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ABSTRACT: By applying a matrix contracting mapping, involving the G-particle-hole
operator, to the matrix representation of the N-electron density hypervirial equation, one
obtains the G-particle-hole hypervirial (GHV) equation (Alcoba, et al., Int J Quant Chem
2009, 109, 3178). This equation may be solved by exploiting the stationary property of the
hypervirials (Hirschfelder, J Chem Phys 1960, 33, 1462; Fernández and Castro, Hypervirial
Theorems., Lecture Notes in Chemistry Series 43, 1987) and by following the general lines
of Mazziotti’s approach for solving the anti-Hermitian contracted Schrödinger equation
(Mazziotti, Phys Rev Lett 2006, 97, 143002), which can be identified with the second-order
density hypervirial equation. The accuracy of the results obtained with this method when
studying the ground-state of a set of atoms and molecules was excellent when compared
with the equivalent full configuration interaction (FCI) quantities. Here, we analyze two
open questions: under what conditions the solution of the GHV equation corresponds to a
Hamiltonian eigenstate, and the possibility of extending the field of application of this
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methodology to the study of excited and multiconfigurational states. A brief account of the
main difficulties that arise when studying this type of states is described. © 2010 Wiley
Periodicals, Inc. Int J Quantum Chem 00: 000–000, 2010
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1. Introduction

T he second-order reduced density matrix (2-
RDM) contains all the required information to

calculate the properties of an electronic system with-
out resorting to the N-electron wave-function. An
important basis for the RDM-theory was already set
in the pioneering and outstanding works of Husimi
[1], Mayer [2], and Löwdin [3], and since 1955, a large
and valuable bibliography [4–10] has contributed to
increase our understanding of the properties of these
mathematical objects.

The search for a nonvariational approach to
directly determine the 2-RDM with no previous
knowledge of the wavefunction started in 1976 with
the simultaneous papers of Nakatsuji [11] and Cohen
and Frishberg [12]. These authors integrated the
N-electron Schrödinger equation (SE) over the vari-
ables of (N–2) electrons and obtained what they
respectively called the density equation and the
hierarchy equation.

The application to the matrix representation of the
Schrödinger equation of a general matrix contracting
mapping (MCM) [13–15] yielded in 1983 the p-order
contracted Schrödinger equation (p-CSE)—whose
solution is equivalent to that obtained with Nakat-
suji’s density equation (P.O. Löwdin, 1985, Private
Communication)—and also yielded the p-order con-
tracted Liouville equation as well as the correspond-
ing p-order density hypervirial equation [16]. The
last one can be identified with the anti-Hermitian
part of the p-CSE (p-order ACSE) [17–20].

There are two other families of contracted equa-
tions, which are generated by the correlation-MCM
where the correlation, or equivalently, the G-particle-
hole operators play a similar role as the density
operator in the previously mentioned MCM, whose
p-order members are the p-order correlation con-
tracted Schrödinger equation (p-CCSE) [21–25] and
the p-order G-particle-hole hypervirial equation (p-
order GHV) [22–27].

When considering the relevance of the four
second-order equations, the 2-CSE, the 2-CCSE,
the second-order ACSE (or simply ACSE), and the
second-order GHV one (or simply GHV), it is impor-
tant to recall here that Nakatsuji proved in his 1976

paper that when all the matrices involved in the 2-
CSE are N-representable [26, 27], there is a one to
one correspondence between the 2-CSE solution and
the SE one. This result was later on confirmed by
Mazziotti [28]. A similar sufficiency theorem for the
2-CCSE has also been reported by Alcoba [21] but
until now, no such sufficiency theorems have been
proved for the ACSE and GHV cases. Note, how-
ever, that a sufficiency theorem has been proved by
Valdemoro et al. for the third-order GHV equation
[24].

When comparing the performance of the two
hypervirial equations with that obtained in a full
configuration interaction (FCI) calculation, both the
ACSE and the GHV equations have been found to
yield highly accurate results [19, 23, 25, 29–35]. On
the other hand, it has been shown that while fulfilling
the GHV equation implies that both the 1-CSE and
the ACSE are also fulfilled [23–25], the reverse is not
true. As no sufficiency theorem exists for the second-
order GHV, it is pertinent to examine whether an
ACSE solution, which has been shown to be spurious
[23] (E. R. Davidson, 2008, Private Communication)
also constitutes a counter-example for the GHV suf-
ficiency. The study of this question is one of the aims
of this work.

To extend the application of the GHV method to
those states, whose electron density distribution is
significantly spread out among most of the natural
orbitals — such as some excited and multiconfigura-
tional states — is the other question considered here.
Thus, previous GHV results (Alcoba et al., unpub-
lished results) obtained when studying this type of
states, which are of high chemical physical interest,
were not sufficiently accurate.

The plan of this article is the following. Next,
the theoretical background of the GHV methodol-
ogy is given. In section 3, we demonstrate that a
state, which is not a Hamiltonian eigenstate but
which nevertheless fulfills theACSE, is not a counter-
example for the GHV sufficiency, as it does not fulfill
this equation. The results obtained for three differ-
ent types of excited states are reported in section 4.
These results show that the approximating algorithm
for the construction of the third-order correlation
matrix, which is used at present is inadequate when
the state considered has a significant spread-out of
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the density distribution among the natural orbitals.A
discussion on the possible means to improve the per-
formance and scope of the GHV method concludes
this article.

2. Basic Definitions and
General Background

In our approach, N is the number of electrons of
the system under study and 2K is the number of spin-
orbitals spanning the one-electron orthonormal basis
set. Throughout this article, unless otherwise stated,
� denotes the state under study.

2.1. THE OPERATORS AND MATRICES

2.1.1. The Many-Body Hamiltonian Operator

The Hamiltonian operator of a pairwise interact-
ing N-electron system may be written in the occu-
pation number representation within the second
quantization formalism as:

Ĥ = 1
2

∑
i,j,m,l

0Hij;mla†
i a†

j alam (1)

where a†
i and aj stand for the creator/annihilator

operators, whose indices denote the spinorbitals,
and where

0Hij;ml = εi;mδj,l + ε j;lδi,m

(N − 1)
+ 〈ij|ml〉 (2)

The matrix ε is formed by the sum of the external
potential and the kinetic one-electron integrals. The
term 〈ij|ml〉 is an element of the matrix formed by the
two-electron repulsion integrals.

2.1.2. The First- and Second-Order Reduced
Density Matrices

In this formalism, the 1- and 2-RDM elements are

1Dp;s = 〈�|a†
pas|�〉 ≡ 〈�|1�̂p;s|�〉 (3)

and

2! 2Dpq;rs = 〈�|a†
pa†

qasar|�〉 ≡ 〈�| 2�̂pq;rs|�〉, (4)

respectively, as expectation values of their corre-
sponding density operators.

Both these matrices are Hermitian and posi-
tive semidefinite, as follows from their definition.

Because of the Fermion operator algebra, the 2-
RDM are antisymmetric with respect to the permu-
tation of two row/column indices. Although the
N-representability problem is a basic one, we will
here be only indirectly involved in it and will there-
fore recommend the interested reader to consult
the specialized articles [4–6, 26, 27, 36–39], and in
particular, the Coleman and Yukalov book [10].

In view of the definitions (1) and (4) the expression
for the electronic energy is:

E = 〈�|Ĥ|�〉 ≡ tr(0H 2D) (5)

2.1.3. The 2-RDM Decomposition and the
Energy Partition

When the 2-RDM is decomposed using the
fermion operators anticommuting algebra one
obtains:

2! 2Dpq;rs = 1Dp;r
1Dq;s − 1Dp;s δq,r + 〈�|1�̂p;rQ̂� 1�̂q;s|�〉

(6)

where

Q̂� =
∑
�′ �=�

|� ′〉 〈� ′| (7)

is the complement projection operator of |�〉〈�|.
When replacing this 2-RDM expression into

Eq. (5), the first term on the RHS of Eq. (6) gener-
ates a repulsive Coulomb energy expression. The last
term of Eq. (6) is a connected two-body term, which
cannot be expressed as a product of one-body den-
sity probabilities. This term describes the correlation
effects of two electrons, which are virtually excited
into each of the states spanning the space comple-
mentary to �. Therefore, we define the correlation
matrix elements 2C and the corresponding operators
as

2Cpq;rs = 〈�|1�̂p;rQ̂� 1�̂q;s|�〉 ≡ 〈�|2Ĉpq;rs|�〉. (8)

Note that the correlation matrix does not contribute
to the 2-RDM contractions into the 1- and 0-electron
space. Also, whereas the 2-RDM is Hermitian, posi-
tive semidefinite and antisymmetric with respect to
the permutation of two row/column indices, which
are basic N-representability conditions, the 2C matrix
does not possess any of these N-representability
properties. On the other hand, a Hermitian
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positive semidefinite matrix, closely related to 2C,
the G-particle-hole matrix, is defined as:

2Gpr;sq ≡ 〈�| 2Ĝpr;sq|�〉 ≡ 2Cpq;rs, (9)

The definition as well as the basic properties of this
matrix were reported by Garrod and Percus [27]. To
interpret the meaning of the second term of Eq. (6) let
us recall that the Krönecker delta may be expressed
as

δq,r = 1Dq;r + 1D̄q;r (10)

where 1D̄q;r ≡ 〈�|ar a†
q|�〉 is an element of the pos-

itive semidefinite first-order hole-RDM (1-HRDM).
Note that this equation expresses the ensemble N-
representability of the 1-RDM [26]. Therefore, replac-
ing Eq. (10) into the second term of relation (6) one
has:

− 1Dp;s δq,r = − 1Dp;s
1Dq;r − 1Dp;s

1D̄q;r (11)

Clearly the first term on the RHS. of this equation
describes an exchange effect, that is, it is an antisym-
metric form of the Coulomb term. The second term
describes a second type of correlation mechanism
where the electron and hole probability densities
polarize each other. Therefore, the matrix

2�pq;rs = 2Cpq;rs − 1D̄q;r
1Dp;s

≡ 2Dpq;rs − 1Dp;r
1Dq;s − 1Dp;s

1Dq;r (12)

gathers the two types of electronic correlation
included in the 2-RDM.

This matrix, which can be identified as the cumu-
lant of the 2-RDM antisymmetrized moment expan-
sion [40–42], yields the correlation energy of a given
state [42], which is given as:

Ecorr = 1
2

tr(0H 2�). (13)

This expression of the correlation energy is self-
consistent, as it does not refer to any particu-
lar approximate wavefunction (i.e., Hartree-Fock).
Indeed, the antisymmetrized product involves two
one-body density probabilities, which are obtained
by contracting the 2-RDM that yields the total energy.
Note that when evaluating either the 2-RDM, or
alternatively, the cumulant, it is the 2C matrix, which
is the connected two-body part of the 2-RDM, what
constitutes the problem.

2.1.4. The Higher Order RDMs and
Correlation Matrices

Because of the hierarchy character of the family
of contracted equations, the higher order RDMs and
higher order correlation matrices play an important
role in this theory. Futher on, we will consider in
some detail the constructing algorithms for some of
these matrices. Here, we will just report the three
types of correlation matrices, which are directly
related with the GHV methodology. Thus,

(3;1,1,1)Cijm;pqr ≡ 〈�|a†
i apQ̂�a†

j aqQ̂�a†
mar|�〉

≡ (3;1,1,1)Gipj;rmq (14)
(4;2,2)Cijml;pqrs ≡ 〈�|a†

i a†
j aqapQ̂�a†

ma†
l asar|�〉

≡ (4;2,2)Gijqp;rsem (15)

and

(4;2,1,1)Cijml;pqrs ≡ 〈�|a†
i a†

j aqapQ̂�a†
marQ̂�a†

l as|�〉 (16)

Note that no Hermitian positive semidefinite G-
particle-hole matrix exists in this last case, which
shows that the correlation matrices family is much
larger than the family of the Hermitian, positive
semidefinite G-particle-hole family. The properties
of this type of high-order correlation matrices, which
are very relevant in the study of the many-body prob-
lem, have been widely studied [21, 22, 24, 43–52].

2.2. MCM AND CONTRACTED EQUATIONS

Let us consider a matrix represented in the N-
electron space, NMMM(φ, Ô), where φ is an N-electron
wavefunction and Ô is an operator (e.g., the Hamil-
tonian, the total spin-squared one, Ŝ 2, etc.), which
may be contracted into the p-electron space (with
p < N) by applying a linear MCM whose general
expression is

∑
�,�

NM�;�〈�|pB̂λ;γ |�〉 = pMλ;γ , (17)

where pB̂λ;γ is a p-body operator and {�, �...} and
{λ, γ ...} represent the elements of N-electron and p-
electron basis sets, respectively.

When pB̂λ;γ = p�̂λ;γ one has the density-MCM
[13, 14, 16], which when applied to both sides of
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the matrix representation of the SE in the N-electron
space for p = 2 leads to

〈�|Ĥ 2�̂λ;γ |�〉 = E 2Dλ;γ , (18)

which is the compact form of the 2-CSE.
Alternatively, pB̂λ;γ = pĈλ;γ in the correlation-

MCM. When applying this latter mapping to the SE
one obtains the p-CCSE, whose compact form for
p = 2 is:

〈�|Ĥ 2Ĉλ;γ |�〉 = E 2Cλ;γ (19)

Let us now apply these two mapping relations to
the N-order density hypervirial equation

〈�|[Ĥ, N�̂�;�]|�〉 = 0 (20)

It can be shown [23–25] that the density-MCM yields
the compact form of the ACSE

〈�|[Ĥ, 2�̂λ;γ ]|�〉 = 0, (21)

whereas the correlation-MCM generates the second-
order correlation hypervirial equation, which can
equivalently be expressed as the GHV equation

〈�|[Ĥ, 2Ĝλ;γ ]|�〉 = 0. (22)

It is important to realize that all these Eqs. (18),
(19), (21), and (22) are different. Therefore, they are
not equivalent, as each of them imposes different
conditions on the 2-RDM, which is the unknown.
On the other hand, the 2-RDM, the G-particle-
hole matrix, the 2C, and the 2� matrices are all
interrelated second-order matrices. Therefore, when
planning the computation code one may choose as
variable the most convenient one. As the developed
forms of the ACSE and of the GHV equation [18,
23, 29] are not needed here, their explicit structure
is omitted in what follows. It is only important to
remember that these equations depend not only on
the second-order matrices but also on the third-order
ones, which constitutes one of the problems studied
in section 4.

3. Some Considerations on the
Exactness of the Solutions of the
Hypervirial Equations

When � is not a Hamiltonian eigenstate, the RHS
of the second-order hypervirial Eqs. (21) and (22)
does not generally vanish. Thus,

〈�|[Ĥ, 2�̂λ;γ
]|�〉 �= 0 (23)

where 2�̂ represents either of the 2Ĉ, 2Ĝ or 2�̂ oper-
ators. Instead of looking for the wavefunction that
solves the second-order hypervirial equation, in the
ACSE and the GHV methods one looks directly for
the 2-RDM (or, alternatively, for the G-particle-hole
matrix). At present, we approximate the third-order
RDM (or third-order G-particle-hole matrix) in terms
of the second-order matrix 2� (or the G-particle-hole
matrix) by applying a modified version of Nakatsuji–
Yasuda’s algorithm [25, 53]. To solve the correspond-
ing hypervirial equation, the problem is transformed
into solving a system of differential equations as
described in [19] for the ACSE and in [25] for the
GHV, respectively. Then, after starting with an initial
trial matrix, one proceeds iteratively.

The question of whether the second-order hyper-
viral equations vanishes iff the wavefunction � is a
Hamiltonian eigenstate, is what concerns us here. It
has been shown [20, 22, 23] that in the real case,

〈�|[Ĥ, 2�̂λ;γ ]|�〉 = 
�
λ;γ − (
�)T

λ;γ (24)

where

��
λ;γ = 〈�|ĤQ̂� 2�̂λ;γ |�〉 (25)

is a two-body matrix resulting from a contraction
over two-electron indices of the product of the
two-electron 0H matrix and the fourth-order corre-
lation matrix 〈�| 2�̂ω;τ Q̂� 2�̂λ;γ |�〉. Therefore, when
the second-order hypervirial Eq. (24) vanishes, two
alternatives exist:

• First possibility: 


� = 0
Let us recall that the theorems of Nakatsuji

and Alcoba proved that when the Hamiltonian
has only pair-wise interactions, and the matri-
ces involved are N-representable, there is a one
to one correspondence between the SE solution
and those of the 2-CSE and 2-CCSE, respec-
tively. Alcoba also proved [21] that when the
Hamiltonian has only pair-wise interactions,
and the matrix involved is N-representable, the
equation




� = 0 (26)

is satisfied iff the contracted equation from,
which it derives is also satisfied. In view of
these theorems, it follows that when Eq. (26)
is fulfilled, the 2-RDM or the G-particle-hole

VOL. 00, NO. 0 DOI 10.1002/qua INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 5



VALDEMORO ET AL.

matrix, which solve the respective hypervirial
equations correspond to a Hamiltonian eigen-
state.

• Second possibility: 


� �= 0 and 


� = (


�)T

It has been shown [20, 22] that the 


�

structure corresponds to that of a second-order
transition reduced density/correlation matrix.
Initially, we expected that a transition reduced
density/correlation matrix could not be Her-
mitian; in which case, when the ACSE/GHV
was satisfied, it was safe to assume that its solu-
tion should correspond to an eigenstate. Nev-
ertheless, Davidson (private communication)
proposed the following enlightening counter-
example for the ACSE, that is, when 2�̂λ;γ =
2�̂λ;γ : suppose two nondegenerate Hamilton-
ian eigenstates A and B with spin quantum
numbers |SA − SB| > 2. Then

〈A| 2�̂λ;γ |B〉 = 0 (27)

and consider

|〉 = 1√
2
(|A〉 + |B〉) (28)

Then

Ĥ|〉 �= E|〉 (29)

and yet

〈|[Ĥ, 2�̂λ;γ ]|〉 = 0. (30)

Davidson also demonstrated that in this case

�� = (��)T = (EA − EB)(
2DA − 2DB), (31)

which implies that 


� is a non-null symmet-
ric matrix. These results demonstrate that the
ACSE is not a sufficient condition to ensure that
its 2-RDM solution corresponds to a Hamilton-
ian eigenstate. Moreover, our initial assump-
tion that a second-order transition RDM cannot
be Hermitian is also invalidated.

Let us now examine whether the  wave-
function proposed by Davidson, Eq. (28),
constitutes a counter-example for the possi-
ble sufficiency of the GHV equation, that is,
when 2�̂λ;γ = 2Ĝλ;γ . To this aim, let us start by
evaluating the four matrix elements appearing

when developing this second-order hypervirial
equation:

〈A| 2Ĝ
ij;qp|B〉 = − 1DA

i;j
1DB

p;q (32)

〈B| 2Ĝ
ij;qp|A〉 = − 1DB

i;j
1DA

p;q (33)

〈A| 2Ĝ
ij;qp|A〉 ≡ 〈A| 2ĜA

ij;qp|A〉 = 2GA
ij;qp (34)

〈B| 2Ĝ
ij;qp|B〉 ≡ 〈B| 2ĜB

ij;qp|B〉 = 2GB
ij;qp (35)

Therefore,

〈|[ Ĥ, 2Ĝij;qp]|〉 = (EA − EB)

× (1
DA

i;j
1DB

p;q − 1DB
i;j

1DA
p;q

)
(36)

and in this case an element of the 
G matrix
takes the value:


G
ij;qp = −(EA − EB)

(1
DB

i;j
1DA

p;q − 1DA
i;j

1DB
p;q

)

+ (EA − EB)
(2GA

ij;qp − 2GB
ij;qp

)
(37)

Therefore, the GHV equation does not vanish
and 


G �= (


G)T, which means that Davison’s
 is not a counter-example for the GHV equa-
tion. Indeed, the GHV equation corresponding
to such a  could only vanish iff 1DA = 1DB ,
which would imply that

1. The two nondegenerate Hamiltonian
eigenstates could have the same density-
and spin-distributions

2. The difference between the two nonde-
generate eigenstates 2-RDMs, 2DA and
2DB, would only be due to their correla-
tion terms 2CA and 2CB, Eq. (6). In this
case the energy difference between these
states would be:

EA − EB = tr
(0H

( 2CCCA − 2CCCB)) (38)

Although perhaps this could be theoreti-
cally possible, there is no evidence, to our
knowledge, of any quantum-chemical system
having among its spectrum two such eigen-
states. Therefore, except for some possible
exceptional systems, Davidson’s  is not a
counter-example for the GHV equation. Nev-
ertheless, the question whether other types
of counter-examples different from Davidson’s
could exist cannot still be considered closed.
Therefore, in order to ensure the GHV equa-
tion reliability, when choosing the initial trial
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G-particle-hole matrix—and to avoid falling
into any exceptional case—it is necessary to
make sure that the initial trial matrix be N-,
Spin-, and �-representable, where � stands for
each of the other possible invariances of the
system. Because of the unitary invariant trans-
formations used during the iterative solving
procedure, these properties are not essentially
altered and it should therefore be sufficient to
purify only the initial trial-matrix.

Let us finish this section by remarking that it
has been proved [24] that there is a one to one
equivalence between the SE solution and that of the
3-GHV, whereas no similar theorem exists in the 3-
ACSE case. This is a further indication of the highly
demanding character of this family of hypervirial
equations.

4. Performance of the GHV Method in
the Study of Excited States

As has been previously mentioned, the results
obtained with the GHV method, when the state
being studied is the ground-state of an atom or a
molecular system whose interatomic distances are
close to the equilibrium ones, have been extremely
accurate. Moreover, the time and storage cost of these
calculations was proportional to K6 and K4, respec-
tively, which shows the high efficiency of the GHV
method.

The aim of this section is to give an outlook on
the performance of the GHV method in the study of
excited and multiconfigurational states where there
are still some open, or still partially-open questions.

When considering the application of the GHV to
the study of excited states two different types of dif-
ficulties arise. We first describe the general feature of
the iterative solution of the GHV equation in those
cases where the process, although not yet optimized,
may easily be improved. The other type of difficulty,
which is considered here arises when studying states
whose density distribution is significantly spread
out among the different spin-orbitals. This difficulty
is an open question not only for the GHV but also for
other ab-initio methods, including the ACSE, the 2-
CSE, and the 2-CCSE. Our analysis shows that in the
GHV case a different and new algorithm is needed
for expressing the third-order cumulant in terms of
the second-order one.

4.1. GENERAL FEATURE OF THE
EXCITED STATES CALCULATION WITH
THE GHV METHOD

Let us first describe a feature of the iterative pro-
cess, which always occurs when studying excited
states, and which in some cases may result in a loss of
accuracy. Thus, the graph of an excited state energy
obtained when solving iteratively any of the four
contracted Schrödinger equations (2-CSE, ACSE, 2-
CCSE, and GHV) has a similar shape to that obtained
with the GHV method for the Helium atom, for
which the solution is exact, as it is a two-electron
system. This is shown in Figure 1, which describes
the GHV iterative process for Helium atom in a 6-
31G basis set. The process first converges towards
the correct energy and then falls towards a lower
Hamiltonian eigenstate.

A similar result is obtained whenever the excited
state considered has a reasonable zero-order approx-
imation �0, which is a spin eigenstate involving
one or two Slater determinants. In these cases,
the corresponding energy produced by the GHV
method constitutes a reasonable estimation. This
is the case, for instance, of the Beryllium lowest
singlet excited state calculated with a Clementi’s
Double-Zeta basis set [54], which is given in
Figure 2.

The only delicate feature when applying the GHV
method to study this type of excited states is to
determine which point of the iterative procedure cor-
responds to the excited state energy. Until now, the
Fehlberg’s variable-step iterative method [25, 55, 56]
has been used to integrate the system of differential
equations for solving the GHV and has been coupled
with an absolute minimum slope stopping criterion.
Other alternatives are now being studied to further
optimize how to determine the inflection point of the
iterative process.

4.2. STATES WITH SPREAD-OUT NATURAL
ORBITAL OCCUPATION NUMBERS

In common with other ab-initio methods, when
the zero-order function �0 of a state is a multiconfig-
urational state the results are much less satisfactory.
Some states, including the excited ones, multicon-
figurational states and far from equilibrium ground-
states, have spread out natural orbital occupation
numbers and cannot, at present, be satisfactorily
studied with the GHV method. As an example, let us
consider the lowest excited singlet state of the linear
BeH2 molecule. This test calculation has been carried
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FIGURE 1. Convergence of the GHV iterative process for Helium lowest excited Singlet state (6-31G basis set).

out with a basis set formed by the seven Hartree-
Fock orbitals built out of Slater orbitals 1s, 2s, and 2p
centered at the Beryllium atom and by a 1s orbital
centered at each hydrogen atom. The Be–H bond
length was of 2.54a0, close to the equilibrium dis-
tance for the ground state. The corresponding FCI

calculation for this state yielded the following occu-
pation numbers for each of the natural spin-orbitals
(α or β):

n1 = 0.9999 n2 = 0.5122 n3 = 0.3038 n4 = 0.6464
n5 = 0.0144 n6 = 0.2616 n7 = 0.2616

FIGURE 2. Convergence of the GHV iterative process for Beryllium lowest excited Singlet state (Clementi’s
Double-Zeta basis set).
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FIGURE 3. Convergence of the GHV iterative process for BeH2 lowest excited Singlet state (minimal basis set).

That is, the electron density is rather spread out
among the different spin-orbitals. Indeed, only
orbital 1 and orbital 5 are clearly occupied and empty,
respectively.

When studying this state with the GHV method,
we chose an initial trial matrix corresponding to a
�0, which was rather close to this FCI state:

|�0〉 = 1√
7

(|11̄22̄33̄〉 − |11̄23̄44̄〉 − |11̄32̄44̄〉

− |11̄22̄66̄〉 − |11̄22̄77̄〉 + |11̄44̄66̄〉 + |11̄44̄77̄〉).

A bar over the orbital label indicates a β spin. The
resulting GHV iteration curve is shown in Figure 3.
As it is apparent, the curve does not have a clear
absolute minimum slope point. As a result, the calcu-
lation yields a far from negligible error for the energy
of this state.

The reason for this apparent shortcoming of the
GHV approach is due to the failure, in this type
of states, of the only approximation used in the
GHV method: the construction of the three-body
matrix elements in terms of the two-body ones. The
unknowns of the problem are the correlation [43, 45–
48] or equivalently, the 3��� [40–42] cumulant matri-
ces. We have prospected several alternative algo-
rithms for constructing these third-order matrices
[23–25, 31, 45, 57]. The two types of algorithms,
which have been used in practice until now are
modified versions of the approximation proposed

by Nakatsuji and Yasuda [53]. We will first describe
the simplest and nevertheless very effective algo-
rithm when the zero-order function involves one,
or at the most, two Slater determinants. This algo-
rithm, denoted as VTP, was proposed by Valdemoro
et al. [45] and is based on the relevant role played by
the frontier orbitals within each of the orbital symme-
tries. To define the Frontier-orbitals in an unambigu-
ous way, the state � considered must have a clearly
dominant configuration. When this is the case, the
highest occupied spin-orbital (HOMO) and lowest
empty spin-orbital (LUMO) of each symmetry are,
within this framework, the Frontier orbitals.

The VTP approximation proposes two different
algorithms according to whether they involve sums
over HOMO or LUMO orbitals. Thus, denoting by o
and e the occupied and empty orbitals respectively,
these two algorithms are:

3�o1e1 ē2;e3e4 ō2 = 1
6

( 2�o1 l̄;e3 ō2
2�e1 ē2;e4 l̄

)
(l = HOMO)

(39)

and

3�e1o1 ō2;o3o4 ē2 = − 1
6

( 2�e1 ō2;o3 l̄
2�o1 l̄;o4 ē2

)
(l = LUMO)

(40)

where the 2��� expression is the second-order cumu-
lant, Eq. (12). All the other 3��� elements are set to
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zero. When examining the occupation numbers of
the different orbitals in , only orbital 4, which is a
σu, has a very slight HOMO character. On the other
hand, there are four orbitals with different symme-
tries within the LUMO set: orbital 5, which is σu,
orbital 3, which is σg, and orbitals 6 and 7, which
are degenerate orthogonal π orbitals. As the correla-
tion effects involve virtual excitations, it is not easy,
in view of the orbital symmetry, to guess which will
be the virtual excitations involved.

The other algorithm, which has been used for
approximating the third-order cumulant in the study
of excited states is still closer to Nakatsuji–Yasuda’s
algorithm. It has the form [25]:

3�ijk̄;pqr̄ ≈ Â
∑

t̄

2�ik̄;pt̄

(
1D(∗)

t̄;t̄ − 1D̄(∗)

t̄;t̄

)
2�jt̄;qr̄

3�ij̄k̄;pq̄r̄ ≈ Â
∑

t

2�ij̄;tq̄

(
1D(∗)

t;t − 1D̄(∗)
t;t

)
2�tk̄;pr̄ (41)

where Â is the antisymmetrizer of the indices labels
corresponding to the two different 2��� cumulant
matrices. Note that in this algorithm no explicit men-
tion of the Frontier orbitals appears. However, the
algorithm takes them indirectly into account. Thus,
the sum runs over all orbital indices but each of
the sum terms involves the product of the two 2�

cumulant matrix elements and the diagonal element
( 1D(∗)

t;t − 1D̄(∗)
t;t ) where 1D(∗) and 1D̄(∗) are the 1-RDM

and 1-HRDM corresponding to the Slater determi-
nant, which dominates in the state considered. This
last term acts as a selective device assigning a posi-
tive or negative sign to the sum terms, according to
whether the orbital considered is occupied or empty.
For calculating purposes, the use of this device is
very convenient. As happened with the VTP algo-
rithm, when a single determinant is not a good
zero-order description of the state under study, this
device cannot perform well.

Another difficulty appears in the study of this
multiconfigurational type of states. Thus, an appro-
priate initial trial 2-RDM entering the GHV iterative
process is not easy to guess, which implies that pre-
vious to the GHV application, one must carry out a
multireference SCF-CI calculation, which cancels the
simplifying advantages of the GHV method.

In view of the difficulties just described it seems
necessary to investigate how to solve the two follow-
ing problems:

• To devise an appropriate procedure for deter-
mining directly an initial N-, Spin-, and �-
representable 2-RDM without a prior knowl-
edge of the 0 zero-order state.

• To investigate how to approximate the 3���

cumulant matrix when the 0 zero-order of the
state under study is multiconfigurational.

Finding a satisfactory approximate answer to these
two far from trivial questions constitutes a long-term
project in which much of our present research effort
is focused. In the next paragraph we describe the
short-term questions, which are also in progress.

5. Final Comment

Let us conclude this article by briefly commenting
on other possible means to improve the performance
and scope of the GHV method.

To apply the GHV method to the study of sys-
tems of chemical-physical interest, the simplifying
features of the system symmetry properties have to
be taken into account. To this aim, a thorough group-
theoretical study of the GHV structure is being car-
ried out by Massaccesi and Alcoba (in preperation).
This study will be at the base of a new computa-
tional code, which would be much faster and which
would take explicitly into account all the invariants
of the system under study. This new code should
permit to extend the application of the GHV method
to larger and periodic systems, as well as systems in
states with other spin multiplicities. Moreover, this
basic symmetry study ensures the handling of matri-
ces corresponding to any multiplet spin-states, pure
momentum- states, ..., and any other invariants.
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