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• Phase diagram of the site–bond percolation on triangular lattice is studied.
• Two distinct schemes (denoted as S ∩ B and S ∪ B) for site–bond percolation are used.
• The phase diagram is obtained via Finite-size scaling analysis.
• A theoretical approach based on counting configurations on finite cells is applied.
• The phase diagram is determined by Monte Carlo and the theoretical approach.

a r t i c l e i n f o

Article history:
Received 22 October 2012
Received in revised form 22 August 2013
Available online 8 September 2013

Keywords:
Percolation
Monte Carlo simulation
Phase transitions

a b s t r a c t

A generalization of the pure site and pure bond percolation problems called site–bond
percolation on a triangular lattice is studied. Motivated by considerations of cluster
connectivity, two distinct schemes (denoted as S ∩ B and S ∪ B) for site–bond percolation
are used. In S∩B (S∪B), two points are said to be connected if a sequence of occupied sites
and (or) bonds joins them. By using finite-size scaling theory, data from S ∩ B and S ∪ B
are analyzed in order to determine (i) the phase boundary between the percolating and
non-percolating regions and (ii) the numerical values of the critical exponents of the phase
transition occurring in the system. A theoretical approach, based on exact calculations
of configurations on finite triangular cells, is applied to study the site–bond percolation
on triangular lattices. The percolation processes have been monitored by following the
percolation function, defined as the ratio between thenumber of percolating configurations
and the total number of available configurations for a given cell size and concentration of
occupied elements. A comparison of the results obtained by these two methods has been
performed and discussed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The percolation problem has been a focal point of statistical mechanics research for several decades [1–6]. One reason
for this current interest is that it is becoming clear that generalizations of the pure percolation problem are likely to have
extensive applications in the description of various phenomena in nature. Although it is a purely geometric phenomenon, the
phase transition involved in the process can be described in terms of the usual second order phase transition. Thismapping to
critical phenomenamadepercolation a full part of the theoretical framework of collective phenomena and statistical physics.
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The central idea of the pure percolation theory is based on finding the minimum concentration of elements (sites or
bonds) for which a cluster extends from one side to the opposite one of the system. This particular value of the concentration
rate is named critical concentration or percolation threshold and determines a phase transition in the system. Thus, in the
random percolationmodel, a single site (or a bond connecting two sites) is occupiedwith probability p. For the precise value
of pc , the percolation threshold of sites (bonds), at least one spanning cluster connects the borders of the system (indeed,
there exist a finite probability of finding n (>1) spanning clusters [7–10]). In that case, a continuous phase transition appears
at pc which is characterized by well defined critical exponents.

More general percolation problems can be formulated by assuming that both sites and bonds are randomly and indepen-
dently occupied with occupancy fractions ps and pb, respectively. Wemay then define site-and-bond (S∩B) and site-or-bond
(S ∪ B) percolation: in S ∩ B, a cluster is considered to be a set of occupied bonds and sites in which the bonds are joined by
occupied sites, and the sites are joined by occupied bonds. S ∩ B represents the well-known site–bond percolation, which
hasmany applications in different fields. For instance, it was used to describe the sol-to-gel transition (gelation) of polymers
[11]. In this model, bonds represent chemical bonds, occupied sites represent monomers, and empty sites represent solvent
molecules. Sites are correlated as in a lattice gas model of a binary mixture. In S ∪ B, a bond or site contributes to cluster
connectivity independently of the occupation of its endpoints.

The phase diagram of the site–bond system in the ps − pb parameter space has been widely studied, in particular for a
square lattice. Thus, the model was mentioned at first by Frisch and Hammersley [12]. Agrawal et al. [13] and Nakanishi and
Reynolds [14] showed, by using a series method and position-space renormalization group, respectively, that the critical
exponents of pure site percolation are also valid for site–bond percolation. Later, Yanuka and Englman [15] proposed an
equation for the critical curve separating the sol-to-gel transition in the site–bond percolation model, for square, triangular,
simple cubic and face centered cubic (fcc) lattices. More recently, Tarasevich and van der Marck [16] presented a very
complete and systematic study, where site–bond percolation thresholdswere calculated bymeans of numerical simulations
inmany lattices in two to five dimensions. The critical curve corresponding to the S∩B problem, is a linewhich separates the
percolating, in which a gel is formed, and the non percolating area, the sol phase. On the other hand, the percolating and the
non-percolating region corresponding to the S ∪ B problem are separated by a different critical curve. Standard site (bond)
percolation is recovered as the pb = 1 (ps = 1) case of the S∩B problem, aswell as pb = 0 (ps = 0) case of the S∪B problem.
Note that pcs and pcb represent the percolation thresholds of standard site and bond percolation. The site–bond percolation
phase diagram for different geometries has received considerably less attention [17–21]. In particular, the corresponding
phase diagram for triangular geometry is poorly referenced in the literature.

In this context, the aim of the present paper is (a) to determine, via MC simulations and finite-size scaling theory,
the phase diagram in the ps − pb space for site and bond independently and randomly deposited on a triangular lattice;
(b) to verify the universality class of the phase transition involved in the problem and (c) to give an approximative
theoretical expression for the phase diagram in order to explain the general features of the curves based in essentially simple
assumptions. The proposed system is the simplest model including the essential physics of (S ∩ B) and (S ∪ B) percolation.

The paper is organized as follows. In Section 2, the model is described and the finite size scaling analysis is discussed
in Section 3. Details of the phase diagram obtained by finite size scaling analysis via Monte Carlo Simulations are shown
in Section 3.1. The theoretical approach is introduced in Section 4 which includes the main results concerning the phase
diagram obtained from the analytical calculations. Details of the calculations are given in the Appendix. The conclusions are
drawn in Section 5.

2. The model

Let us consider a periodic triangular lattice of linear size L on which site monomers and bond monomers are indepen-
dently deposited at random. The procedure is as follows: a site (bond) is randomly selected; if it is vacant, the site (bond)
is then adsorbed on this site (bond). Otherwise, the attempt is rejected. In any case, the procedure is iterated until Ns sites
and Nb bonds are adsorbed and the desired concentrations (ps = Ns/L2, pb = Nb/3L2) are reached. In the filling process, no
overlap with previously added objects is allowed.

In order to calculate the percolation thresholds, one can think of a mapping L → L′ from the original site–bond lattice L
to an effective bond lattice L′ where each bond and its endpoints sites of L transforms into an bond one of L′. The rules for
the mapping depend on the studied problem and the interested reader can be consult Ref. [22] for a detailed analysis of the
study. Once the mapping is completed, each percolating (non-percolating) configuration in the effective lattice corresponds
to a percolating (non-percolating) configuration in the original lattice.We use the standardHoshen and Kopelman algorithm
[23] for studying bond percolation on L′. In the simulations performed in the paper the well-known Knuth random number
generator has been used [24].

Every computational model is finite, and no singularities or discontinuities are ever observed in a finite system. The
discontinuities and singularities which are of interest in the study of critical phenomena occur only in ideal infinite systems,
and cannot be observed in any model which can be realized physically (and thus not in a computer model). The behavior
of actual models is only an approximation to ideal behavior. The difficulty of using a finite lattice to simulate an infinite
lattice can be eased somewhat by the use of so-called periodic boundary conditions. One wish is to embed the finite lattice
in a virtual infinite lattice consisting of multiple copies of the finite lattice. All simulations in the paper are performed using
periodic boundary conditions. Periodic boundary conditions can be applied in two ways for triangular lattices, i.e. twisted
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Fig. 1. Fraction of percolating lattices as a function of the concentration pb . Different criteria, U (squares), I (triangles) and A (circles), are used for estab-
lishing the spanning cluster. Open symbols represent curves for ps = 0.55 while filled symbols denote the case ps = 0.60. Horizontal dashed lines show
the RX∗

universal points. Vertical dashed lines denote the percolation threshold in the thermodynamic limit L → ∞. Different lattice sizes were used in
the study (L = 60, 72, 90, 120, 180, 240, 300) but only L = 60, 90, 180 and 300 are shown in the figure for clarity.

(helical) boundary conditions and conventional boundary conditions. Conventional boundary conditions have been used
throughout the paper without losing generality.

3. Finite-size scaling analysis

As the scaling theory predicts [5], the larger the system size to study, the more accurate the values of the threshold
obtained therefrom. Thus, the finite-size scaling theory gives us the basis to achieve the percolation threshold and the
critical exponents of a systemwith a desirable accuracy. For this purpose, the probability R = RX

L (p) that a lattice composed
of L × L (3L × L) sites (bonds) percolates at concentration p can be defined [2]. Here, as in Refs. [25,26], the following
definitions can be given according to the meaning of X: (a) RI

L(p) = the probability of finding a cluster which percolates
both in a rightward and in a downward direction; (b) RU

L (p) = the probability of finding either a rightward or a downward
percolating cluster and (c) RA

L (p) ≡
1
2


RI
L(p) + RU

L (p)

.

In the MC simulations, each MC run consists of the following steps: (a) the construction of the triangular lattice for the
desired fractions ps and pb of site and bond, respectively; (b) the mapping from the original site–bond lattice to the effective
bond lattice; and (c) the cluster analysis by using the Hoshen and Kopelman algorithm [23] on the effective bond lattice. In
the last step, the existence of a percolating island is verified. This spanning cluster could be determined by using the criteria
I,U and A. n runs of such two steps are carried out for obtaining the number mX of them for which a percolating cluster of
the desired criterion X is found. Then, RX

L (ps, pb) = mX/n is defined and the procedure is repeated for different both values
of (ps, pb) and lattice sizes. A set of n = 5 × 104 independent samples are numerically prepared for each pair (ps, pb) and
L (L = 60, 72, 90, 120, 180, 240, 300). From the point of view of calculations, we set ps = constant and vary pb.

In Fig. 1, the probabilities RI
L(pb) (triangles), R

U
L (pb) (squares) and RA

L (pb) (circles) are presented for S ∩ B percolation and
two values of ps (= 0.55 (empty symbols) and 0.60 (full symbols)). As it can be observed from Fig. 1, (a) for a given value of
ps, curves corresponding to different sizes cross each other in a unique universal point, RX∗

, which depends on the criterion X
used and (b) those points are located at verywell defined values in the pb-axes determining the critical percolation threshold
for each ps.

According to the theoretical prediction in Ref. [2], the critical exponent ν is determined from the divergence of the root
mean square deviation of the threshold observed from their average values, ∆X

L ,

∆X
L ∝ L−1/ν . (1)

As an example of the validity of the last equation, Fig. 2(a) (Fig. 3(a)) shows ∆A
L as a function of L (note the log–log scale)

for ps = 0.6 (ps = 0.35) for the case S ∩ B (S ∪ B). According to Eq. (1), the slope of the line corresponds to −1/ν, being
ν = 1.324(8) (ν = 1.342(9)) in this example.
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a b

Fig. 2. (a) ln

∆A

L


as a function of ln(L). According to Eq. (1) the slope corresponds to −1/ν. (b) ln


dRA
dpb


max

as a function of ln(L). The slope corresponds
to 1/ν. Both cases correspond to ps = 0.60.

a b

Fig. 3. (a) ln

∆A

L


as a function of ln(L). According to Eq. (1) the slope corresponds to −1/ν. (b) ln


dRA
dpb


max

as a function of ln(L). The slope corresponds
to 1/ν. Both cases correspond to ps = 0.35.

Another alternative way for evaluating ν is given through the scaling relationship for RX

RX
= RX


pb − pcb


L1/ν


, (2)

being RX (u) the scaling function. Then, the maximum of the derivative of Eq. (2) leads to


dRX
dpb


max

∝ L1/ν . In Fig. 2(b)

(Fig. 3(b)) we have plotted


dRA
dpb


max

as a function of L (note the log–log scale) for different ps = 0.6 (ps = 0.35) for the
case S ∩ B (S ∪ B), whose slope corresponds to 1/ν. In this case, ν = 1.324(9) (ν = 1.348(9)). By using both procedures
for different values of ps and the I,U, A criteria, it can be concluded that the results obtained for ν support the idea that the
problem belongs to the same universality class as the random percolation on a square lattice as it was expected.

Once ν is known, Eqs. (2) allow for an efficient route to estimate pcb from the extrapolation of the positions pcXb (L) of the
maxima of the slopes of RX (L). For each criterion one expects that [2],

pcb
X
(L) = pcb + AXL−1/ν (3)

where AX is a non-universal constant. Fig. 4(a) and (b) shows the extrapolation towards the thermodynamic limit of pcb
X (L)

according to Eq. (3) for different criteria, for the case ps = 0.6 (S ∩ B) and ps = 0.35 (S ∪ B), respectively. These figures
lend support to the assertion given by Eq. (3): (a) all the curves are well correlated by a linear function, (b) they have a
quite similar value for the ordinate in the limit L → ∞ and (c) the fitting determines a different value of the constant A
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a b

Fig. 4. Extrapolation of pcb towards the thermodynamic limit according to the theoretical prediction given by Eq. (3). Triangles, squares and circles denote
the values of pcb(L) obtained by using the criteria I, A and U , respectively. (a) ps = 0.60 and (b) ps = 0.35.

a b c
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Fig. 5. (a) Collapsing plot of the curves for the fraction of percolating samples as a function of u =

pb − pcb


L1/ν for ps = 0.8. Each symbol denotes a

different value of L as indicated. (b) For each ps , all the studied lattice sizes (L = 60, 72, 90, 120, 180, 240 and 300) collapse onto a universal curve. The
solid lines are simply a visual guide. (c) The probability RA as a function of the argument u′

=

pb − pcb


L1/νpθ

s where the metric factor pθ
s is included in

order to collapse all the curves in Fig. 5(b) onto a single one.

depending of the type of criterion used. It is also important to note that pcb
A(L) gives an almost perfect horizontal linewhich is

a great advantage of themethod because it does not require precise values of critical exponent ν in the process of estimating
percolation thresholds. Themaximum of the differences between |pcb

I(∞)−pcb
A(∞)| and |pcb

U(∞)−pcb
A(∞)| give the error

bar for each determination of pcb.
The scaling law hypothesis also predicts the collapsing of the curves RX

L (pb) when they are plotted as a function of a
reduced variable u =


pb − pcb


L1/ν , see Eq. (2). Thus, RX is a universal function with respect to the variable u. In Fig. 5(a)

this fact is shown for concentration ps = 0.8 and different values of L as indicated. However, in Fig. 5(b), RA is plotted as a
function of u for each value of ps as indicated (each value of ps is represented by using a different symbol). Similar behavior
can be obtained for U and I criteria. Two main conclusions can be drawn from the figure. Namely, (a) for a given value of ps,
all the curves used in the experiment (for different values of L) collapse into a universal curve according to the theoretical
prediction. This gives an additional proof for the numerical value of the critical exponent ν. (b) RX is not only a function of pb
and L but also of ps. As it can be seen, the collapsing function is different for each value of ps considered. This fact determines
that the scaling function RX is not a universal function with respect to the variable ps.

In order to determine the dependence of RX with ps, themain features of the data shown in Fig. 5(b) have to be considered.
As can be seen, the curves become steeper upon increasing the value of ps. In fact, the derivative of the universal function
RX with respect to u becomes more pronounced as ps increases. Then, it is possible to establish a power law to describe this
behavior:


∂RX
∂u


max

= Bpλ
s . On the other hand, the derivatives are narrowed upon increasing ps. This behavior can also be

described by a power law according to ∆X
= Cp−θ

s , being ∆X the root mean square deviation of


∂RX
∂u


for each curve.
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Table 1
Numerical values of (pb, ps) for de case percolation S ∩ B. Error
estimates concerning the last digit(s) are indicated between brackets.

pb ps

0.3560(4) 0.998
0.3599(5) 0.975
0.3735(5) 0.950
0.4031(4) 0.9
0.4370(4) 0.85
0.4781(3) 0.8
0.5256(4) 0.75
0.5843(5) 0.7
0.6534(5) 0.65
0.7439(4) 0.6
0.8566(3) 0.55
1.0000 0.500(3)

Table 2
Numerical values of (pb, ps) for de case percolation S ∪ B. Error
estimates concerning the last digit(s) are indicated between brackets.

pb ps

0.0000 0.500(3)
0.1281(5) 0.475
0.1705(5) 0.45
0.2233(4) 0.4
0.2597(3) 0.35
0.2861(4) 0.3
0.3217(6) 0.2
0.3417(5) 0.1
0.3470(4) 0.0

The maxima of the derivatives (the standard deviation of each derivative) for each value of ps as a function of ps can be
plotted in a log–log scale (not shownhere). Thepoints are verywell correlated by a linear functionwith the fitting parameters
λ = 2.03(2) and θ = 2.3(2). The number between parentheses is the error in the determination of the corresponding
informed quantities.

According to the equations above, a metric factor might to be included in the scaling function, Eq. (2), in order to collapse
all the curves in Fig. 5(b) onto a single one. Following Ref. [27], in Fig. 5(c) we plot the probability RX as a function of the
argument u′

=

pb − pcb


L1/νpθ

s . As clearly observed, all the curves in Fig. 5(b) collapse onto a single one. It is remarkable
that more than 3×103 points are included in the collapsing curve. Themetric factor introduced here, pθ

s , gives an additional
proof for the numerical value of the exponent θ obtained from the behavior of ∆X (ps). A completely similar procedure can
be conducted whether pb is kept fixed while ps is varied in the whole range.

3.1. Phase diagram

The finite-size scaling analysis has been used in the whole range of the variables ps and pb in order to determine the
percolation thresholds and the phase diagram in the case of monomers deposited on a triangular lattice. Thus, the resulting
ps −pb phase diagram for site–bond percolation (solid symbols) is shown in Fig. 6 (circles for S∩B and stars for S∪B). These
numerical results are shown in Tables 1 and 2. In Fig. 6 our results are compared with previous ones of Ref. [16], shown as
small triangles. There is an excellent agreement with previous results in the literature.

Themain characteristics of the phase diagram are: (1) the critical curve corresponding to the S∩Bmodel varies between
the point [ps = 1.0, pb = 0.3473(2)] on the left and the point [ps = 0.500(2), pb = 1.0] on the right, where pb = 0.3473(2)
and ps = 0.500(2) are the percolation thresholds for bond and site percolation on a triangular lattice, respectively and (2) the
critical curve corresponding to the S ∪Bmodel varies between the point [pcs = 0.500(2), pb = 0.0] on the left and the point
[ps = 0.0, pb = 0.3473(2)] on the right.

First, we shall compare our Monte Carlo results with the approximate formula proposed in Refs. [15,16]. In fact,
Hammersley [1] proved for a partially directed graph a theorem which yields the inequality

P(pspb, 1) ≤ P(ps, pb) ≤ P(1, pspb), (4)

where P(ps, pb) is the percolation probability (i.e. the probability that a single source site is connected to an infinite set of
other sites). The inequality Eq. (4) gives reasonably sharp bounds for the mixed percolation probability. For a Bethe lattice
(pcb = pcs = pc , where pcs is the threshold for pure site percolation, and pcb is the one for pure bond percolation) we can get

pspb = pc . (5)
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Fig. 6. Phase diagram of site–bond percolation for a triangular lattice obtained by finite-size scaling simulations (solid circles for S ∩ B and solid stars for
S ∪ B) and the same phase diagram obtained from the theoretical approach (empty circles for S ∩ B and empty stars for S ∪ B). Triangles are results from
Ref. [16] and the dashed line denotes Eq. (6).

a b c

Fig. 7. (a) Snapshot corresponding to a 2×2 cell with three occupied sites (Ns = 3) and four occupied bonds (Nb = 4). Solid circles, open circles, solid lines
and dotted lines represent occupied sites, empty sites, occupied bonds and empty bonds, respectively. (b) Site lattice corresponding to the configuration
shown in part (a). (c) Bond lattice corresponding to the configuration shown in part (a).

The shape of the boundary betweenpercolation andnon-percolationwas subsequently studied by Yanuka and Englman [15].
They proposed the following equation for the critical curve in the (pb, ps) plane:

log ps
log pcs

+
log pb
log pcb

= 1. (6)

The equation satisfies the inequality Eq. (4) and gives the correct limit Eq. (5) for a Bethe lattice. The equation defines a line
in the (pb, ps) plane, starting at (pcb, 1) and ending at (1, pcs), as is shown as a dashed line in Fig. 6. Monte Carlo simulation
results lie remarkably close to the line defined by Eq. (6).

4. The theoretical approach: phase diagram

The theoretical approach is based on exact calculations of configurations [28,29] with the following assumptions: (i) the
original problem is divided into separated site and bond problems that are independently analyzed (see Fig. 7); (ii) the
percolation ismeasured along the x-axis; and (iii) symmetric L×L cells are used in the calculations. The percolation trajectory
ℓ is defined as the number of objects belonging to the percolating cluster. Thus, the minimum percolation trajectory,
represented by ℓmin, corresponds to the direct percolation path from left to right (or vice versa), being ℓmin = L for sites
and bonds. On the other hand, the maximum percolation trajectory, represented by ℓmax, corresponds to the number of
objects in the saturated cell, being ℓmax = L2 and 3L(L − 1) + 1 for sites and bonds, respectively (see Fig. 7). In general, the
length of a percolation trajectory varies between ℓmin and ℓmax.

In the case of sites, the probability of percolation for any given cell considers the addition of the individual probabilities
of all percolating trajectories leading to a polynomial function f (ps), where ℓmin = L determines theminimum degree of the
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polynomial function, and ℓmax = L2 corresponds to the maximum degree associated to it. Then,

f (ps) =

ℓmax
ℓ=ℓmin

C s
ℓp

ℓ
s (1 − ps)ℓmax−ℓ, (7)

where the coefficients C s
ℓ’s correspond to the totality of the site trajectories of length ℓ leading to percolation. For a 2 × 2

cell, Eq. (7) results

f (ps) = 3p2s − 2p3s . (8)

In the case of bonds, the corresponding polynomial function g(pb) can be written as

g(pb) =

ℓmax
ℓ=ℓmin

Cb
ℓp

ℓ
b(1 − pb)ℓmax−ℓ, (9)

where ℓmin = L, ℓmax = 3L(L − 1) + 1 and Cb
ℓ ’s correspond to the totality of the bond trajectories of length ℓ leading to

percolation. For a 2 × 2 cell, Eq. (10) results

g(pb) = 4p2b + 3p3b − 20p4b + 23p5b − 11p6b + 2p7b. (10)

Once f (ps) and g(pb) are obtained, the percolation functions corresponding to S ∩ B and S ∪ B site–bond percolation are
calculated by following the Tsallis scheme [30],

hS∩B(ps, pb) = f (ps)g(pb) (11)

and

hS∪B(ps, pb) = f (ps) + g(pb) − f (ps)g(pb). (12)

Then, for a 2 × 2 cell,

hS∩B(ps, pb) = (3p2s − 2p3s )(4p
2
b + 3p3b − 20p4b + 23p5b − 11p6b + 2p7b) (13)

and

hS∪B(ps, pb) = (3p2s − 2p3s ) + (4p2b + 3p3b − 20p4b + 23p5b − 11p6b + 2p7b)

− (3p2s − 2p3s )(4p
2
b + 3p3b − 20p4b + 23p5b − 11p6b + 2p7b). (14)

hS∩B(ps, pb) (Eq. (13)) and hS∪B(ps, pb) (Eq. (14)) are plotted in Fig. 8(a) and (b), respectively. These curves are necessary
in order to obtain the curves delimiting the phases (the percolating and non-percolating areas) present in the problem.
Accordingly, the ps − pb phase diagram can be obtained by the procedure described in the Appendix and the results are
shown in Fig. 6 (open symbols, circles for S ∩ B and stars for S ∪ B). As can be observed, a very good qualitative agreement
is obtained between simulation and analytical data. From a quantitative point of view, the theoretical results for S ∩ B and
S ∪ B differ by 11.12% and 3.71%, respectively, from the simulation values.1

5. Conclusions

In this work, the phase diagram of the site–bond percolation problem for triangular lattices has been addressed. By using
extensivelyMonte Carlo simulations and finite-size scaling analysis the phase diagram of the S∪B and the S∩Bmodel were
determined.

In order to test the universality of the problem, the phase transition involved on it has been studied by using finite-size
scaling theory. In particular, it was established that (a) if pb (ps) remains constant the scaling functions are dependent with
respect to the coordinate ps (pb) and (b) the problem, in all the studied cases, belongs to the random percolation universality
class. The last conclusion can be also confirmed by determining the numerical values of the critical exponents, and the fractal
dimension of the spanning cluster.

Monte Carlo results were compared with theoretical data. For this purpose, the site–bond percolation problem on
triangular lattices has been studied by using a theoretical approach, which is based on exact calculation of configurations on
finite cells. From the counting of the number of configurations leading to percolation, the S∪B and S∩B percolating functions
were introduced. Taking advantage of their definitions, the ps − pb phase diagram was calculated. A very good qualitative
agreement was obtained between simulation and analytical data. From a quantitative point of view, the theoretical results
for S ∩ B and S ∪ B differ by 11.12% and 3.71%, respectively, from the simulation values. The theoretical approach used
throughout the paper has shown to be effective when it was used for the study of two-dimensional square lattices:

1 The value 11.12% (3.71%) has been calculated from the difference between theoretical and simulation S ∩ B (S ∪ B) areas.
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a b

Fig. 8. (a) Percolation function hS∩B(ps, pb) (Eq. (13)) as a function of ps and pb . (b) Same as part (a) for hS∪B(ps, pb) (Eq. (14)).

(a) monomers [28,31,32] and (b) dimers [29] and for three dimensional cubic lattices [33]. The method has shown to be
effective in order to determine the critical percolation threshold as well as the critical exponents of the phase transition
involved in the problem. The results presented here are comparable with those reported for the same problem for square
lattices.

Finally, the present study encourages us to determine the phase diagram of the site–bond percolation when the size of
the percolating species is increased. This work is in progress.
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Appendix

Once the functions hS∩B(ps, pb) (Eq. (13)) and hS∪B(ps, pb) (Eq. (14)) are determined, the projections of these surfaces on
the planes (pb = constant) and (ps = constant) behave in a similar way to the curves of the percolation order parameter
obtained with respect to one variable while keeping the second constant. Accordingly, the mentioned projections show a
change in the concavity (inflection points), which can be associated to the existence of a transition from a non-percolating
to a percolating state.

A way to study the local curvature of hS∩B(ps, pb) and hS∪B(ps, pb) is by using the concept of gradient. Thus,
−→
∇ hS∩B(ps,pb) =

∂hS∩B(ps,pb)
∂ps

ps +
∂hS∩B(ps,pb)

∂pb
pb

=


g(pb )

∂ f (ps)
∂ps

 ps +


f (ps)

∂g(pb )

∂pb

 pb; (15)

and
−→
∇ hS∪B(ps,pb) =

∂hS∪B(ps,pb)
∂ps

ps +
∂hS∪B(ps,pb)

∂pb
pb

=


∂ f (ps)
∂ps

− g(pb)
∂ f (ps)
∂ps

 ps +


∂g(pb )

∂pb
− f (ps)

∂g(pb )

∂pb

 pb. (16)

Now, the modulus of the gradients
−→

∇ hS∩B(ps,pb)
 and

−→
∇ hS∪B(ps,pb)

 can be calculated as:

SS∩B =

−→
∇ hS∩B(ps,pb)

 =


g(pb )

∂ f (ps)
∂ps

2

+


f (ps)

∂g(pb )

∂pb

2

; (17)
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a b

Fig. 9. (a) SS∩B and (b) SS∪B which are given by Eqs. (17) and (18) as a function of ps and pb .

and

SS∪B =

−→
∇ hS∪B(ps,pb)

 =


∂ f (ps)
∂ps

− g(pb)
∂ f (ps)
∂ps

2

+


∂g(pb )

∂pb
− f (ps)

∂g(pb)
∂pb

2

. (18)

SS∩B and SS∪B are shown in Fig. 9(a) and (b), respectively. As it can be observed, the curves for a fixed value of pb present
a maximum for a given value of ps, and in the samemanner, the curves for a fixed value of ps present a maximum for a given
value of pb. The set of such maxima can be calculated in the following way (for simplicity we restrict to the S ∩ B case, the
methodology used for the S ∪ B case is identical):

(1) Setting ∂SS∩B/∂ps (for different fixed values of pb) equal to zero, a set of points (ps, pb)1 is obtained.
(2) Setting ∂SS∩B/∂pb (for different fixed values of ps) equal to zero, a set of points (ps, pb)2 is obtained.

The common points obtained from (1) and (2) determine two critical points, (ps = 0.5, pb = 1.0) and (ps = 1.0, pb =

0.3536), which correspond to the limits of the S ∩ B curve in Fig. 6. We propose to calculate the intermediate points of the
S ∩ B curve from the sets (ps, pb)1 and (ps, pb)2 and the use of the Hessian criterion to determine the nature of the critical
points. For this purpose, the Hessian matrix is built as

H =


∂2SS∩B

∂p2s

∂2SS∩B

∂ps∂pb
∂2SS∩B

∂pb∂ps

∂2SS∩B

∂p2b

 . (19)

Then, the S ∩ B critical curve is obtained by collecting the points that (i) belong to the sets (ps, pb)1 and (ps, pb)2 and (ii)
satisfy the local maximum conditions (|H| > 0 and ∂2S

∂p2s
< 0). The same procedure is used for the S ∪ B case. The resulting

critical points are shown as empty symbols in the phase diagram shown in Fig. 6.
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