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Abstract
Experiments with rare isotopes are shedding light on the role isospin
plays in the equation of state (EoS) of nuclear matter, and isoscaling—a
straightforward comparison of reactions with different isospin—could deliver
valuable information about it. In this work, we test this assertion pragmatically
by comparing molecular dynamics simulations of isoscaling reactions using
different EoS and looking for changes in the isoscaling parameters; to explore
the possibility of isoscaling carrying information from the hot-and-dense stage
of the reaction, we perform our study in confined and expanding systems. Our
results indicate that indeed isoscaling can help us learn about the nuclear EoS,
but only in some ranges of excitation energies.

1. Motivation

Experimental advances in the last decade have allowed the manufacturing of rare isotopes—
unstable nuclei with excess neutrons—in ways suitable for reactions; this has moved the
frontier of nuclear science in the dimension of isospin. The first results coming from studies
of rare isotopes shattered the immutability of the shell structure [1] and magic numbers and
drew a road map to use neutron-rich nuclei to study the elusive drip lines which lie far from
stable isotopes [2]. These and other results have propelled the isotopic degree of freedom
to the spotlight, and new facilities and experiments promise to help us obtain an improved
description of nuclear masses [3], fission barriers, collective vibrations [4], neutron skins of
neutron-rich nuclei [5] and, in general, understand the equation of state (EoS) for neutron-rich
matter.

To reap all of these benefits, however, the effect that varying isospin has on the EoS
must be known and, up to date, this is not the case. Information to constrain the nuclear
EoS at non-saturation densities and non-zero temperatures has been obtained from heavy-ion
reactions. These collisions produce, albeit for a brief moment, nuclear systems at high density
and temperature and thus serve as probes of characteristics of the sought EoS. This is mainly
achieved through comparisons of experimental observables to theoretical calculations; this
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program, however, faces a series of challenges both through the detection of clear experimental
signatures and the crafting of reliable theoretical simulations.

The main challenge comes from trying to use an EoS to describe a heavy-ion reaction.
In a perfect world, in which the nucleon–nucleon interacting potentials were known, excited
nuclei in reactions could be described in terms of these interactions. Out of these microscopic
descriptions of nuclear processes, one could then use appropriate averaging procedures to
obtain macroscopic information (e.g. ρ, ε, K, T, p, mean fields, enthalpy, etc) which could be
used to craft an EoS. A major condition for this plan to work is the attainment of thermal and
chemical equilibrium as the macro variables (and the EoS) lose meaning in non-equilibrium
processes; it is clear that the micro description (in a perfect world) would be appropriate to
describe all of the in- and out-of-equilibrium stages of a reaction, while the EoS is not. Thus, a
reaction cannot be fully described in terms of the EoS or macro variables, and information about
the EoS can only be obtained from those segments of the reaction in which the macro variables
stabilize; this can only be accomplished by means of a careful comparison of computational
simulations of reactions to experimental data.

To understand the role isospin plays in the EoS, one must first find an observable that can
provide valuable experimental information that could be analyzed within a sensible theoretical
framework; initial studies have attempted to do that through isoscaling. When comparing the
fragmentation yield of stable nuclei reactions with those of neutron-rich nuclei collisions, it
was observed that they are related by a power law of the form Y2(N,Z) ∝ Y1(N,Z) e−αN+βZ ,
where N and Z are the neutron and proton content of the produced fragments, respectively,
and α and β are fitting parameters [6, 7].

The theoretical framework first used to interpret the fitting parameters was that of
the hot and dense fragmenting source disassembling into fragments while equilibrated in
micro or grand canonical [8], or canonical [9] ensembles. Due to the lack of a better
approach, the isospin dependence of the binding energy of cold nuclei at normal saturation
density was assumed to be valid at other densities and higher temperatures to find an
interpretation of the isoscaling parameters. In this approximation, the isoscaling parameters
were found to be connected to the symmetry energy term of the Weissacker mass formula,
Esym = Csym(A−2Z)2/A through, α = 4Csym[(Z1/A1)

2−(Z2/A2)
2]/T , where the subscripts

refer to the proton and nucleon numbers of the fragmenting sources created in the two reactions
[7, 10].

Unfortunately, the lack of density or temperature dependence of the mass formula, as
well as other problems, blurs the final interpretation of α and β. A major concern is the fact
that T and ρ vary during the reaction, and the concept of a fragmentation source is only an
approximation useful for invoking statistical models; indeed, the validity of Csym (and thus the
interpretation of α) has been strongly questioned [11]. Along the same lines, it is known that
the isoscaling parameters are known to vary widely during the reaction [12]; this casts further
doubts about the proposed interpretation of α.

Thus, we arrive at the motivation of the present study: What can we learn about the isospin
dependence of the EoS from isoscaling? Does isoscaling reflect properties of a fragmentation
source, or is it set during the expansion of the disassembling source? Can isoscaling tell us
something about, say, the compressibility of nuclear matter? These and other questions will
be answered in this study.

1.1. Plan of action

Since the process of extracting the isoscaling parameters from experiments is very entangled
requiring averages and fits over hundreds of different collisions, we feel it would be futile to
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try to connect the parameters to a possible ρ- and T-dependent symmetry term, Csym(ρ, T ).
Unfortunately, other promising approaches, such as those extending the EoS to the non-
symmetric case through, e.g., E(ρ, δ) = E(ρ, δ = 0) + S(ρ)δ2, where the isospin is inputted
through the neutron, proton and nucleon densities, δ = (ρn − ρp)/ρ [13], have not yet been
linked to isoscaling. In consequence, we opt to follow a much more pragmatic plan of action
to understand the connection of isoscaling to the EoS.

In brief, we perform simulations of isoscaling reactions using different EoS and look for
any differences in the behavior of the isoscaling parameters; the same results from different
EoS would practically nullify isoscaling as a probe, different behavior under different EoS
would hold promise. Furthermore, to explore the possibility (implied by the proponents of
the relationship between α and Csym) that isoscaling carries information from the hot-and-
dense stage of the reaction to asymptotia, we carry out the proposed study both for systems
disassembling under confined conditions and during expansion; again, different results would
indicate that isoscaling is affected by the expansion, else it would hold promise as a probe of
the fragmentation source.

In section 2, we present arguments to justify the computational model used in this study,
describe how the symmetry energy terms were obtained for each of the parameterizations of the
potential and obtain their caloric curves. In section 3, we review the concept of symmentropy
and study the isoscaling of confined and expanding systems. The paper concludes with a
summary of the main conclusions.

2. Model

In recent articles we have studied the behavior and properties of isoscaling using both classical
and geometrical models. In [14], we found isoscaling in simulations of classical systems and in
[15] we have shown, both analytically and numerically, that isoscaling can also be observed in
the framework of the nuclear percolation model; an effect totally due to the probabilistic aspects
of the problem. Along the same line of work, in [16], we studied the effect particle correlations
have on the isoscaling parameters, and in [17], we finally concluded that a minimum isoscaling
can be expected for any disassembling system based solely on probabilistic aspects.

In this paper, we go back to using classical molecular dynamics to study isoscaling
produced in systems with two different EoS and disassembling in confined and expanding
environments. In particular, we will use two parameterizations of the interaction potential
[18] that lead to EoS with compressibilities of 250 and 530 MeV, and will study equilibrated
systems clustering in a spherical container as well as in a free expansion.

2.1. Molecular dynamics model

Here the molecular dynamics model used for this study is introduced along with the two
potentials that lead to different compressibility values. To study the origin of isoscaling,
a model capable of reproducing both the out-of-equilibrium and the equilibrium parts of
a collision is highly desirable; in the present work, we use a molecular dynamics (MD)
model that can describe non-equilibrium dynamics, hydrodynamic flow and changes of
phase without adjustable parameters. The combination of this MD code with a fragment-
recognition algorithm has been applied in recent years to study, among other phenomena, neck
fragmentation [19], phase transitions [20], and other features of nuclear reactions, including
isoscaling [14, 21].

The MD code uses a two-body potential composed of the Coulomb interaction plus a
nuclear part composed of two Yukawa-like potentials (known as the Illinois potential [18]) that
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correctly reproduces nucleon–nucleon cross sections, as well as the correct binding energies
and densities of real nuclei. The ‘nuclear’ part of the interaction potential is

Vnp(r) = Vr [exp(−μrr)/r − exp(−μrrc)/rc] − Va[exp(−μar)/r − exp(−μara)/ra]

Vnn(r) = Vpp(r) = V0[exp(−μ0r)/r − exp(−μ0rc)/rc],

where the cutoff radius is rc = 5.4 fm, Vnp is the potential between a neutron and a proton,
while Vnn is that between identical nucleons. The values of the parameters of the Yukawa
potentials can be selected [18] as to correspond to an EoS of infinite nuclear matter with an
equilibrium density of ρ0 = 0.16 fm−3, a binding energy E(ρ0) = −16 MeV/nucleon and a
compressibility of ∼250 MeV for the so-called medium model, or of ∼535 MeV for the stiff
model.

As a caveat, and to establish the scope of the study, it must be emphasized that the only
inputs into the MD model are the interaction potentials which are used for all nuclei at all
densities and temperatures; this comes with advantages and disadvantages. At a difference
from other approaches (QMD, BUU, etc) which have possibilities of controlling individual
properties (such as the symmetry properties), our beautiful lack of adjustable parameters
comes with a much rougher aspect, that of not being able to modify single-system properties
at a time. In terse words, our comparison will be between two systems which, in addition of
having widely different compressibility, will also have slightly different binding energies, etc.
With this in mind, the two compressibility values used safely cover the range established—on
the lower end—by the data on isoscalar compression modes [22], and much exceed the high
values derived from phenomenological mean field models [23].

2.2. Symmetry energy coefficients

For completeness, we start by verifying that these two types of interactions indeed lead to
different values of the symmetry energy for cold nuclei at saturation density. To achieve
this, we first used dissipative molecular dynamics to construct ‘nuclei’ of several masses in
their ground states, and then fit the results with the mass formula thus obtaining values of the
different coefficients, including the symmetry energy term Csym.

In a nutshell, in dissipative MD individual nuclei are evolved and cooled until they become
self-bound and reach proper values of the nuclear radius and binding energy. Taking such a
state as the ground state (still with some residual motion which mimics Fermi motion), the
operation is repeated for many nuclei of different sizes. We then proceeded to fit the resulting
nuclei with the liquid-drop mass formula for the nuclear binding energy:

E/A = Cv + CsA
−1/3 + 4Cc(Z(Z − 1))A−4/3 + Csym(N − Z)2A−2,

thus obtaining the values of the coefficients presented in table 1 along with published
experimental data [24] for comparison. In table 2, we list the nuclei used to fit the binding
energy, and in figure 1, we show the binding energies and droplet model values obtained for
both medium and stiff models.

These reassuring results indicate that indeed the model used is capable of mimicking
nuclei with different compressibilities, i.e. with different symmetry energy coefficients.
Consequently, if isoscaling is to vary under different EoS, the model most likely will show
such differences if used with the two parametrizations of the potential. We now proceed to use
the model to detect differences in isoscaling due to different values of the symmetry energy.
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Figure 1. Energies obtained with the mass formula fit (triangles) for the stiff and medium models
(top and bottom panels, respectively) together with the corresponding ground states calculated
using frictional molecular dynamics (circles).

Table 1. Comparison of coefficients obtained for different models.

Coefficient Stiff Medium Experimental

Cv 16.1 17.37 15.75
Cs −11.73 −14.38 −17.8
Cc −0.197 −0.226 −0.177
Csym −34.07 −25.08 −23.7

2.3. Simulating the disassembly

In previous works, we have analyzed, among others, the collisions of 40Ca+40Ca, 48Ca+48Ca
and 56Ca+56Ca at different energies; in this work, we start by studying the evolution of
constrained ‘nuclei’ of (N,Z) = (40, 40) and (56, 40), which correspond to the complete
merging of the colliding nuclei of the previous works.
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Table 2. Nuclei used to fit binding energy formula coefficients.

A N Z EMed EStiff

9 5 4 9.527 9.617
12 6 6 10.163 10.023
14 7 7 10.148 10.299
16 8 8 10.387 10.376
20 10 10 10.450 10.586
24 12 12 10.521 10.620
27 14 13 10.614 10.801
35 18 17 10.660 10.803
45 24 21 10.580 10.862
52 28 24 10.523 10.819
59 32 27 10.405 10.747
64 35 29 10.360 10.697
70 39 31 10.265 10.618
79 45 34 10.100 10.516
84 48 36 10.026 10.449
89 50 39 10.002 10.395
96 54 42 9.907 10.296

108 61 47 9.744 10.143
115 66 49 9.647 10.054
119 69 50 9.553 9.989

As done above we have used the dissipative molecular dynamics method to build nuclei in
their ground states. Once the ground states are available, we place the resulting cold systems
inside a spherical container. The radii of the container is fixed in order to obtain selected values
of the number density ranging from 0.001 to 0.007 fm−3. To produce the disassembly, energy
is added by scaling the momenta of the particles. The trajectories of motion of individual
nucleons are then calculated using the standard Verlet algorithm with an energy conservation
of O(0.01%). We first perform a long run in order to let the system relax to equilibrium.
Afterward, a much longer run is performed and snapshots of the evolution well separated in
time are recorded.

From the microscopic information of the evolution, given by the values of position and
momenta of the nucleons, we calculate the fragment structure of the system by means of the
MSTE cluster-detection algorithm introduced decades ago [25], but recently adapted for the
nuclear case [26]. According to this prescription, a particle i belongs to a cluster C if there is a
particle j in C to which i is bound in the sense of p2

ij

/
4μ < vij , where pij is the magnitude of

the relative momentum, μ the reduced mass and vij the interparticle potential. In this cluster
definition, the effect of the relative momentum between the particles that form the cluster
is taken into account in an approximate way. It should be kept in mind that these clusters
correspond to a given snapshot of the evolution. They are not stable in the sense that their
lifetime is a function of the particle–particle collision frequency in the system.

The systems (N,Z) = (40, 40) and (56, 40) were studied at different energies in the
range from −5 to 8 MeV A−1 and for four values of the number density with 2000 snapshots
recorded at each energy. It must be remarked that the MD model is fully classical and all
quantal effects, such as the exclusion principle, Fermi motion and isotopic content-modifying
phenomena, are excluded. Therefore, any observed variations to isoscaling will be entirely due
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Figure 2. Caloric curves for the (40, 40) system with the medium model for several number
densities. Squares are for 0.001 fm−3, circles for 0.003 fm−3, up triangles for 0.005 fm−3 and
down triangles for 0.007 fm−3.

to the change of EoS. (The effect of the Fermi motion, although formally absent, is somewhat
included by the internal motion of the ‘nucleons’ in their ‘ground state’ as explained before.)

2.3.1. Caloric curves. Before proceeding to the study of isoscaling, we first characterize
the disassembling source by its caloric curve, i.e. the functional relationship between the
temperature and energy of the system. Calculating the temperatures through the usual
T = (2/3N)

∑
p2

i

/
2m, with pi representing the momentum of the particle i, and the sum

running through the N particles in the system, the caloric curves for the medium model are
displayed in figure 2 as a function of the energy of the system and for several densities.

It is interesting to note that the systems display a behavior already found in Lennard-
Jones systems [27, 28], i.e. as the density is lowered, the caloric curves start to develop a
‘loop’ which signals the presence of a negative specific heat. This behavior has been traced
to the appearance of ‘surfaces’ in the system and has been associated with a first-order phase
transition.

3. Isoscaling

3.1. Symmentropic limit

It has been shown that isoscaling is an effect generic to disassemblying systems which can
be characterized by the concept of symmentropy [16, 17]; as this is used in the following
analysis, we first introduce it here. In summary, and for the nuclear case, the comparison of two
percolating lattices (i = 1, 2) with nodes occupied by neutrons and protons with occupation
probabilities pZi

= Zi/Ai and pNi
= Ni/Ai , but similar bond-breaking probabilities,

produces the ratio of yields R21(N,Z) = Y2(N,Z)/Y1(N,Z) = [
pZ2/pZ1

]Z[
pN2/pN1

]N
,

which is directly related to the isoscaling power law R21(N,Z) ∝ e(αN+βZ) with α =
ln(pN2/pN1) and β = ln(pZ2/pZ1); we take these as the symmentropic limit of the isoscaling
parameters to be used for comparison.
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Figure 3. Values of the isoscaling coefficient α for the medium model. Squares for number density
0.001 fm−3, circles for 0.003 fm−3 and triangles for 0.007 fm−3.

As an example, for isoscaling between 40Ca+40Ca and 48Ca+48Ca, we have A1 = 80,
N1 = 40, A2 = 96, N2 = 56, and thus pN1 = 40/80, pN2 = 56/96 and α = ln(1.16) = 0.154;
αs near this limit will carry only probabilistic information and will not allow us to use isoscaling
to probe the EoS.

3.2. Isoscaling for confined systems

Data from the evolutions of confined systems as produced in the reactions 40Ca+40Ca and
48Ca+48Ca were used to construct the yield matrices Yi(N,Z) for the two reactions (i = 1, 2)
and the corresponding matrix R21(N,Z) = Y2(N,Z)/Y1(N,Z). Least-squares fits to the
isoscaling power law yielded values of the parameter α for each of the snapshots of the
evolution at the conditions of density and excitation energy stated above. Due to the similitude
of the behavior of the magnitudes of α and β observed in several previous studies [14, 15],
the latter was not calculated.

Figure 3 shows the behavior of α as a function of excitation energy for different densities
of the medium model; similar results were obtained for the stiff model. It is worth mentioning
that α is a decreasing function of the energy of the system, but more important, it converges
to a constant value which asymptotically appears to approach the symmentropic limit; this
suggests that at high energies, the breakup resembles more and more a simple probabilistic
disassembly.

Repeating this type of simulations and analyses for the two interaction potentials can allow
us to explore the use of isoscaling to differentiate between a medium-compressibility and stiff-
compressibility EoS. For this purpose, we have fixed the number density of our confined
systems to N/V = 0.007 fm−3 and performed the same calculations for both potentials; the
resulting values of α are displayed in figure 4.

Although the medium model has values of α which exceed those of the stiff model by as
much as ∼15%, this difference appears to be restricted to the low (self-bound) energy regime.
At high energies, both compressibilities appear to have values of α that are indistinguishable
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Figure 4. α as a function of energy obtained from the confined system for the two models at a
fixed value of the density ρ = 0.007 fm−3. Squares for the medium model and circles for the stiff;
the dashed line shows the symmentropic limit.

from one another and both converging to the symmentropic limit at high energies (see the
dashed line).

3.3. Isoscaling for free expanding systems

To assess the effect of the expansion on isoscaling, we now reproduce the previous calculations
for systems that underwent an expansion. For this purpose, we take the configurations recorded
for the confined equilibrated systems, remove the confining walls and follow the subsequent
evolution by solving the equations of motion. Once the produced fragments and particles are
separated and de-excited enough, the steps leading to the α parameter are repeated on these
asymptotic configurations.

Figure 5 shows the values of the αs obtained from these runs. Note that each point in this
plot corresponds to a point in figure 4, and thus allows us to detect a small decrease of the
overall values of α from confinement to expansion. The asymptotic values of the isoscaling
parameters indeed are a bit smaller but comparable to those generated at the fragmentation
stage of the reaction. Therefore, isoscaling appears to have the intrinsic ability to provide
information of the early moments of the reaction when, presumably, the nuclear system is in
equilibrium and the information reflects properties of the nuclear EoS.

That was the good news; the not-so-good news is that, as found before for confined
systems, isoscaling can help us differentiate between stiff and medium compressibility EoS
only at low energies. Again, systems expanded at high energies tend to isoscaling values
resembling those predicted by symmentropy and have no EoS information to give us.

As a side comment, we would have liked to contrast our results with the findings of
Lehaut et al [29] who, using the lattice gas model, state that isoscaling-based symmetry-energy
studies tend to reflect mostly the properties of large percolating clusters. Unfortunately, for the
range of excitation energies and densities explored with our model, the produced final-mass
distributions are much more homogeneous than those obtained with the LGM, and we cannot
refute or confirm such claims.
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Figure 5. Asymptotic values of α obtained from systems expanding from initial densities of
ρ = 0.007 fm−3 as a function of their excitation energy. Squares for the medium model and circles
for the stiff; the dashed line shows the symmentropic limit.

4. Conclusions

To quantify the role of isoscaling to provide us with information from the nuclear EoS, we have
studied isoscaling using molecular dynamic simulations. To assess the relay of information
from the hot-and-dense stage of the reaction to asymptotia, the study was performed with
confined systems and compared to similar systems after undergoing an expansion. To measure
the sensibility of the isoscaling parameters to the EoS, the study was performed with two
systems corresponding to different compressibilities. To further connect these calculations
with the Weissacker mass formula, the symmetry energy coefficients of these medium and
stiff media were calculated directly from dissipative simulations.

The disassembling systems studied were equivalent to those formed by collisions of
40Ca+40Ca and 48Ca+48Ca, and with total binding energies ranging from −4 to 8 MeV A−1.
The resulting fragment data were used to construct the ratios R21(N,Z) and to obtain the
fitting parameters α and β of the isoscaling power law; the analysis, though, focused on α.

In summary, studies of both confined and expanded systems with the different interaction
potentials demonstrated the following.

(i) Confined systems produce slightly larger, but comparable, values of α than expanded
systems at low energies; the difference disappears at higher energies.

(ii) In both confined and expanded cases, the medium-compressibility system produces
slightly larger α than the stiff one; again, this difference is restricted to the low excitation
energy regime.

(iii) In all cases, the values of α decrease with increasing excitation energy converging
asymptotically to the symmentropic limit in agreement to previous studies [30].

These results strongly suggest the following.

(iv) Isoscaling indeed has the ability to carry information from the early moments of the
collision, i.e. an asymptotic value of α can be taken as a representative of the conditions
in the hot-and-dense stage of the reaction.
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(v) Likewise, the approach to the symmentopic limit seems to indicate that at high energies,
the breakup approaches a simple probabilistic disassembly; α values at these energies do
not carry any nuclear information.

(vi) Finally, the use of isoscaling to distinguish between stiff- and medium-compressibility
EoS must be limited to low energies.

An important suggestion for experimentalists is that, in view of these findings, the studies
of the symmetry energy through isoscaling must be focused at colliding energies leading to
relatively cool systems. Another recommendation for future work is the need to decouple
theoretically the symmentropic and nuclear contributions to the isoscaling parameters, as well
as to extend the present study to even lower compressibility values; we are currently working
on such problems.
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