitly depends on the RDMs. To ren-
der the construction time of the r.h.s. of this equation
proportional to K6 we have followed a well-known
approach termed as sum factorization, which con-
sists in subdividing a nest of x loops into several
nests of y loops with y < x (e.g., see Refs. [40, 51–53]).
The most time-consuming part of the process is to
calculate the terms of the type

0Hrs;pm
3Dipj;rsl (26)

where a triple sum, over the {r, s, p} indices has to
be performed for every {i, j, m, l}. Hence, the time of
each iteration is proportional to K7, and the memory
storage computational scaling is proportional to K6

corresponding to the six indices of the largest matrix
to be stored.

To explain how the time for calculating this type
of terms may be rendered proportional to K6, let us
first consider how a 3-RDM element is approximated
in our approach:

3! 3Dijk;pqr = −2Â′ (1Di;p
1Dj;q

1Dk;r
)

+ 2!Â′′(1Di;p
2Djk;qr + 1Dj;q

2Dik;pr + 1Dk;r
2Dij;pq

)
+ 3! 3�ijk;pqr (27)

where Â′ antisymmetrizes the column indices of the
three 1-RDM involved and Â′′ antisymmetrizes the
column index of the 1-RDM with the column indices
of the 2-RDM. The 3-order cumulant matrix 3�,
which in principle is unknown, appears in a moment
expansion of the 3-RDM and accounts for the sta-
tistically irreducible three-body correlation effects
[54–56].

For the study here reported, the 3-order cumu-
lant matrix has been approximated with a modified
version of Nakatsuji-Yasuda’s algorithm [57] which
may be written as:

3�ijk̄;pqr̄ ≈ Â′′′ 2�ik̄;pt̄

(1D(∗)

t̄;t̄ − 1D̄(∗)

t̄;t̄

) 2�jt̄;qr̄

3�ij̄k̄;pq̄r̄ ≈ Â′′′ 2�ij̄;tq̄

(1D(∗)
t;t − 1D̄(∗)

t;t

) 2�tk̄;pr̄ (28)

where Â′′′ is the antisymmetrizer operator, 1D(∗)

and 1D̄(∗) are the 1-RDM and the 1-HRDM corre-
sponding to a Hartree–Fock reference calculation,
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the indices label spin-orbitals and the bar over an
index indicates that the spin-orbital has a β spin.
The matrix 2� is the 2-order cumulant of a moment
expansion of the 2-RDM related to the 2-CM as
follows:

2�ij;ml = −1Dj;m
1D̄i;l + 〈

�
∣∣ 1�̂i;m Q̂ 1�̂j;l

∣∣�〉
(29)

The remaining elements of 3� are set to zero. We
apply a simplified version of Nakatsuji’s formula
because we have noticed that the only antisym-
metrization which must be performed is that involv-
ing αβ spin-orbitals pairs. Note that this 3� approx-
imation only performs well when a single Slater
determinant is a good zero-order approximation to
the state considered [48].

When replacing in (26) the construction algorithm
for the 3-RDM elements, the structure of this simple
term is transformed into a sum of terms which are
themselves formed by a triple or quadruple product
of matrix elements. Thus,

0Hrs;pm
3Dipj;rsl = 0Hrs;pm

(− 2Â′ 1Di;r
1Dp;s

1Dj;l

+ 2!Â′′ (1Di;r
2Dpj;sl + 1Dp;s

2Dij;rl + 1Dj;l
2Dip;rs

)
+ 3!Â′′′ 2�ik;pt

(1D(∗)
t;t − 1D̄(∗)

t;t

) 2�jt;qr
)

(30)

As an example, let us just consider three of the
elementary products occurring in this expression:

• The first elementary product is given by:

2Tij;ml =
∑
r,s,p

0Hrs;pm
1Di;l

1Dp;r
1Dj;s (31)

We will decompose this sum as

2Tij;ml =

∑

s


∑

r,p

0Hrs;pm
1Dp;r


 1Dj;s


 1Di;l

≡
[∑

s

1Xs;m
1Dj;s

]
1Di;l ≡ 1Yj;m

1Di;l

(32)

where the common summation indices have
been highlighted. The calculations have been
performed starting from the inner brackets out-
wards, and the auxiliary matrices perform the
following types of operations:

0Hrs;pm
1Dp;r = 1Xs;m

1Xs;m
1Dj;s = 1Yj;m

1Yj;m
1Di;l = 2Tij;ml

where 1X and 1Y represent auxiliary first-order
matrices.

• The second elementary product is given by:

2Rij;ml =
∑
r,s,p

0Hrs;pm
2Dip;sl

1Dj;r (33)

It can be calculated as follows

2Rij;ml =
∑

r


∑

s,p

0Hrs;pm
2Dip;sl


 1Dj;r

≡
∑

r

2Xri;ml
1Dj;r (34)

where the auxiliary matrix needed is deduced
in a similar way as in the previous example.

• The third elementary product is given by:

2Pij;ml =
∑
r,s,p

0Hrs;pm
2�ij;st

(1D(∗)
t;t − 1D̄(∗)

t;t

)2�pt;rl

(35)

It can be calculated as follows

2Pij;ml =
∑
s,u

[∑
t

2�ij;st
1Jt;u

]

×

∑

r,p

0Hrs;pm
2�pu;rl


 ≡

∑
s,u

2Yij;su
2Zsu;ml

(36)

where the auxiliary matrix 1J is given by

1Jt;u = δt;u
(1D(∗)

t;t − 1D̄(∗)
t;t

)
(37)

When analyzing these three examples, it is clear
that many different topologies or patterns can occur.
Consequently, a high number of different auxiliary
matrices are needed in order to partition the multiple
sums of products involved in the process. Never-
theless, this classification and partitioning permit a
significant improvement in the code computational
rate, as may be appreciated in Table I. Instead of giv-
ing absolute values of computer time, which may
be strongly dependent on hardware facilities, the
table presents the quotient (t(K7)/t(K6)) of computer
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TABLE I
Comparison of K 7 and K 6 GHV computational
algorithms: time relations.

System Basis set (K ) t (K 7)/t (K 6)

Be DZ-CLEMENTI (4) 0.53
LiH STO-3G (6) 0.59
H2O STO-3G (7) 0.61
CH4 STO-3G (9) 0.84
Li2 STO-3G (10) 1.61
HF 6-31G (11) 2.22
H2O 6-31G (13) 3.28
NH3 6-31G (15) 5.33
CH4 6-31G (17) 6.95

time spent per iteration. Note that the improvement
increases with the size of the basis set. It should
also be remarked that the 3-order matrices do not
explicitly appear. The largest matrices to be stored
are all of the 2-order type. Because their elements
are labeled by four spin-orbital indices, the storage
requirements grow as the fourth power of the basis
set size, K4.

4.2. ACCELERATING THE CONVERGENCE:
THE FEHLBERG’S ALGORITHM

To obtain an optimized 2-RDM, the differential
Eq. (22) must be integrated. It provides the infor-
mation on how the elements of the 2-RDM evolve
with λ. It is a matrix-functional named g for the
sake of brevity, of the λ parameter and of the 2-RDM
elements.

For the numerical integration, the single configu-
ration HF calculation has been used as the starting
point. A new 2-RDM element is obtained for a finite,
although small, variation of the λ parameter. The
increase of the parameter represents a step. The pro-
cess continues until the energy, which is the result
of the contraction of the 2-RDM with the integrals
matrix 0H, reaches a minimum. In this study, instead
of the simple Euler’s method or any of its modifica-
tions based on dividing the integration interval in a
number of steps with fixed lengths, a variable step
method has been used. This type of methods com-
pare two different approaches for a given step. If the
difference is less than a given threshold, the func-
tion behaves smoothly for that value of the variable
and the step can be safely enlarged, thus reducing
the total number of steps. On the contrary, if the
difference is larger than the threshold, it means that
it is safer to reduce the step-length.

In Fehlberg’s method [46, 47], three calculations
for every matrix element are involved at the n-
th step, that is, for the value λn of the integration
variable which is modified by the step-length δ.

Xij;lm = gij;lm
(
λn, 2D(n)

)
Yij;lm = gij;lm

(
λn + δ, 2D(n) + δ X

)
Zij;lm = gij;lm

(
λn + δ

2
, 2D(n) + δ

4
(X + Y)

)

Two new approximated values of the 2-RDM ele-
ment are then calculated.

(2D(n)

ij;lm

)′ = 2D(n)

ij;lm + δ

2
(Xij;lm + Yij;lm)

(2D(n)

ij;lm

)′′ = 2D(n)

ij;lm + δ

6
(Xij;lm + Yij;lm + 4 Zij;lm)

The largest value of those differences for all the ele-
ments of the matrix is used to select the length of the
next step in the numerical integration process.

r = max
i,j,l,m

1
δ

∣∣(2D(n)

ij;lm

)′′ − (2D(n)

ij;lm

)′∣∣
If r > ε, where ε is a preselected threshold, the step
should be recalculated with a shorter step-length

δ′ = 0.9
√

ε

r
δ

The factor 0.9 is included for safety reasons to avoid
divergencies. If r < ε the procedure goes to the next
step taking the pair (λn + δ, (2D(n)

ij;lm)′′) as the start-
ing point and a step-length of δ′ = 0.9

√
ε

r δ. The
process continues until a stopping criterion has been
reached.

The use of the Fehlberg’s variable-step integra-
tion method drastically reduces the required number
of steps and the computer time. As an example, in
Figure 1 we report the resulting energies of the iter-
ative process as a function of the transformation
parameter λ for the Be-atom ground state calcula-
tion in Clementi’s Double Zeta basis set. Both HF
and FCI results are also included for reference. To
avoid overcrowding of circles, only one in every
forty steps has been depicted. The filled circles indi-
cate the progress of the integration under Fehlberg’s
variable-step method. The Euler’s fixed-step method
of integration is equivalent to the iterative solution
of Eq. (19). As can be seen, the GHV method recovers
100.00% of the correlation energy by converging to

VOL. 00, NO. 0 DOI 10.1002/qua INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 9



ALCOBA ET AL.

FIGURE 1. Convergence acceleration with
variable-step integration method: Be-atom ground state.

0.6 µEh from the FCI energy. The introduction of the
continuous parameter λ has allowed us to use the
more efficient variable-step methods.

5. Assessing the Exactness and
Competitiveness of the Method

5.1. ASSESSING THE EXACTNESS OF THE
RESULTS OBTAINED IN A SET OF
CALCULATIONS

Because the GHV equation which is solved is
an approximated one,—the constructing algorithm
given in Eq. (28) for the 3-RDM is not an exact one—
different stopping criteria for the iterative process
lead to slightly different results. Two possiblities
have been analyzed: extending the numerical inte-
gration of the system of differential equations in λ

until either (i) the error of the 1-CSE or (ii) the error
of the GHV ceases to decrease. The results obtained
with both criteria are presented in Table II for a series
of molecules in the minimal STO-3G basis. These
results show that, similarly to the ACSE case [38–40],
the use of the convergence of the 1-CSE leads almost
in every case, to the recovery of the 100% of the
correlation energy; whereas the criterion of the con-
vergence in the GHV equation slightly overruns the
FCI results. In this respect, it may be worth mention-
ing that the most significant difference was found in
the calculation of the Li2 molecule in a STO-3G basis.
In this GHV calculation, when the 1-CSE stopping
criterion is applied, a 97.7% of the correlation energy
is recovered while, when convergence of the GHV
equation is used as stopping criterion, the recovered
correlation energy is 100.8%. Similar results have

been obtained for the Be isoelectronic atomic series in
a Clementi’s Double-Zeta. Thus, the recovered corre-
lation energy by this method has been in every case
close to 100%, equating in quality the FCI calcula-
tion by converging to at most 2.13 µEh from the FCI
energy when the 1-CSE stopping criterion is applied.
Hence, from now on only the results obtained with
the convergence of the 1-CSE will be reported.

As an additional control on the exactness of the
results obtained, the r. m. s. deviations from FCI
results have been calculated for a few relevant matri-
ces: the 1- and 2-HV matrices, which must vanish
for an exact solution, and the 1-CSE and GHV
errors, which should decrease as the iterative pro-
cess approaches the exact solution. This analysis has
been carried out on the studied molecules in the
minimal STO-3G and also in a larger 6-31G basis
on those molecular systems with the largest energy
deviations from FCI. As can be apreciated from Table
III the deviations in all those matrices are negligi-
ble. The largest deviation is of the order of 10−3.
Moreover, it must be noted that there is no significant
effect due to the basis set.

The deviations of the resulting 2-order matri-
ces from N- and S-representability [58, 59] have
also been calculated. The D- and Q-conditions indi-
cate that the 2-RDM and the 2-HRDM must be
Hermitian and positive semi-definite. Their lowest
eigenvalues provide a measure of the fulfillment
of those conditions. The relevant eigenvalues for
selected molecular systems are collected in Table IV.
In the 2-RDM and the 2-HRDM case, which should
be positive semi-definite matrices, their respective
lowest eigenvalues are slightly negative. The N-
and S-representability of the G-particle-hole matrix

TABLE II
Percentage of the correlation energy recovered by
the solution of the GHV equation.

System GHV 1-CSE

LiH 100.2 100.0
Li2 100.8 97.7
BeH2 100.5 99.3
BH 100.7 99.9
CH4 100.1 100.0
NH3 100.1 100.1
H2O 100.7 100.3
HF 100.1 100.1

Convergence of GHV and 1-CSE as stopping criterion. Basis
set: STO-3G.

10 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 00, NO. 0



G-PARTICLE-HOLE HYPERVIRIAL EQUATION

TABLE III
Root mean square deviations on various quantities from their exact (FCI) counterparts.

System Basis set 1-HV 1-CSE 2-HV GHV

LiH STO-3G 8.637 10−6 2.587 10−5 1.664 10−4 1.666 10−5

Li2 STO-3G 8.088 10−5 5.394 10−4 1.300 10−4 1.526 10−4

BeH2 STO-3G 4.296 10−5 3.987 10−5 2.347 10−4 7.359 10−5

BH STO-3G 1.725 10−4 9.191 10−4 5.722 10−4 3.058 10−4

CH4 STO-3G 3.552 10−5 6.185 10−5 9.721 10−5 3.507 10−5

6-31G 4.645 10−4 3.393 10−4 3.141 10−5 4.869 10−5

NH3 STO-3G 2.497 10−5 1.269 10−4 1.393 10−4 4.996 10−5

6-31G 4.999 10−5 5.856 10−4 4.750 10−5 7.969 10−5

H2O STO-3G 4.477 10−5 1.762 10−4 2.283 10−4 6.943 10−5

6-31G 6.890 10−5 8.805 10−4 7.431 10−5 1.286 10−4

HF STO-3G 8.132 10−6 3.547 10−5 1.042 10−4 1.532 10−5

6-31G 1.874 10−4 1.101 10−3 1.288 10−4 1.965 10−4

is assessed by inspecting the order of the posi-
tive/negative error of the lowest/highest eigenvalue
of the (0,0)G/(1,0)G matrices. These two matrices
respectively collect the contributions of the sin-
glet/triplet � ′ states shown in formula (5). As can
be appreciated, in the G-particle-hole case these
N- and S-representability errors are also negligible.
Although we do not report it here, the consistency of
the contraction into the 1-body space of the 2-RDM,
the 2-HRDM and the G-particle-hole matrix has also
been verified.

5.2. COMPARING THE PERFORMANCE OF
SEVERAL AB INITIO METHODS

The results reported in the previous paragraph are
mainly focused on verifying the intrinsical goodness
and consistency of the method. Let us now compare
the effectiveness of the GHV method with that of
other standard ab initio ones.

As has been previously mentioned, the 3� approx-
imations — available at present — are very accurate
when the zero-order function describing the state
considered is a single Slater determinant. Therefore,

the methods whose performance is compared here
with the GHV one are MP2, SDCI, and CCSD, which
consider the same zero-order function.All the energy
values obtained with these methods are given in
Table V together with those obtained with FCI. Both
the STO-3G and the 6-31G basis set have been used.
The percentage of correlation energy recovered with
the GHV method is in every case very close to 100%.

These results clearly show that the accuracy of
the GHV method is as good as the CCSD one and
performs better than the MP2 and SDCI. This is a
highly satisfactory situation since the GHV method
has had less than two years to be developed; while
the other ab initio methods considered here have
benefited from many decades of experience. On the
other hand, similarly to the (single-reference) ACSE
algorithm [40], the present GHV implementation is
not as efficient as the CCSD one, as the latter scales in
floating-point operations as K2

o K4
e + K2

e K4
o , where

Ko and Ke are the number of occupied and empty
orbitals in the Hartree–Fock reference wavefunction
respectively. However, it can be expected that the
GHV can still be developed and optimized much
further.

TABLE IV
N- and S-representability deviations of 2-order matrices.

System 2-RDM 2-HRDM (0,0)G (1,0)G

CH4 −8.062 10−5 −8.413 10−7 −5.216 10−4 8.722 10−6

NH3 −6.831 10−5 −2.387 10−6 −6.291 10−4 1.070 10−5

H2O −5.197 10−5 −1.931 10−5 −5.638 10−4 1.223 10−5

HF −3.111 10−5 −2.030 10−5 −4.273 10−4 1.455 10−5

Basis set: 6-31G.
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TABLE V
Comparison of the effectiveness of the GHV method with that of other standard ab initio ones: calculated
energies in Eh units.

System Basis set HF MP2 SDCI CCSD FCI GHV

LiH STO-3G −7.862002 −7.874872 −7.882378 −7.882381 −7.882392 −7.882393
Li2 STO-3G −14.638725 −14.655475 −14.667231 −14.667260 −14.667340 −14.666670
BeH2 STO-3G −15.559405 −15.582893 −15.594081 −15.594456 −15.594861 −15.594607
BH STO-3G −24.752780 −24.782280 −24.808145 −24.809787 −24.809945 −24.809907
CH4 STO-3G −39.726464 −39.783441 −39.803681 −39.806177 −39.806417 −39.806406

6-31G −40.180175 −40.294875 −40.280393 −40.299529 −40.301469 −40.301298
NH3 STO-3G −55.454087 −55.501307 −55.517613 −55.519005 −55.519219 −55.519284

6-31G −56.161021 −56.285483 −56.277981 −56.290705 −56.292571 −56.293085
H2O STO-3G −74.963023 −74.998569 −75.011873 −75.012462 −75.012578 −75.012734

6-31G −75.983974 −76.114086 −76.112825 −76.119354 −76.120874 −76.122028
HF STO-3G −98.570758 −98.588093 −98.596587 −98.596587 −98.596587 −98.596614

6-31G −99.983407 −100.110393 −100.112091 −100.114644 −100.115685 −100.116885

From a theoretical point of view, it should be
emphasized that the results reported here confirm
that a study of the electronic structure of a many-
electron system may be competitively carried out by
directly determining a 2-body correlation matrix, or,
equivalently, the G-particle-hole matrix, without a
previous determination of the state wave function.

5.3. FURTHER POSSIBLE OPTIMIZATION AND
EXTENSION OF THE GHV METHODOLOGY

Besides a still possible optimization of the code,
we expect that significant progress can still be
achieved in the theoretical and applicative aspects
related to this methodology. In this paragraph, we
will briefly consider those aspects of the GHV
method which are at present under study.

• Some small N- and S-representability devia-
tions of the 2-RDM and G-particle-hole matri-
ces occur during the iterative process. This
could be avoided by inserting N- and S-
purification procedures [58, 59] aimed at cor-
recting these deviations at every iteration.

• Another relevant question is whether the accu-
racy of the present approximating 3�, or, equiv-
alently, the 3-CM algorithms may be improved.
Thus, when the zero-order state considered is a
multiconfigurational one, the accuracy of the
approximated 3� elements, when compared
with the FCI corresponding values, is rather
poor. In spite of this, it should be mentioned
that, in some multi-configurational cases, the

results obtained with these “poor”algorithms
were reasonable, which is probably due to error
cancelations. At any rate it is clear that further
research is needed on this question.

Let us conclude by saying that, in our opinion,
the GHV is an excellent and competitive ab initio
method whose range of application may, however,
still be enlarged. We are at present investigating how
to extend the GHV method usefulness to the study of
larger systems by incorporating the simplifications
which these systems’ symmetry properties afford.
The use of core potentials and model Hamiltonians
are also being considered.
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