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ABSTRACT

Wildland fires play a key role in the 
functioning and structure of vegetation.  
The availability of sensors aboard satel-
lites, such as Moderate Resolution Im-
aging Spectroradiometer (MODIS), 
makes possible the construction of a 
time series of vegetation indices (VI) 
and the monitoring of post-fire vegeta-
tion recovery.  One of the techniques 
used to monitor post-fire vegetation is 
the comparison of a burned site with an 
adjacent unburned control site.  Howev-
er, to date, there is no objective method 
available for selecting these unburned 
control sites.  We propose three biologi-
cal criteria that the unburned sites must 
meet to be considered control sites, as 
well as statistical methods based on the 
analysis of the properties of the Quo-

RESUMEN

Los incendios juegan un rol clave en el fun-
cionamiento y estructura de la vegetación.  La 
disponibilidad de sensores a bordo de satéli-
tes tales como el MODIS, hacen posible la 
construcción de series de tiempo de índices 
de vegetación (VI) y el monitoreo de la recu-
peración de la vegetación post fuego.  Una de 
las técnicas usadas para monitorear la vegeta-
ción post fuego de un sitio quemado es su 
comparación con otro adyacente sin quemar.  
Por supuesto y hasta el presente, no existe un 
método objetivo disponible para seleccionar 
lugares sin quemar que sirvan de testigo.  No-
sotros proponemos tres criterios biológicos 
que los lugares sin quemar deberían cumplir 
para ser considerados como sitios testigo, 
como así también métodos estadísticos basa-
dos en el análisis de las propiedades de las se-
ries de tiempo del índice de cociente de vege-
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tient Vegetation Indices time series 
(QVI), to detect unburned sites that 
meet the proposed criteria.  We also test 
the performance of the proposed meth-
od by checking the pre-fire difference 
between burned and unburned sites, as-
suming that the higher the number of 
met criteria, the greater the similarity.  
Therefore, we compare the differences 
between VI time series of burned sites 
and VI time series of unburned sites 
with the same vegetation cover that 
meet three, two, one, and none of the 
proposed criteria.  In addition, we com-
pare the quality of QVI time series that 
meet three, two, one, and none of the 
proposed criteria.  Our results show 
that, for Normalized Difference Vegeta-
tion Index (NDVI) and Enhanced Vege-
tation Index (EVI) data, the difference 
between the time series of burned and 
unburned sites gradually decreases with 
the increase of met criteria.  A gradual 
increase is also observed in the quality 
of the QVI time series with the increase 
of met criteria.  Despite the limitations 
present in the proposed method, our 
model represents an advance from the 
conceptual and methodological stand-
points, since this is the first proposal of 
a statistical method for selecting un-
burned control sites based on biological 
criteria.

tación (QVI), para detectar sitios no quema-
dos que cumplan con los criterios propuestos.  
También probamos el desempeño del método 
propuesto mediante la prueba de las diferen-
cias previas al incendio entre lugares quema-
dos y no quemados, suponiendo que cuanto 
mayor es el número de criterios concordantes, 
mayor será la similitud entre sitios.  En base a 
eso, comparamos las diferencias entre las se-
ries de tiempo (VI) de los sitios quemados 
con aquellos (VI) de los no quemados con el 
mismo tipo de cobertura de vegetación que 
cumplirían con tres, dos, uno, o ninguno de 
los criterios propuestos.  Adicionalmente 
comparamos la calidad de las series de tiem-
po (QV) que cumplían con tres, dos, uno, o 
ninguno de los criterios propuestos.  Nuestros 
resultados muestran que para datos del índice 
normalizado de vegetación (NDVI) y del ín-
dice de vegetación extendido (EVI), la dife-
rencia entre las series de tiempo de sitios que-
mados y no quemados disminuye gradual-
mente con el incremento de los criterios con-
cordantes.  Un incremento gradual se observa 
también en la calidad de las series de tiempo 
(QVI) con el incremento de los criterios con-
cordantes.  A pesar de las limitaciones del 
método propuesto, nuestro modelo representa 
un avance tanto desde el punto de vista con-
ceptual como metodológico, dado que es la 
primera propuesta de un método estadístico 
para seleccionar sitios testigo no quemados, 
basados en criterios biológicos.
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INTRODUCTION

Wildland fire is a widespread disturbance 
in terrestrial ecosystems (Flannigan et al. 
2013) and plays a key role in the structure and 
function of vegetation (Bond and Keeley 

2005).  In the last century, ecological equilibri-
um has been threatened in many ecosystems, 
since changes that occurred in climatic and an-
thropogenic factors have triggered an increase 
in fire frequency and intensity (Mckenzie et al. 
2011).  Therefore, robust post-fire monitoring 
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tools are needed to understand the post-fire re-
covery process (Van Leeuwen et al. 2010), 
which is necessary to design forest manage-
ment strategies (Casady et al. 2010, Di Mauro 
et al. 2014). 

Wildland fires generally occur as un-
planned trials because the time and place of 
occurrence can seldom be accurately predicted 
(Ayanz et al. 2003).  In this context, satellites 
are useful tools to monitor fire events because 
the spectral information captured by on-board 
sensors makes it possible to obtain informa-
tion about the fire including the date, location, 
extent of intensity and severity, and post-fire 
ecosystem functioning of a fire (Perez-Cabello 
et al. 2009, Di Bella et al. 2011).  The avail-
ability of satellites with high temporal resolu-
tion and low spatial resolution, such as Moder-
ate Resolution Imaging Spectroradiometer 
(MODIS), allows daily data collection (Huete 
et al. 2002).  This temporal resolution allows 
us to build time series datasets (Gitas et al. 
2012) and obtain metrics to characterize the 
post-fire vegetation functioning (Hicke et al. 
2003, Goetz et al. 2006, Van Leeuwen 2008, 
Casady et al. 2010, Di Mauro et al. 2014).  
Consequently, information generated by this 
satellite is essential to understanding post-fire 
vegetation recovery processes and the effect of 
fires on ecosystem functioning.  Despite the 
significant vegetation variability within each 
MODIS pixel due to its low spatial resolution, 
current evidence suggests that Normalized 
Difference Vegetation Index (NDVI) calculat-
ed with MODIS data has a good correlation 
with NDVI field data (Kovalskyy et al. 2012).

The use of vegetation index (hereafter VI) 
images obtained from satellite data is one of 
the most widely used methods to study post-
fire vegetation recovery (Gitas et al. 2012).  
These indices have a strong relationship with 
the amount of biomass (Gasparri et al. 2010), 
leaf area index (Baret et al. 1989, Baret and 
Guyot 1991), and the above-ground net prima-
ry production (Paruelo and Lauenroth 1998, 
Paruelo et al. 2001).  Therefore, VIs have high 

correlation with ecosystem functions, (i.e., 
ecosystem processes that determine the flow 
rates of energy and matter; Cabello et al. 
2012).  By far, the most widely used remote 
sensing VI to assess post-fire recovery is the 
NDVI (Normalized Difference Vegetation In-
dex; Gitas et al. 2012).  Empirical evidence 
shows that, despite the well-known problems 
associated with saturation and background sig-
nal, NDVI is the VI with the greatest correla-
tion between field measurements taken in dif-
ferent studies of post-fire vegetation recovery 
(Gitas et al. 2012, Veraverbeke et al. 2012).  
Another useful VI to characterize vegetation 
functioning is the Enhanced Vegetation Index 
(EVI).  This index was developed to optimize 
the vegetation signal since it has improved 
sensitivity in regions with high biomass and is 
less affected by both the atmospheric condi-
tions and the canopy background signal (Huete 
et al. 2002).

One technique used to monitor the time 
that vegetation needs to return to a similar 
functional pre-fire state is the comparison of a 
burned site with an adjacent unburned control 
site (Gitas et al. 2012, Di Mauro et al. 2014).  
This method assumes that, without fire, a 
burned site should exhibit the same vegetation 
structure and functional behavior as the con-
trol site (Lhermitte et al. 2010).  Therefore, it 
is necessary to detect control sites not only 
with the same vegetation structure before the 
fire event, but also with a VI time series of 
similar functional behavior (e.g., Di Mauro et 
al. 2014).  Several field approaches to detect 
control sites were reported in literature.  These 
studies were based on data about vegetation 
structure, biodiversity, environmental condi-
tions, plant phenology, and the distance be-
tween burned and control sites (Diaz Delgado 
and Pons 1999, Riaño et al. 2002, Wittenberg 
et al. 2007, Di Mauro et al. 2014).  However, 
the inaccessibility to some remote and wild 
study sites complicates the direct field mea-
surements of structural and phenological simi-
larities in ecosystem-scale studies.  In addi-
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tion, ecosystem functions have a shorter re-
sponse time than vegetation structure; so, vari-
ations in ecosystem functioning are seldom re-
flected in vegetation maps because they are 
oriented to detect structural attributes of vege-
tation (Paruelo et al. 2001).  Therefore, some 
studies used vegetation maps with a good spa-
tial resolution as complementary information 
to MODIS time series imagery to ensure struc-
tural similarity between burned and control 
sites (Van Leeuwen 2008, Casady et al. 2010, 
Di Mauro et al. 2014).  In these studies, the 
authors dealt with the problem of functional 
similarity by comparing the value of the arith-
metic mean of all VI time series of burned 
sites with the arithmetic mean of all VI time 
series of unburned control sites.  However, the 
main limitation of this approach is that, by av-
eraging values of the burned area, the intrinsic 
spatial variability is lost (Gitas et al. 2012).  In 
other studies, such as Lhermitte et al. (2010), 
authors proposed selecting control sites based 
on the pre-fire Euclidian distance between the 
VI time series of burned and unburned sites.  
However, statistical distance between different 
time series does not provide information about 
the nature of the difference or similarity be-
tween series (Cuadras 1989, Lhermitte et al. 
2011).  Hence, in sites with high spatial het-
erogeneity, selecting the most similar sets of 
unburned sites does not guarantee a similar 
vegetation behavior between control and 
burned sites.

Overall, there are several techniques to 
compare or measure differences between time 
series.  However, there are no objective crite-
ria for selecting unburned control sites based 
on the vegetation functional behavior that min-
imizes the differences between the VI time se-
ries of burned and unburned control sites (Gi-
tas et al. 2012).  Accordingly, the specific aims 
of this study were to: 1) propose criteria for 
selecting control sites that have VI time series 
of the same functional behavior, 2) propose a 
statistical method for detecting control sites 
that meet the set criteria, and 3) test the perfor-

mance of the proposed method using data ob-
tained from burned and unburned sites.

METHODS

Study Area

We performed the study in the Dry Chaco 
region, in Santiago del Estero province, Ar-
gentina (Figure 1), between 22°S and 31°S, 
and between 59°W and 66°W (Kunst et al. 

Figure 1.  Location of study area.  Dark green cir-
cles: forest burned areas, light green circles: shru-
bland burned areas.  Grey area: Dry Chaco region.
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2003).  The annual rainfall ranges from 400 
mm to 800 mm (Arambarri et al. 2011).  The 
vegetation is composed of forest, shrubland, 
and grassland (Kunst et al. 2003, Atala et al. 
2008, Bravo et al. 2014).  The forest canopy is 
6 m to 9 m in height and the cover ranges from 
15 % to 80 %; it is mainly composed of the ev-
ergreen species Aspidosperma quebra-
cho-blanco Schltdl. and the deciduous trees 
Prosopis spp. L. (Kunst et al. 2003).  The 
shrubland consists of short woody vegetation 
and an herbaceous layer resulting from exces-
sive logging and grazing; it is mainly com-
posed by Acacia praecox Griseb., Celtis 
chichape (Wedd.) Miq., and Schinus fascicula-
tus (Griseb) I.M. Johnst. (Kunst et al. 2003).  
Nomenclature follows Zuloaga and Morrone 
(1999).  The woody species are 3 m to 5 m in 
height and the cover ranges from 35 % to 80 % 
(Atala et al. 2008).

Satellite Data

Time series construction.  We used data 
from MODIS Terra imagery (MOD13Q1) to 
construct NDVI and EVI time series.  We 
downloaded images from the Oak Ridge Na-
tional Laboratory Distributed Active Archive 
Center’s MODIS Land Product Subsets 
(https://daac.ornl.gov/MODIS/).  This product 
is atmospherically corrected to surface reflec-
tance and has a spatial resolution of 250 m × 
250 m, with a temporal resolution of 16 days, 
resulting in 23 images per year.  Since NDVI 
MODIS Terra dataset has been available from 
18 February 2000, we decided to use VI time 
series that spanned three years before fire 
events, from 18 February 2000 to the date cor-
responding to an image prior to each fire event, 
from August to December 2003.

Fire detection.  To detect burned areas, we 
used the Normalized Burn Ratio (NBR) index 
(Key and Benson 1999), calculated from 
Landsat 5 TM images (scenes 229-79 and 229-
80 from 12 December 2003, resolution 30 m × 
30 m).  We downloaded georeferenced and or-

thorectified images from the US Geological 
Survey (EarthExplorer; http://earthexplorer.
usgs.gov/).  In order to validate detected 
burned areas, we overlapped the MODIS (MC-
D14L) vector Thermal Anomalies Fire product 
shapefile (Giglio 2010) with NBR images 
(Figure 2).  This product has a spatial resolu-
tion of 1 km ×1 km and a temporal resolution 
of 6 hr, and was downloaded from NASA 
FIRMS (National Aeronautics and Space Ad-
ministration Fire Information for Resource 
Management System; https://earthdata.nasa.
gov/earth-observation-data/near-real-time/
firms).

Vegetation map.  We used Globcover 2000 
vegetation map (Joint Research Centre) to as-
sign vegetation cover to unburned and burned 
sites.  This map is a global vegetation product, 
has a spatial resolution of 1 km × 1 km (Eva et 
al. 2002), and incorporates vegetation field 
data, NDVI data from SPOT VEGETATION 
(Saint 1994).  This NDVI product has a spatial 
resolution of 1 km × 1 km, with a temporal 
resolution of 10 days.  Besides, Globcover 
2000 incorporates ATSR2 (Závody et al. 1994) 
satellite data to characterize seasonal behavior 
of forests, JERS-1 (Rosenqvist 1996) radar 

Figure 2.  NBR Landsat 5 TM image of a burned 
area.  Yellow circles: MODIS (MCD14L) vector 
Thermal Anomalies Fire product.
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data to characterize the hydrodynamics of for-
ests, and GTOPO30 topographic data (USGS 
2005). 

Proposed Criteria and Statistical Methods

As a first step, we proposed to calculate 
the point-by-point ratio between the VI time 
series of one pixel of the burned area of inter-
est (TSb), and the VI time series of one pixel of 
the unburned area (TSub).  This unburned area 
was randomly selected in a buffer area around 
each burned site (Equation 1; Figure 3, step 1):

,                      (1)

where TSb is the VI time series of the burned 
site, and TSub is the VI time series of the un-
burned site

Then, we represented the new time series 
QVITSb/TSub

 according to a classical additive 
statistical model for time series (Morettin and 
Castro Toloi 1987, Brockwell and Davis 
2002), which is presented in Equation 2:

, (2)

where MeQVI is the arithmetic mean; TQVI is the 
tendency component, the function that ex-
presses the rate of change of QVITSb/TSub

 over 
time; SQVI is the seasonality component, the 
function that expresses the seasonal compo-
nent of QVITSb/TSub

; and aQVI is the random ef-
fect component.

Next, we analyzed the properties of the 
QVITSb/TSub

 time series to test if they met the 
following proposed criteria.  As the first crite-
rion, we proposed that, before the fire, the 
mean level of photosynthetic activity of the 
unburned site should not have statistically sig-
nificant differences from the mean level of 
photosynthetic activity of the burned site.  To 
detect these unburned sites, we proposed that 
pre-fire QVITSb/TSub

 time series had MeQVI = 1 
(Figure 3, step 2), because if Me was 1, then 

TSb and TSub had the same mean.  To test that 
MeQVI = 1, we proposed using μ as an estima-
tor (Efron 1979, Efron and Tibshirani 1986) 
with a 95 % confidence interval.  To break the 
temporal autocorrelation of the data, the lower 
and upper limits of MeQVI were estimated by 
bootstrapping with replacement (Efron 1979, 
Efron and Tibshirani 1986), using 1000 itera-
tions and extracting 50 % of the data from each 
iteration.  

As a second criterion, we proposed that the 
slope of the VI time series of burned and un-
burned sites should not have statistically sig-
nificant differences (Figure 3, step 3), because 
differences in this parameter indicate that the 
photosynthetic activity of both sites evolved 
differently in magnitude or direction over 
time.  To test this criterion, we proposed that 
QVITSb/TSub

 should exhibit a null TQVI.  To test if 
TQVI was null, we proposed using the nonpara-
metric Spearman Rank Correlation Test 
(Morettin and Castro Toloi 1987, McLeod et 
al. 1991, Yue et al. 2002).  

As a third criterion, we proposed that, in 
each season of the year, burned and unburned 
sites should have a mean level of photosyn-
thetic activity without statistically significant 
differences (Figure 3, step 4), since these dif-
ferences indicate that burned and unburned 
sites have a different functional behavior for at 
least one season of the year.  To test this crite-
rion, we proposed that QVITSb/TSub should have 
a null SQVI, because the existence of differenc-
es between burned and unburned sites in the 
mean of VI for at least one season of the year 
would generate a seasonal pattern in the 
QVITSb/TSub time series.  To test if SQVI was null, 
we proposed testing that each season of the 
year had an arithmetic mean of QVITSb/TSub

, 
without statistically significant differences, by 
applying the nonparametric Friedman test 
(Morettin and Castro Toloi 1987, Sutradhar et 
al. 1995).  To implement the test, we used each 
season as a treatment (four treatments) and the 
year as a block (three blocks); thus, the Fried-
man test was implemented using 12 data 
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Ratio between pre-fire VI 
time series of both sites 

 

Burned site 
pre-fire VI time series (NDVI or EVI) 

Unburned site 
pre-fire VI time series (NDVI or EVI) 
 

Step 1 

Test 1: MeQVI=1? 
 

Step 2 

Burned and unburned sites 
have VI time series with a 
different arithmetic mean: 

the unburned site is 
rejected. 

No 

Step 3 Test 2: TQVI Null? 
 

Yes 

No 
VI time series of both sites 

do not evolve with the same 
magnitude and direction: 

the unburned site is 
rejected. Yes 

Step 4 Test 3: SQVI Null? 
 

No 

Yes 

VI time series of both sites have the same arithmetic mean. 
 
 
 
 

 differences 
 

The time series of both sites evolve with the same magnitude and direction. 

 

In every season of the year burned and unburned sites have an arithmetic mean of 
VI without statistically significant differences. 

The unburned site that passes the three tests is a control site. 

Control sites detected with NDVI data Control sites detected with EVI data 

White pixels represent 
forest control sites detected 
for the same forest burned 
site, using NDVI and EVI 

time series. 

QVITSb/TSub Time series 

Burned and unburned sites 
have a different arithmetic 
mean of VI time series for 
at least one season of the 
year: the unburned site is 

rejected. 

Figure 3.  Flowchart of the proposed method.
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points.  To obtain each data point, we averaged 
the QVITSb/TSub

 data corresponding to each sea-
son.  We used this nonparametric test to avoid 
the correlation between repetitions, because, in 
this way, we increased the time lag between 
replicates of each treatment to one year instead 
of one data point every 16 days (Franzini and 
Harvey 1983, Morettin and Castro Toloi 1987, 
Sutradhar et al. 1995).  The QVITSb/TSub

 time 
series that met the three proposed criteria 
could be considered as a random noise with μ 
= 1, since the classical additive statistical mod-
el assumes that a time series without tendency 
and seasonality is a random noise (Morettin 
and Castro Toloi 1987, Brockwell and Davis 
2002).  

The unburned sites generating QVITSb/TSub
 

that met the three proposed criteria could be 
considered control sites because they not only 
had the same vegetation cover as the burned 
sites, but also the same functional behavior.  
Figure 4 shows the vegetation structure of ac-
tual burned and unburned sites that met the 
three proposed criteria.  Figure 5A shows that 
the NDVI time series of a burned site and of 
an unburned site that met the three proposed 
criteria had the same behavior with occasional 
differences.  And figure 5B shows that the 
QVITSb/TSub

 that met the three proposed criteria 
was centered around 1 and only a few data 
points were as high as 10 %.

Testing the Performance of the 
Proposed Method

To test the performance of the method, we 
assumed that, if it is correct, the pre-fire func-
tional similarity between burned and unburned 
sites would increase with the increase of met 
criteria of unburned sites.  Therefore, we com-
pared the differences between VI time series 
of burned sites and VI time series of unburned 
sites with the same vegetation cover that met 
three, two, one, and none of the proposed cri-
teria.  In addition, we expected that the quality 
of QVITSb/TSub

 time series would increase with 

the increase of met criteria of unburned sites.  
Therefore, we compared the width of the con-
fidence interval for QVITSb/TSub

 time series that 
met three, two, one, and none of the proposed 
criteria.  Finally, we expected a decrease in the 
variability of VI time series of unburned sites 
with the increase of met criteria, because the 
VI time series of unburned sites that met the 
three proposed criteria should be very similar 
to the VI time series of the burned sites.  In 
turn, VI time series of unburned sites that did 
not meet the three proposed criteria could be 
similar or dissimilar to the VI time series of 
the burned sites.

For this study, we constructed VI time se-
ries from forest and shrubland covers using 
NDVI and EVI data sets (Huete et al. 2002).  
We used forest and shrubland areas because 

Burned site

Unburned site

100 0 100 m

Figure 4.  Structure of actual burned and unburned 
sites that met the three proposed criteria.



Fire Ecology Volume 13, Issue 2, 2017
doi: 10.4996/fireecology.1302001

Landi et al.:  Selecting Control Sites
Page 9

they are the largest land covers in the region 
and exhibit VI time series with different inter- 
and intra-annual behaviors (Clark et al. 2010).  
We also used NDVI and EVI datasets because 
they exhibit differences in the range of varia-
tion and in the sensitivity to vegetation struc-
ture, chlorophyll activity, and soil water status 
(Huete et al. 2002, Clark et al. 2010, Paruelo 
et al. 2014), thus providing different types of 
biological information to select the control 
sites.  We manually selected 20 burned forest 
sites distributed across seven burned areas, 
and 20 burned shrubland sites distributed 
across six burned areas (Figure 1).  Each 
burned site had an area of 250 m × 250 m (1 
MODIS pixel).  We detected each burned area 
by visually analyzing the NBR images and the 
vector Thermal Anomalies Fire product shape-
file (Figure 2).  All areas were burned in 2003 

at different points across an area of 50 000 km2 
of the Chaco region.  For each burned site, we 
randomly selected 40 unburned sites with VI 
time series that met the three proposed criteria 
and had the same vegetation cover before the 
fire, 40 that met two criteria, 40 that met one 
criterion, and 40 that did not meet any criteria.  
We used a total of 12 840 VI time series for 
this work: 40 time series of burned sites plus 
12800 VI time series of unburned sites (2 plant 
cover × 20 burned plots × 40 unburned sites 
per number of met criteria × 4 number of met 
criteria × 2 vegetation indices = 12 800).  Un-
burned sites were selected from a buffer area 
of 10 km around each burned site.  Unburned 
site selection and statistical tests were per-
formed automatically using IDL 71 (ITT Visu-
al Information Solutions 2009).

Comparison of Time Series

We measured the pre-fire differences be-
tween VI time series of each burned site and 
unburned sites that met three, two, one, and 
none of the proposed criteria using two mea-
sures: 1) Mean Proportional Difference (MPD; 
Equation 3), and 2) Mean Square Error (MSE; 
Equation 4)the latter being more sensitive to 
outliers than the former (Lhermitte et al. 2010, 
Lhermitte et al. 2011).  The quality of the 
QVITSb/TSub

 time series generated from the pos-
sible control sites was measured using the 
Width of the Confidence Interval (WCI) of 
MeQVI.

,           (3)

and 

 ,         (4)

where TSbi is the VI value at time i of the 
burned site time series, TSubi is the VI value at 
the i of the unburned site time series, N is the 

Figure 5. A) NDVI time series of a burned site 
(black) and an unburned site (gray) that met the 
three proposed criteria.  B) QVI time series that 
met the three proposed criteria.
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number of observations in the time series, and 
Abs is the absolute value function.

Data Analysis

We used the nonparametric Kruskal-Wallis 
test (Sheskin 2004) to compare MPD and MSE 
differences and WCI of QVITSb/TSub

 time series, 
using the number of met criteria as treatment.  
We verified that VI time series variability of 
unburned sites decreased with the increase of 
met criteria by unburned sites.  For this, we 
performed an F test for homogeneity of vari-
ances to compare the variability of MPD and 
MSE differences and WCI values obtained for 
each set of time series (Sheskin 2004), using 
the number of met criteria as treatment.

 
RESULTS

In forests, average differences between VI 
time series of burned and unburned sites grad-
ually decreased with the increase of met crite-
ria (Figure 6; MPDNDVI P < 0.0001, χ2 = 
1025.4; MPDEVI P < 0.0001, χ2 = 383.4; 
MSENDVI P < 0.0001, χ2 = 273.4; MSEEVI P < 
0.0001, χ2 = 234.6).  In the NDVI data set, VI 
time series that met the three criteria had a 
MPD and a MSE nearly 50 % smaller than the 
series that did not meet any criteria.  For the 
EVI data set, we observed that these reduc-
tions were close to 30 % for MPD and MSE.  
The WCI values measured for the QVITSb/TSub 
series followed a similar reduction pattern 
(WCINDVI P < 0.0001, χ2 = 357.4; WCIEVI P < 
0.0001, χ2 = 217.1).  In the NDVI data set, the 
WCI values of the time series that met the 
three criteria were about 29 % smaller than se-
ries that did not meet any criteria; whereas for 
the EVI data set, this reduction was close to 
17 %.  Unburned sites showed a gradual de-
crease in the variability of the time series with 
the increase of met criteria (Table 1).  The 
variability measured for unburned sites that 
met the three criteria were five to ten times 
smaller than the measured variability of the 

unburned sites that did not meet any criteria 
(Table 1).

Results obtained for shrubland VI time se-
ries were similar to those of the forest VI time 
series.  The differences between the VI time 
series of burned and unburned sites gradually 
decreased with the increase of the met criteria 
(Figure 7; MPDNDVI P < 0.0001, χ2 = 495;  
MPDEVI P < 0.0001, χ2 = 270.6; MSENDVI P < 
0.0001, χ2 = 452.3; MSEEVI P < 0.0001, χ2 = 
273.4).  For the NDVI data set, VI time series 
that met the three criteria had a MPD 45 % 
smaller and a MSE 36 % smaller than series 
that did not meet any criteria.  For the EVI 
data set, these reductions were about 30 % for 
MPD and 36 % for MSE.  The WCI values 
measured for QVITSb/TSub

 series followed a sim-
ilar reduction pattern (WCINDVI P < 0.0001, χ2 
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Figure 6.  Mean value and standard deviation of 
MPD (Mean Proportional Difference) and MSE 
(Mean Square Error) differences, and WCI (Width 
of the Confidence Interval) obtained for forest VI 
time series that met three, two, one, and none of 
the proposed criteria.  Different letters indicate sig-
nificant differences (Kruskal-Wallis test, P < 0.05).
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= 116.88; WCIEVI P < 0.0001, χ2 = 109.22).  In 
the NDVI data set, the WCI values of the time 
series that met the three criteria were about 
25 % smaller than series that did not meet any 
criteria; whereas, for the EVI data set, this re-
duction was close to 29 %.  Unburned sites 
showed a gradual decrease in the variability of 

the time series with the increase of met criteria 
(Table 2).  The variability measured for sites 
that met the three criteria were two to five 
times smaller than the variability measured for 
unburned sites that did not meet any criteria 
(Table 2).  The only exception to this pattern 
was the WCI of the EVI data set.

DISCUSSION

The biological criteria and statistical meth-
od proposed herein to select control sites 
yielded satisfactory results.  We observed a 
gradual decrease in MPD, MSE, and WCI val-
ues with   the increase of met criteria.  This 
pattern indicates that the similarity of VI time 
series between burned and unburned sites in-
creased with the increase of met criteria.  
Hence, the functional similarity also increased, 
because the VI are related to biomass, green 
cover, leaf area index, and fraction of absorbed 
photosynthetically active radiation (Huete et 
al. 2002, Paruelo 2008).  We also observed a 
gradual reduction in the variability of MPD, 
MSE, and WCI values with the increase of met 
criteria, which means that VI time series that 
met the three criteria were very similar to the 
VI time series of the burned sites; whereas, VI 
time series of unburned sites that did not meet 
the three proposed criteria were similar or dis-
similar to the VI time series of the burned 
sites.

The comparison of the average values of 
MPD, MSE, and WCI values obtained for 
NDVI and EVI time series showed similar pat-

Number of 
met criteria

MPD MSE WCI
NDVI EVI NDVI EVI NDVI EVI

0 3.5 × 10-3 a 3.7 × 10-3 a 1867 a 536.2 a 1 × 10-3 a 13 × 10-3 a
1 0.01 b 2.6 × 10-3 b 3316 b 313.9 b 1.5 × 10-3 b 7 × 10-4 b
2 4 × 10-3 c 2.2 × 10-3 c 2286.4 c 277.1 c 5 × 10-4 c 8 × 10-4 c
3 4 × 10-4 8 × 10-3 d 340.9 d 108.5 d 4 × 10-4 d 5 × 10-4 d

Table 1.  Variance measured for MPD (Mean Proportional Differences) and MSE (Mean Square Error) 
differences, and WCI (Width of the Confidence Interval) obtained for forest time series that met three, 
two, one, and none of the proposed criteria.  Different letters indicate significant differences (F test, P < 
0.05).

Figure 7.  Mean value and standard deviation of 
MPD (Mean Proportional Difference) and MSE 
(Mean Square Error) differences, and WCI (Width 
of the Confidence Interval) obtained for shrubland 
VI time series that met three, two, one, and none of 
the proposed criteria.  Different letters indicate sig-
nificant differences (Kruskal-Wallis test, P < 0.05).
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terns of variation (Figures 6 and 7).  However, 
for both forest and shrubland covers, the aver-
age MPD and WCI values for the NDVI data 
were about half of the values for the EVI data.  
These differences may be attributed to the in-
formation contained in each index.  The NDVI 
index provides information not only about 
plant photosynthetic activity, but also about 
the characteristics and water status of the sub-
strate (Huete et al. 2002, Paruelo 2008).  
Therefore, by using the NDVI time series, we 
can select sites with greater similarity in pho-
tosynthetic activity, type of substrate, and soil 
water dynamics than by using the EVI time se-
ries.  On the other hand, the EVI index is more 
sensitive to structural canopy variations, in-
cluding leaf area index, canopy type, plant 
physiognomy, and canopy architecture (Gao et 
al. 2000, Huete et al. 2002), than NDVI.  
Therefore, for ecological studies, we recom-
mend selecting as control sites those unburned 
sites that meet the three criteria with both VI 
time series.  As a consequence, the functional 
similarity between sites will be maximized

Comparing the results obtained between 
forest and shrubland, we observed that vari-
ability was the main difference.  The probabil-
ity to select an unburned site that meets the 
three proposed criteria and has a great differ-
ence from the time series of a burned site was 
smaller for forests than for shrublands.  This is 
because, in forests, the reduction in the vari-
ance was twice higher than in shrublands (Ta-
bles 1 and 2).  Consequently, the results from 
the method obtained for shrubland covers need 

to be examined more carefully.  These differ-
ences between cover types may be attributed 
to the different levels of degradation and high 
spatial heterogeneity typical of shrublands 
(Atala et al. 2008), which are characterized by 
a high percentage of a herbaceous plant cover 
and bare soil (Kunst et al. 2003, Arambarri et 
al. 2011).  Hence, due to the phenology of an-
nual and deciduous plants, shrubland VI time 
series have sharper seasonal variations than 
forest VI time series, as well as a sharper and 
more rapid response to climatic conditions 
(Clark et al. 2010, Arambarri et al. 2011).  
These kinds of variations in VI time series 
might generate QVITSb/TSub

 time series with 
high noise levels and abrupt variations.  The 
presence of high noise levels in time series can 
reduce the probability to detect significant re-
sults in traditional tests, such as the Spearman 
test used to detect trends (Yue et al. 2002).  
Therefore, the method might be affected by 
the inter- and intra-annual differences in be-
havior of forest and shrubland covers.

The proposed method is only based on 
functional similarity; however, structural simi-
larity should be taken into account if we want 
to obtain unburned control sites highly similar 
to burned sites.  Therefore, the availability of 
vegetation maps with good accuracy and few 
misclassified pixels is a key issue in imple-
menting the proposed method successfully.  
Nevertheless, it is necessary to distinguish the 
effect of omission and commission errors.  
Omission errors have no effect on the results 
obtained by the tests used in the proposed 

Number of 
met criteria

MPD MSE WCI
NDVI EVI NDVI EVI NDVI EVI

0 2.2 × 10-3 a 3.5 × 10-3 a 959.7 a 272.7 a 7 × 10-4 a 4 × 10-4 a
1 2.9 × 10-3 a 2 × 10-3 b 1255 b 274.8 a 8 × 10-4 a 3 × 10-4 a
2 1.1 × 10-3 a 1.5 × 10-3 c 479 c 166.6 b 5 × 10-4 b 3 × 10-4 a
3 4 × 10-4 b 1.4 × 10-3 c 218.9 d 163.9 c 6 × 10-4 b 4 × 10-4 a

Table 2.  Variance measured for MPD (Mean Proportional Differences) and MSE (Mean Square Error) 
differences, and WCI (Width of the Confidence Interval) obtained for the shrubland time series that met 
three, two, one, and none of the proposed criteria.  Different letters indicate significant differences (F test, 
P < 0.05).
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method since they are pixels of a given vegeta-
tion cover, but were classified as a different 
vegetation cover (Lillesand et al. 2008).  In 
other words, if the method looks for forest 
data, pixels of this vegetation cover incorrectly 
labeled will be ignored.  Nevertheless, the 
presence of omission errors in the vegetation 
map reduces the number of potential candidate 
sites to be tested, and this could be a problem 
if the vegetation cover under study is scarce.  
The presence of commission errors in the veg-
etation map could generate problems in the re-
sults obtained by the tests used in the proposed 
method.  The commission errors are pixels that 
were mistakenly classified as the determined 
vegetation cover (Lillesand et al. 2008).  

This situation represents a problem only if 
the QVITSb/TSub

 series calculated from VI series 
obtained from different vegetation covers suc-
cessfully meets the three proposed criteria.  
Nevertheless, since the dominant vegetation 
covers of our system have very different struc-
tural (Atala et al. 2008, Arambarri et al. 2011) 
and functional (Clark et al. 2010) characteris-
tics, we expect that only a small quantity of 
QVITSb/TSub, constructed with VI time series of 
different vegetation covers, meet the three pro-
posed criteria.  However, this could generate 
problems in systems in which the different 
vegetation covers have similar structural and 
functional characteristics.  Therefore, we rec-
ommend checking the results with free, very 
high spatial resolution images, like GeoEye or 
QuickBird (Google Earth, https://www.google.
com/earth//). 

The mode of implementing the proposed 
statistical tests may have some drawbacks.  
The Friedman test was implemented using 12 
averaged data points (four seasons and three 
years) to reduce autocorrelation problems 
(Morettin and Castro Toloi 1985, Sutradhar et 
al. 1995).  However, this procedure implies 
losing some of the information contained in 
the time series.  The limitations mentioned 
would generate problems in the method imple-
mentation since Friedman test often fails to 

detect statistically significant differences in 
data sets with high variance (Yue et al. 2002), 
as is expected for shrubland QVI time series.  
Thus, the method would select unburned sites 
with VI time series that did not meet the pro-
posed biological criteria and with extreme dif-
ferences from the VI time series of the burned 
site.  To avoid selecting unburned sites with VI 
time series showing extreme differences from 
the VI time series of the burned site, Lhermitte 
et al. (2010) proposed to remove these kinds 
of time series using Limit Values obtained 
through MSE (i.e., an empirical threshold esti-
mated from the distribution of the data pool, 
which is used as a rule of thumb to accept or 
reject time series).  Better results may be ob-
tained by calculating the Limit Value using the 
WCI data, since this measure presents a pro-
portional reduction smaller than MPD and 
MSE differences (Figures 6 and 7).  We pro-
pose to use the median of the WCI data as 
Limit Value (between 0.05 and 0.08 for this 
work), which ensures the selection of the best 
quality data and the rejection of only half of 
the possible unburned control sites.  However, 
we emphasize that the need to use arbitrary 
Limit Values to obtain satisfactory results im-
plies that some of the biological information 
still has not been correctly modeled.  As a con-
sequence, some QVITSb/TSub time series that 
meet the three proposed criteria were not pure 
random noise aQVI, as we expected for time se-
ries that lack seasonality and trend compo-
nents (Morettin and Castro Toloi 1987, Brock-
well and Davis 2002).  Further research will 
be needed to determine if this is due to the 
need for additional biological criteria or the 
need for improvements in the statistical tests.

CONCLUSIONS

This method represents an advance from 
the conceptual and methodological stand-
points; it can be used to select control sites for 
the study of fires as well as other disturbances 
such as floods, insect infestation, and droughts 
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