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Abstract. We present a differential equation for the flow rate of granular materials during the discharge of a

silo. This is based in the energy balance of the variable mass system in contrast with the traditional derivations

based on heuristic postulates such as the free fall arch. We show that this new equation is consistent with the

well known Beverloo rule, providing an independent estimate for the universal Beverloo prefactor. We also find

an analytic expression for the pressure under discharging conditions.

1 Introduction

The discharge of grains though an opening at the base of

a silo has been considered in a number of studied since

the 19th century (see for example [1–9] and references

therein). The most salient feature is the fact that the flow

rate does not depend on the height h of the material in the

container, in clear contrast with the behavior of viscous

fluids. This has been sometimes attributed to the pressure

saturation observed in static silos, however, discharging

silos have a continuously evolving pressure [10].

If the discharge orifice is circular and large enough to

avoid clogging [11], the mass flow rate Q is described by

the so called Beverloo rule [1, 12]

Q = Cρb
√
g(Do − k d)5/2, (1)

where Do is the diameter of the opening, ρb the bulk den-

sity of the granular sample, g the acceleration of gravity

and d the diameter of the grains. Here, k and C are two

fitting dimensionless constants. Interestingly, while k may

vary up to a factor of 2, depending on the grains used,

C ≈ 0.58 for virtually any material tested [12]. However,

some deviations are observable for very low friction mate-

rials [13].

The Beverloo rule is generally explained based on

heuristic models such as the “free fall arch” model and

the concept of “empty annulus” [12]. However, these two

models have been recently challenged [14, 15]. Staron et
al have also shown that the Beverloo rule can be obtained

if the Navier–Stokes equations are solved for a plastic fluid

including a constitutive equation for the effective friction

based on the μ(I)-rheology [16].
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In this work, we use the global energy balance for the

granular material inside a discharging silo and a consti-

tutive relation to derive a simple differential equation for

the mass M(t) in the silo. We show that for a simple dis-

charge the equation is consistent with the Beverloo rule,

providing an independent estimate for the prefactor with-

out fitting data. In the process of validating the differential

equation, we also find a functional form for the pressure in

the silo in the dynamic regime which is rather different to

the well known Janssen equation.

2 Energy balance

Consider a cylindrical silo of radius Rs, discharging

through an opening of radius Ro (see Fig. 1). The energy

balance requires that, at any time,

Wg = K̇in +Wout + Ė +WD, (2)

where Wg is the power injected by the force of gravity act-
ing on the grains, K̇in is the rate of change of the kinetic

energy of the grains inside the silo, Wout is the power loss

due to the grains that leave the silo at a velocity vout, Ė is

the rate of change of the elastic energy of the grains, and

WD is the dissipated power due to the non-conservative in-

teractions between grains and between grains and walls.

During the discharge, the mass M(t) in the silo can be

written as

M(t) = mN(t) = ρbAsz(t) = 2ρbAszcm(t), (3)

where m is the mass of one grain, N(t) is the number of

grains in the silo, ρb is the apparent density in the bulk,

As = πR2
s is the cross section of the silo, z(t) is the head

of material, and zcm(t) = z(t)/2 is the center of mass of

the granular column. We have assumed that the density is
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Figure 1. Sketch of the discharge of a silo.

homogeneous throughout the column. Therefore, the flow

rate q(t) in particles per unit time is

q(t) =
Q(t)
m
= − Ṁ(t)

m
= −2ρbAs

m
vcm(t), (4)

where vcm(t) is the velocity of the center of mass of the

granular column.

2.1 Internal kinetic energy (K̇in)

The kinetic energy of the grains inside the silo is

Kin(t) =
1

2

N(t)∑
i=1

mv2i (t), (5)

where the sum includes all particles in the silo at time t
and vi(t) is the velocity of particle i. In terms of the center

of mass Kin(t) can be expressed as

Kin(t) =
1

2
M(t)v2cm(t) +

1

2

N(t)∑
i=1

mi[ui(t) − ucm(t)]2, (6)

where the term [ui(t) − ucm(t)]2 can be neglected accord-

ing to results obtained from DEM simulations (data not

shown), hence

Kin(t) ≈ 1

2
M(t)v2cm(t). (7)

Then, the rate of change of Kin is

K̇in(t) = M(t)vcm(t)v̇cm(t) +
1

2
v2cm(t)Ṁ(t). (8)

which can be written, using Eqs. (3) and (4), as

K̇in(t) =
m2

4ρ2bA2
s

[
M(t)q(t)q̇(t) − m

2
q3(t)
]
. (9)

2.2 Gravitational energy (Wg)

The gravitational potential energy of the particles inside

the silo using Eq. (3) is

Ug(t) = M(t)gzcm(t) =
gM2(t)
2ρbAs

. (10)

The power injected is therefore

Wg(t) = −U̇g(t) =
mg
ρbAs

M(t)q(t). (11)

2.3 Discharge energy (Wout)

The cumulative kinetic energy that was removed from the

system by time t due to the particles that exit through the

opening is

Kout(t) =
1

2
mv2out[N0 − N(t)], (12)

where vout is the mean velocity of the grains that exit the

system and N0 is the initial number of grains in the silo

[N0 − N(t) corresponds to the number of grains that have

left the silo]. Hence, the power removed from the system

is

Wout = K̇out(t) =
1

2
mv2outq(t). (13)

If we consider that the mass flow rate is mq(t) =
ρoAovout, with ρo the apparent density at the opening and

Ao the cross section area of the opening, the velocity vout

can be put in terms of q(t) and Ao, then

Wout =
m3q3(t)
2ρ2oA2

o
(14)

2.4 Dissipated energy (WD)

It has been shown that for a shear cell of thickness L the

tangential stress τ necessary to develop a flow at velocity

v of a granular sample can be put in terms of the inertial

number I as [17]
τ = μ(I)P, (15)

where P is the confining pressure, μ(I) is the effective fric-
tion coefficient, I = vL

d√
P/ρ

is the inertial number that char-

acterizes the flow if the gains are stiff and L � d, and ρ is
the density of the material the grains are made of.

Here, we assume that the flow in the silo can be rep-

resented by a shear flow, where v is the velocity of the

free surface, L is the silo radius and P is the mean hydro-

static pressure in the column (i.e., 1/3 of the trace of the

stress tensor). In a silo, the shear rate is different at differ-

ent heights. To be more rigorous, one should measure the

shear rate layer-wise. This can be done by measuring the

difference in mean velocity of the grains at the center of

the layer and the grains close to the walls and dividing by

the silo radius. For a flat bottomed silo discharging with a

mass flow regime, close to the free surface the shear rate

is negligible. However, close to the base, the shear rate

is maximum since the velocity at the walls is zero (due

to the stagnant zone) and the velocity at the outlet is the

highest. Taking the velocity at the free surface, as we do

here, is representative of the shear rate at a height equal to

the height of the stagnant zone. At this height, the veloc-

ity in the center of the layer is close to the velocity of the

free surface, whereas the velocity at the walls fall to very

low values as the grains hit the stagnant zone. With this

approximation, the power dissipated by friction is

WD(t) = τ(t)A(t)v(t) = μ(I)P(t)A(t)v(t), (16)

where A(t) is the area of frictional contact between the

grains and the silo. This area includes the lateral walls,
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which is connected to the height of the column at time t,
plus a fixed area that should be proportional to the base of

the silo, i.e., A(t) = 2πRsz(t) + απR2
s = 2πRs

M(t)
ρbAs
+ αAs.

Then, using Eq. (4) and v(t) = 2vcm(t), we obtain

WD(t) = μ(I)P(t)
[
2πRs

M(t)
ρbAs

+ αAs

]
q(t)

m
Asρb
. (17)

3 Differential equation

If the grains are stiff, the variation in the elastic energy are

expected to be small and we can neglect Ė. Notice also

that K̇in [Eq. (9)] falls quadratically with As in comparison

with the remaining terms of Eq. (2) that fall linearly with

As or are independent of As. Therefore, for a wide silo K̇in

vanishes. Plugging in Eqs. (11), (14), and (17) into Eq.

(2) and considering Eqs. (3) and (4), we obtain

gM(t) =
ρbAs

2ρ2oA2
o

Ṁ2(t)

+ μ(I)P(t)
[
2πRs

ρbAs
M(t) + αAs

]
(18)

Solving for Ṁ and using Ao = πD2
o/4, being Do = 2Ro,

the diameter of the opening

Ṁ(t) =
π
√
2

4
ρo
√
gD2

o

[
M(t)
ρbAs

−μ(I)P(t)
g

⎛⎜⎜⎜⎜⎝2πRs

ρ2bA2
s

M(t) +
α

ρb

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦
1/2

. (19)

We note that Eq. (19) is similar to the Beverloo rule

Eq. (1). The exponent 5/2 is not apparent since Do is

squared in Eq. (19). We will come back to this point be-

low. Before, it is important to mention that Eq. (19) in-

cludes in the prefactor ρo instead of ρb. However, if we

approximate roughly ρo ≈ ρb/2, then the proportionality

constant becomes C = π
√
2

8
≈ 0.56. This has to be com-

pared with the value obtained by fitting the Beverloo ex-

periments that led to C = 0.58, which has been shown to

be remarkably insensitive to the material properties [12].

Equation (19) is a first order differential equation for

M(t) that can be closed with an initial condition such as

M(t = 0) = M0. To solve this equation it is necessary to

know μ(I), P(t) = P(M(t)) and α. In the rest of this paper,

instead of directly solving Eq. (19), we estimate μ(I) and
then extract an expression for P(M(t)) based on the con-

dition that the flow rate must be constant throughout the

discharge, as observed experimentally. This allows to fit

the value of α using pressure data from DEM simulations

of the discharge.

To estimate μ(I), consider that if Rs → ∞, then I → 0.

Da Cruz et al. have shown that in the quasistatic limit (i.e.,

I → 0) μ(I = 0) ≈ 0.26 for all material properties if the

grain–grain friction coefficient is above 0.4 [17]. We have

carried out DEM simulations using YADE [18], for a silo

where Rs = 15 mm (i.e., 3 cm in diameter) and Do = 15
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Figure 2. Pressure (isotropic component P = Tr(σ)/3 of the

stress tensor) as a function of the mass M inside the silo during

the discharge. Results obtained via a DEM simulation for a silo

(symbols) and fit using Eq. (20) (line).

mm, and a granular sample with d = 1 mm, ρ = 2000

kg/m3, ρb = 1160 kg/m3 and the friction coefficient of

the grain–grain and grain–wall interaction is 0.55. The

inertial number estimated as I = v
Rs

d√
P/ρ

varies during the

discharge in the range 9.8×10−3 < I < 1.6×10−2, which is
in the quasistatic limit consistent with an effective friction

coefficient 0.26 [17].

As we mentioned, Eq. (19) does not show the classical

5/2 exponent for Do, nor the correction −kd for the “empty

annulus”. However, the expression under the square root

in Eq. (19) must compensate the difference between D2
o

and the traditional Beverloo factor (Do − kd)5/2. During

the discharge it is known that Q is constant. Hence, the

radicand in Eq. (19) must be also a constant γ. Therefore,
the pressure can be written as

P(t) =
[

M(t)
ρbAs

− γ
]

gρ2bA2
s

μ(I)[2πRsM(t) + αρbA2
s]
. (20)

If the radicand γ has to compensate the difference with

the Beverloo rule, then γ = (Do − kd)5/D4
o. For our simu-

lations with Do = 15 mm and d = 1 mm, and considering

a typical value of k = 1.4, we obtain γ ≈ 9.2 × 10−3.
Figure 2 shows a fitting of Eq. (20) to the aforemen-

tioned DEM data of the silo discharge. The pressure is

calculated as the average of Tr(σ)/3 over the entire vol-

ume of the granular column a any given time during the

discharge. Here, σ is the stress tensor. We took, follow-

ing the discussion above, μ(I) = 0.26 and γ = 9.2 × 10−3.
As we can see, the only fitting parameter is α whose best

fit value is α = 3.6 ± 0.2. The fit is only applied to a

section of the process since the assumption of a constant

flow rate is not justified in the final stage of the discharge.

The fit is qualitatively fair. In particular, Eq. (19) has a

saturation of the pressure that is much slower than the tra-

ditional Janssen law for static silos. This is consistent with

the results found here for the simulations and also results

reported in experiments of discharging silos [19].

     
 

DOI: 10.1051/, 03041   (2017) 714003041140EPJ Web of Conferences epjconf/201
Powders & Grains 2017

3



We speculate that the value of α found may be “uni-

versal” in the sense that it does not depend significantly on

Do, Rs, and material properties. However, this remains a

subject of investigation.

4 Conclusions

We have shown that an energy balance, coupled with a

constitutive equation for the rheology of a granular sample

leads to a simple differential equation for the flow rate of

a discharging silo. The equation resembles the Beverloo

rule and yields a proportionality constant C = π
√
2

8
≈ 0.56

which is very close to the experimental fitted value of 0.58.

The assumption of a constant flow rate leads to an ex-

pression for the pressure in the silo that is more suitable

for these dynamic conditions than the Janssen law derived

for static silos. We have to bear in mind, however, that the

pressure in the silo is not homogeneous and a more elabo-

rated analysis should include the local pressure in the de-

scription rather than the global pressure as we have done

in this work.

The derived differential equation allows to explain the

known phenomenology of silo discharge without the need

of heuristic postulates such as the “free fall” arch and the

“empty annulus”. Moreover, this equation also opens the

way to consider more complex situations in silo discharge,

such as forced flow or vibrated discharges, that have not

been explored from a theoretical perspective.
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