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Abstract
We solve the low-energy part of the spectrum of a model that describes a circularly polarized
cavity mode strongly coupled to two exciton modes, each of which is coupled to a localized
spin of arbitrary magnitude. In the regime in which the excitons and the cavity modes are
strongly coupled, forming polaritons, the low-energy part of the spectrum can be described by
an effective spin model, which contains a magnetic field, an axial anisotropy, and an Ising
interaction between the localized spins. For detunings such that the low-energy states are
dominated by nearly degenerate excitonic modes, the description of the low-energy states by a
simple effective Hamiltonian ceases to be valid and the effective interaction tends to vanish.
Finally, we discuss a possible application to two-qubit quantum computing operations in a
system of transition-metal impurities embedded in quantum dots inside a micropillar.

1. Introduction

In recent years there has been great interest in the field of cavity
quantum electrodynamics. In particular, systems with strong
coupling between single quantum dots (QDs) and high quality
microcavities have been studied for different reasons, including
to gain insight into different quantum optics effects [1–9],
such as quantum decoherence, entanglement and possible
applications in quantum information processing [1–4, 8]. For
example, some of these systems were proposed as a single-
photon source [3, 7] for realization of all-optical quantum
computing [8]. The strong coupling (SC) regime takes
place when the coupling between a quantum emitter and
the cavity mode is strong compared to their decay rates.
In this case, the emitter and cavity coherently exchange
energy back and forth, leading to Rabi oscillations. The
SC between single (In, Ga)As QD and micropillar cavity
modes [1] has become apparent in photoluminescence data
which displayed anti-crossings between the QD exciton and
cavity-mode dispersion relations [1, 2, 4]. The SC regime
has also become apparent in resonant Raman scattering
due to optical phonons in planar II–VI-type semiconductor
microcavities [10, 11].

Essential to quantum computation is the capability to
produce one- and two-qubit operations. In 1999, Imamoglu
et al [8] showed the possibility of inducing an effective
interaction between spins in a QD mediated by photons. More
recently Quinteiro et al studied the optically induced coupling
between 1/2 spins in a two-dimensional (2D) microcavity [12].
This work was later extended to zero-dimensional (0D)
cavities [13], where it was shown that, due to selection rules,
the light-mediated effective spin–spin interaction is of the Ising
type part of the spin. It has been shown that the Ising part
of the spin–spin interaction is sufficient to perform two-qubit
operations [14].

The construction of effective Hamiltonians to describe the
low-energy physics of a system is very common in condensed
matter physics. One example is the canonical transformation
that eliminates the electron–phonon interaction, giving rise to
an attractive interaction between electrons, which in turn leads
to superconductivity [15]. Another example is the canonical
transformation that eliminates the hopping in the half-filled
Hubbard model (or the ionic Hubbard model), giving rise
to a Heisenberg interaction [16, 17]. In several transition-
metal oxides, including the superconducting cuprates, a low-
energy Hamiltonian has been obtained using perturbation
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Figure 1. Scheme of the system: a 0D cavity encloses two QDs, each
coupled to a single impurity (spin) of arbitrary magnitude.

methods [18–21, 23–25]. It has been found that more
accurate effective parameters are obtained if the perturbative
expressions are replaced by a fit of the low-energy levels in a
simple system [21].

It is interesting to note that a spin-1/2 Heisenberg model
with anisotropic exchange interactions has been derived as an
effective model for atoms trapped in microcavities [22]. In
this case, the spin degree of freedom represents two long-lived
atomic levels instead of actual spin states.

In this work we extend the results derived previously by
one of us for two spin 1/2 impurities [13] and study the
effective Hamiltonian Heff for the interaction of two arbitrary
spins in a 0D cavity, each of which has an exchange interaction
with electrons and holes of a QD (see figure 1). The
generalization to arbitrary spin is important to apply the model
to transition-metal impurities, as discussed in section 4.

In section 2 we present the model and derive the effective
interaction. Section 3 discusses the results, together with the
limitations and validity of the model. We give an account of the
scope of the present research to real systems in section 4, where
we address the technologically relevant case of Mn impurities
embedded in CdTe/ZnTe QDs inside a micropillar. Section 5
contains a summary and a discussion.

2. Model

The core of the model contains the cavity-photon mode, and
the excitonic degrees of freedom of both QDs represented by
spin 1/2 and the coupling between them. This is a simple
generalization of the Jaynes–Cummings model [26] to two
excitonic degrees of freedom. In addition, the electron and
hole of each exciton have a spin exchange interaction with a
localized spin. A scheme of the system is shown in figure 1.
We remind the reader that the symmetry of the cavity splits
heavy holes (HHs) with angular momentum projection jz =
±3/2 from the light holes (LHs) with jz = ±1/2, which
lie at higher energy. We assume that the light is circularly
polarized with spin projection jz = 1. Thus, there is only
one possible low-lying bright exciton which can be excited by
this light, and corresponds to jz = −1/2 (3/2) for the electron
(HH). Therefore, the polarization subscripts can be dropped.
The dark excitons with total angular momentum projection
jz = ±2 do not mix with the light and can be disregarded
at low enough temperature. Furthermore, they cannot lead
to an effective interaction between localized spins and we

neglect them. The spin–spin interaction between excitons and
localized spins includes two types of exchange interactions, the
anisotropic one between the heavy hole and the localized spin,
and the isotropic (Heisenberg) one between the electron and the
localized spin [27]. The spin-flip terms lead to a mixing of the
bright and dark exciton states, or even with excitons containing
LHs. The latter are irrelevant at low temperatures3, while the
former can be neglected under certain conditions explained in
sections 3 and 4. Under these conditions, assumed in the rest
of this work, only an Ising type interaction between the exciton
and the localized spin needs to be considered.

From the above considerations, the Hamiltonian takes the
form

H = Eca
†a +

2∑

i=1

[Exσ
z
i + g(σ−

i a† + Hc)

+ J (σ z
i + 1/2)Sz

i ], (1)

where a† is the creation operator of the cavity mode, σ z
i , σ+

i ,
and σ−

i are spin operators for the two level system of the QD i ,
with ground (|i ↓〉) and excited (|i ↑〉) states which represent
zero and one exciton respectively, and Sz

i is the spin projection
of the localized spin i . For simplicity we assume a symmetric
device. The extension of the results when the excitonic energy
Ex and the couplings g and J depend on i is rather simple
(see section 3.5). A particular case is discussed in section 3.4.
Without loss of generality we assume g > 0 (the phase of a†

can be changed).
We define the detuning as the difference between cavity

and exciton energies δ = Ec − Ex.

3. Results

The Hamiltonian equation (1) conserves the total number of
light plus excitonic excitations

Ne =
∑

i=1

(σ z
i + 1/2) + a†a. (2)

Following [13], we assume that the intensity of radiation
exciting the system from outside is such that we may restrict
ourselves to the subspace of Ne = 1. This subspace contains
3(2S +1)2 states (the factor three comes from either one of the
two excitons or the photon, and 2S + 1 is the degeneracy of
each spin). For small enough J , an effective Hamiltonian for
the lowest (2S + 1)2 states can be derived from perturbation
theory in J up to second order.

3.1. Perturbations in J

Here we assume small J and small temperature T . More
specifically, the conditions of validity of perturbation theory
are the following: (i) for negative detuning δ, and −δ > g, one
must have J, T � −δ, (ii) for |δ| < g one must have J, T �
g, (iii) for large positive δ, J, T � 2g2/δ, which is harder
to satisfy. Studies of situations when this condition is not met
are discussed in the next subsections. The perturbation theory

3 The effect of these spin-flip terms can be taken into account in second-order
perturbation theory in the exchange interaction. They renormalize the exciton
energy, but do not lead to effective interactions between the localized spins.
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Figure 2. Coefficients of the eigenstates |1〉 and |3〉 given by
equations (3).

approach up to order J 2 allows us to ignore the spin-flip term in
the Mn–electron interaction, since this process would convert
a bright exciton into a dark exciton, which cannot lead to an
effective spin–spin interaction. Only through a second electron
spin-flip would the bright exciton be recovered. However, this
process of order J 2, involves only one spin and does not affect
the other. Processes involving dark excitons, which lead to
effective spin–spin interactions, are of order higher than J 2 and
we do not consider them in this section.

For J = 0, the Hamiltonian can be diagonalized and
is resolved into three subspaces, each one (2S + 1)2 times
degenerate, since the energy of the states are independent of the
spin projections. In increasing order of energies, the light and
excitonic part of the eigenstates and their energies are given by

|1〉 = u√
2
(|0 ↑↓〉 + |0 ↓↑〉) − v|1 ↓↓〉,

|2〉 = 1√
2
(|0 ↑↓〉 − |0 ↓↑〉),

|3〉 = v√
2
(|0 ↑↓〉 + |0 ↓↑〉) + u|1 ↓↓〉,

E1(3) = δ

2
∓ r, r =

√
δ2/4 + 2g2,

E2 = 0,

u2 = 1

2
+ δ

4r
, v2 = 1 − u2, u, v > 0,

(3)

where the ket |C X1 X2〉 represents the state of the whole system
with C cavity photons (C = {0, 1}), and each exciton in
the state Xi (Xi = {↓,↑}). The state |2〉 is completely of
excitonic nature, while the states {|1〉, |3〉} are an admixture
of excitons and light. Under strong coupling conditions, they
form a polariton. The values of the parameters {g, δ} determine
how strong the matter-light admixture in states {|1〉, |3〉} is, see
figure 2. For example, when the detuning δ is large, the state
|1〉 (|3〉) becomes excitonic (photonic)-like.

Including the degrees of freedom which describe the
localized spin, the low-energy manifold is constituted by the

Figure 3. Effective interaction as a function of detuning for small J
and T .

states |1〉|Sz
1〉|Sz

2〉, −S � Sz
i � S. The term in J of

equation (1) introduces diagonal corrections and mixes these
states with |2〉|Sz

1〉|Sz
2〉 and |3〉|Sz

1〉|Sz
2〉, conserving Sz

1 and Sz
2 .

This fact simplifies the use of degenerate perturbation theory
up to second order, or a canonical transformation [15] that
leads to the effective Hamiltonian of the low-energy subspace
Heff. Except for an irrelevant additive constant (E1), Heff takes
the form

Heff = B(Sz
1 + Sz

2) − D[(Sz
1)

2 + (Sz
2)

2] + I Sz
1 Sz

2 . (4)

This is a usual form of an interaction Hamiltonian in
quantum magnetism, where B , D and I play the role of an
effective magnetic field, axial anisotropy and Ising interaction
respectively. The presence of an effective magnetic field is
expected due to the symmetry breaking caused by the circularly
polarized light, and has been found in previous studies of spin–
spin indirect interactions in doped semiconductors [28].

The effective parameters are given by

B = u2 J

2
, D = J 2

2

(
u2

2r − δ
+ g2

8r 3

)
,

I = J 2

(
u2

2r − δ
− g2

8r 3

)
.

(5)

It can be easily checked that Heff reproduces the energies
of all the (2S + 1)2 lowest-lying eigenstates of H up to second
order in J . Thus Heff is a good representation of H as long as
J and the temperature are smaller than the energy separation
between the levels given by equations (3).

The evolution of I as a function of detuning is shown
in figure 3. It is always antiferromagnetic and increases with
detuning δ. The fact that for δ > 0, perturbation theory in J
yields a large interaction I for g → 0 might seem surprising,
since for g = 0 (no coupling of excitons with the light)
there is no interaction between spins (I = 0). Indeed, the
perturbative expression is not valid for g → 0, since the states
|2〉 and |3〉 become degenerate (their separation is ∼2g2/δ)
and perturbation theory requires that J is smaller than this
separation to be valid, as stated at the beginning of this section.
The case of large J is discussed in section 3.3.
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3.2. Small J and higher T

For large detuning δ, the separation between the two lowest-
energy manifolds, which is of the order of 2g2/δ, becomes
small. When the temperature T is larger than this separation,
the effective Hamiltonian equation (4) is not enough to describe
the low-energy physics because the size of the Hilbert space is
too small. Nevertheless one might ask if expectation values of
the spin operators can be calculated using an effective density
matrix ρeff derived from some Heff

ρeff = exp(−β Heff)

Trs{exp(−β Heff)} , (6)

where β = 1/T and Trs is the trace over spin variables (Sz
1 ,

Sz
2). The effective spin density matrix is obtained from the

partial trace Trx over exciton and photon variables

ρeff = Trx{exp(−β H )}
TrsTrx{exp(−β H )} . (7)

Equations (6) and (7) are an indirect definition of Heff.
Assuming g � δ and also J � 2g2/δ, so that

perturbation theory in J is valid, and correcting up to second
order in J , the energies of the states |1〉|Sz

1〉|Sz
2〉 and |2〉|Sz

1〉|Sz
2〉

(see equations (3)) we obtain

ρeff =
∑

Sz
1,S

z
2

f (Sz
1, Sz

2)|Sz
1〉|Sz

2〉〈Sz
1 |〈Sz

2 |∑
Sz

1,S
z
2

f (Sz
1, Sz

2)
, (8)

with

f (Sz
1, Sz

2) = 2 exp[−β J (Sz
1 + Sz

2)/2]
× cosh

[
β

g2

δ
+ β J 2δ(Sz

1 − Sz
2)

2

8g2

]
. (9)

Except for an irrelevant constant, the effective Hamiltonian
Heff can be defined taking the logarithm of the effective density
matrix ρeff given by equation (8), so that inserting Heff in
equation (6) gives the correct ρeff. The resulting effective
Hamiltonian reads

Heff = −T
∑

Sz
1,S

z
2

ln[ f (Sz
1, Sz

2)]|Sz
1〉|Sz

2〉〈Sz
1 |〈Sz

2 |. (10)

As a difference to other cases in which the density matrix
may be approximated by a product of density matrices for two
subsystems (e.g. [29]), we note that the eigenstates of this Heff

are not eigenstates of the isolated spin subsystem. Instead, each
eigenvalue gives the temperature dependent expectation value
of the whole Hamiltonian H for the spin configuration of the
corresponding eigenstate, except for a temperature dependent
constant. This constant is irrelevant since one is interested in
differences of the total energy for different spin configurations.

For T � 2g2/δ, the expression equation (10) for Heff

coincides with equation (4) in the limit g � δ. Instead,
for T � 2g2/δ, Heff retains the same form except for a
temperature dependent constant, but the effective parameters
become B = J/2, I = 2D = J 2/(4T ). While B coincides

with the low-temperature result equations (5) in the limit g �
δ, the anisotropy and Ising interaction decrease linearly with
temperature. At intermediate temperatures and for general
spin, it is not possible to describe the system by a simple
effective Hamiltonian-like equation (4). An exception is the
case of spin 1/2, for which, except for a constant, Heff is
given by equation (4) with B = J/2, D = 0 and I =
2T {ln[cosh(βg2/δ + β J 2δ/8g2)] − ln[cosh(βg2/δ)]}.

3.3. Case J � 2g2/δ

In this case, the separation between the energy of the lowest-
lying manifolds for J = 0 is smaller than J and perturbation
theory in J is no longer valid. Here we assume that g is small
enough so that we can treat this term perturbatively. Standard
quasi-degenerate perturbation theory up to second order leads
to the diagonalization of the following matrix, which mixes the
states |1〉|Sz

1〉|Sz
2〉 and |2〉|Sz

1〉|Sz
2〉

(
F1 −V/2

−V/2 F2

)
,

Fi = Ex + J Sz
i − g2

δ − J Sz
i

, V =
∑

i

g2

δ − J Sz
i

.

(11)

Proceeding as above, neglecting terms of order Jg2/δ2 or
greater in J or g, we obtain Heff of the form of equation (10)
but with

f (Sz
1, Sz

2) = 2 exp[−β J (Sz
1 + Sz

2)/2]
× cosh

[
β J (Sz

1 − Sz
2)

2

]
. (12)

Interestingly, for T � J , Heff takes the same form as in
section 3.2 for T � 2g2/δ (equation (4) with B = J/2,
I = 2D = J 2/(4T )). However for T = 0, we find that up to
terms of order g2/δ and any order in J , the effective interaction
I vanishes.

3.4. Extension to asymmetric systems

If both spins, their corresponding exchange constants Ji and
both excitonic energies Exi are different, in general, one has
to solve a 3 × 3 matrix for each Sz

1 and Sz
2 . For the case

in which perturbation theory in Ji is valid (strong coupling
or negative detuning, small temperatures), if the separation
� between excitonic energies is small (Ex1 = Ex + �/2,
Ex2 = Ex − �/2), it can also be treated perturbatively and
the lowest energy for given Sz

1 and Sz
2 becomes

E = E1 + u2

2

∑

i

Ji Sz
i − g2

16r 3

(∑

i

Ji S
z
i

)2

− u2(� + J1Sz
1 − J2Sz

2)
2

4r − 2δ
, (13)

with E1, r and u given by equation (3). The effective
Hamiltonian becomes

4
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Heff =
∑

i

[Bi S
z
i − Di (Sz

i )
2] + I Sz

1 Sz
2,

B1 = u2 J1

(
1

2
+ �

2r − δ

)
,

B2 = u2 J2

(
1

2
− �

2r − δ

)

Di = J 2
i

2

(
u2

2r − δ
+ g2

8r 3

)
,

I = J1 J2

(
u2

2r − δ
− g2

8r 3

)
.

(14)

3.5. Exact solution in the presence of a external magnetic field

Due to the Zeeman effect, a static magnetic field causes the
splitting of the energy of both impurity spins and exciton states
according to their spin angular momentum projection. In the
case of a pair of bright and dark excitons differing in the
projection of the electronic spin, the external magnetic field
pointing in the z direction, Bext, causes a splitting by an energy
of �EZ = ge μB Bext. If the strength of Bext is such that
�EZ � J , the impurity–electron interaction cannot efficiently
produce spin-flips. Thus, under such a strong magnetic field,
we can assume that the effective interaction between the
localized spin and the electron is of the Ising form, as given
in equation (1). Besides, the argument leading to the neglect
of the spin-flip term in the interaction between the localized
spin and the hole remains valid, since the splitting between
HH and LH [30] is much larger than the Zeeman splitting.
This analysis indicates that the Hamiltonian equation (1) can
be diagonalized exactly, all orders in the coupling constant
J , in the subspace of one excitation: photon, exciton 1 or
exciton 2, and localized spin states S1z and S2z . In matrix form,
the reduced Hamiltonian reads

H =
⎛

⎝
E ′

1−E ′
2

2 + F 0 g1

0 − E ′
1−E ′

2
2 + F g2

g1 g2 Ec + F

⎞

⎠ (15)

where E ′
i = Exi + Ji S

z
i + μB(3gh/2 − ge/2)Bext, and F =

2 μB Bext(Sz
1 +Sz

2) account for the Zeeman splitting of localized
spins. If only the states with maximum absolute value of the
localized spin projection ±S are considered (see section 4),
from a numerical diagonalization, an effective magnetic field
Beff and spin–spin coupling Ieff can be deduced. Ieff coincides
of course with the perturbative result I for small enough Ji ,
but it is smaller in the general case. In section 4 we will
consider a particular problem and provide a numerical value
for the effective coupling constant Ieff.

4. Applications

In this section we show how our model can be used to
study the spin–spin indirect interaction in a real system of
possible technological relevance. We are motivated, on the
one hand, by the experimental progress in fabrication, state
manipulation and state detection of QDs containing single Mn

impurities [31, 32], and, on the other hand, by the fabrication of
high Q-factor micropillar cavities [33]. Put together, they form
a highly promising system for spintronic applications, and in
particular for quantum information technology.

More specifically, we have in mind CdTe/ZnTe QDs
containing (or having in its vicinity) a single Mn (S = 5/2)
magnetic impurity, all embedded in a II–VI semiconductor-
based micropillar. These micropillar structures, of a diameter
of a few micrometers, can be made to embed CdTe/ZnTe
QDs and exhibit large Q-factors [34]. Due to their size, the
separation between different photon modes is large enough
to consider them as single-mode systems, for example, a
micropillar of height h = 0.1 μm and diameter φ = 2 μm
has energy levels separated by about �E = 10 meV, larger
than any energy of the system.

Mn interacts with the exciton through exchange with the
electron and hole; in principle, this interaction contains both
transverse (spin-flip) and Ising terms. The spin-flip term in the
Mn–hole interaction becomes important when there is mixing
between LH and HH bands, a fact that is related to factors such
as the geometry of the QD and the splitting between LH and
HH bands [35, 36]. As reported by Leger et al [37], the mixing
of LH–HH bands is small enough to be disregarded as a first
approximation to the problem. In addition, the spin-flip term of
the Mn–exciton interaction leads to the conversion of bright to
dark excitons, which cannot radiate into cavity photons. Thus,
a single spin-flip does not contribute to the effective interaction
between different Mn. By subsequent flips in the same QD,
a bright exciton can be recovered, leading to a contribution
to the effective Mn–Mn coupling of order larger than J 2 (see
equation (1)). Therefore, in the perturbation theory approach
to order J 2, one can retain the Ising Mn–exciton interaction
alone.

If an external magnetic field splits bright and dark
excitons, such that the difference in energy is much larger
that J , only the Ising term in Mn–electron interaction will be
relevant, and the Hamiltonian can be diagonalized exactly in
the subspace of one excitation. The Zeeman splitting of LHs
cannot cause these states to significantly approach the HHs,
since the separation between HH and LH levels is much larger
than the Zeeman splitting ([30] reports HH–LH splitting of
30 meV). An additional advantage offered by the application
of a static magnetic field is that decoherence times for exciton
and Mn spins become larger [31, 39]. Finally, the strength of
the Mn–hole interaction is about a factor five greater than that
of the Mn–electron [27, 38]. For the arguments given above,
we can describe the Mn–exciton interaction as an Ising one,
having a strength given by the sum of the Mn–hole and Mn–
electron exchange interactions.

We now estimate the feasibility of a two-qubit operation.
Quantum computing with qubits larger than 1/2 has been
analyzed by Bertaina et al [40], who demonstrated the
possibility of controlling specific transitions between Mn spin
states, for example the Sz = −5/2 � 5/2. We thus
envisage that our system can be controlled in a similar way, and
quantum computing can be done in a pair of transitions, say the
Sz = ±5/2. Reasonable values for the coupling constants are
J = 0.1–1 meV, g < 0.5 meV [27, 36–38].

5
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While finding a QD with the sought detuning—or tuning it
by changing the temperature of the system [2]—is possible, we
acknowledge here that with current technology the likelihood
of obtaining two QDs with the same detuning is very low;
nevertheless, and in order to proceed, based on equations (14)
we assume that our results are not drastically changed by
taking the symmetric system with a single detuning of δ =
1 meV. We use the temperature T = 1–60 K of typical
experiments [41, 34], which is also compatible with the
temperature range for tuning QDs to cavity resonances [2].
This temperature is low enough such that the results of
equations (14) can be used. The use of our perturbation theory
result from section 3.1, and our exact numerical result in the
presence of a static magnetic field from section 3.5, yield
a coupling constant I and an estimate for the time τI =
π h̄/(2I Sz

1 Sz
2) required for the two-qubit operation.

The time τI ought to be compared with decoherence
times. In our model different decay channels exist: exciton
recombination, excitonic spin dephasing, photon leakage and
Mn decoherence. In the case of excitons, the radiative lifetime
is reported to be 290 ps [41], while the dephasing of the
excitonic spin may be taken as 30 ps [42]. These should
be compared not with the total time for an operation, but
rather with the time associated with the interaction between the
exciton in a single QD and the Mn impurity: τJ  2π h̄/J =
5–25 ps. For low concentrations, the decoherence time of Mn
spins can be larger than 10 μs [32]. Photon leakage can be
estimated from Q-factors; assuming a conservative value of
Q  5000 yields a τph = 2Q/ω  5 ps. Thus, we see that the
limitation is given by the leakage of photons out of the cavity.
However, we have used a conservative value for the Q-factor,
and, as it is reported for other materials, it could be as large as
Q = 160 000 [1, 43].

We calculate the spin–spin coupling constant I and its
associated time by two methods. From perturbation theory, we
choose the values J = 0.1 meV and g = 0.5 meV, compatible
with the experimental data and the validity of perturbation
theory. The resulting effective interaction is I = 2.7 ×
10−3 meV, with a corresponding time τI = 46 ps for a two-
qubit operation. Under these conditions, we see that the time
required to perform the operation exceeds the decay time for
photons inside the cavity, and micropillars with larger Q-factor
will be needed. From the exact diagonalization, the application
of a magnetic field of B = 5 T would produce a splitting of
dark and bright excitons of �E  0.6 meV; we then choose
the values J = 0.5 meV and g = 0.5 meV. This yields a Mn–
Mn coupling of Ieff = 6.7 × 10−2 meV with a corresponding
time τI  1.8 ps. Then, the use of the magnetic field allows
us to consider a case where the two-qubit operation, based on
Ising Mn–exciton interaction, becomes feasible.

5. Summary and discussion

We have derived an effective Hamiltonian for the effective
interaction between two arbitrary spins, each one interacting
with the exciton of a QD, and both dots located inside a
zero-dimensional cavity. Both excitons are coupled strongly
with the cavity mode. Our results are more robust in the

strong coupling limit (large g) and for small or negative
detuning δ = Ec − Ex. In this case, when the exciton–
spin exchange energies Ji , temperature T and the separation
between excitonic energies � is small enough, the effective
Hamiltonian is given by equations (14) and (3). It has a rather
simple form, with an effective magnetic field and two different
gyromagnetic factors (Bi ), different anisotropies Di and an
Ising interaction I between the spins. For positive large δ and
moderate T , it is not possible in general to describe the spin
dynamics with a simple effective Hamiltonian, except at large
temperatures or for two spins 1/2. In these cases, one has to
pay the price of the temperature dependence of the anisotropy
and interaction terms. As found earlier for two 1/2 spins [13],
the interaction I decreases for higher δ and T .

If only states with maximum absolute value of the spin
projection Sz

i = ±S are considered, a realistic effective
interaction HeffS

z
1 Sz

2 between these states can be obtained for
general parameters and not too high δ, provided a magnetic
field is applied to increase the energy of the dark excitons, and
the excitation energy is low enough, so that no more than one
exciton or photon is excited.

For large |δ| terms that do not conserve the number of
excitations, equation (2) might be important [9, 26]. Also,
for large positive δ and not too small temperature T , the dark
excitons, not included in the present treatment, may approach
the energy of the bright excitons. Fortunately, this does not
affect our results in the strong coupling limit or under a strong
enough applied magnetic field.

In the present treatment, we have not included
decoherence terms due to finite lifetime of the excitons or the
cavity mode. We expect these effects to be minor as long
as their energy scales are smaller than the gap E2 − E1 (see
equations (3)), as discussed in section 4.

Last, we have applied our model to a system consisting
of Mn impurities in CdTe/ZnTe QDs, all embedded in
micropillars. Very similar systems are currently investigated
for their promising applications to spintronics, and a possible
application of the system we studied here is to quantum
computing. Regarding the Mn impurities as qubits, we
calculated the time required for a two-qubit operation to be
performed between them, and compared it to experimental
values of decay and dephasing of the various degrees of
freedom in the system. We conclude that this indirect
interaction, based on Ising Mn–exciton coupling, can be used
as a two-qubit operation, either when the Q-factor of the cavity
exceeds 50 000, or when a static magnetic field is present.
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