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ABSTRACT

A study of spectral laws for helical turbulence in the presence of solid body rotation up to Reynolds numbers

Re ; 1 3 105 and down to Rossby numbers Ro ; 3 3 1023 is presented. The forcing function is a fully helical

flow that can also be viewed as mimicking the effect of atmospheric convective motions. Variants of a model

developed previously by Baerenzung et al. are tested in the helical case against direct numerical simulation

(DNS), using data from a run on a grid of 15363 points; its efficiency is also contrasted against a spectral large-

eddy simulation (LES) by Chollet and Lesieur, as well as an underresolved DNS. The model including the

contribution of helicity to the spectral eddy dissipation and eddy noise behaves best, allowing the recovery of

statistical features of the flow. Even if the model is based on isotropic assumptions, the authors demonstrated

in a previous study that the small scales of flows at moderate Rossby number can be considered to be isotropic

in the range of parameters considered here and that therefore their model is appropriate to treat this kind of flow.

An exploration of parameter space is then performed beyond what is feasible today using DNS. At a fixed

Reynolds number, lowering the Rossby number leads to a regime of wave-mediated inertial helicity cascades

to small scales. However, at a fixed Rossby number, increasing the Reynolds number leads the system to be

dominated by turbulent energy exchanges where the role of inertial waves is to weaken the direct cascade of

energy while strengthening the large scales. It is found that a useful parameter for partitioning the data is

NC 5 ReRo 5 U2
rms/[nV], with Urms, n, and V being the rms velocity, the viscosity, and the rotation rate,

respectively. The parameter that determines how much the energy cascade is direct or inverse—in which case

the cascade to small scales is predominantly that of helicity—is linked to Ro.

1. Introduction

Turbulent flows at high Reynolds number prevail in

the atmosphere and oceans, as well as in astrophysical

settings [e.g., in solar–terrestrial (space weather) inter-

actions]. Because of the limited power of computers,

even with the petascale efforts presently underway,

modeling of such flows is needed to take into account

the effect that the unresolved small scales, the so-called

subgrid scales, have on the large scales, as done for ex-

ample in the case of numerical weather prediction (NWP)

(Palmer 2001). Numerous models have been put for-

ward and tested over the years, with, as their principal

ingredients, an eddy viscosity representing the dissipa-

tion of energy linked to the unresolved small-scale eddies

Smagorinsky (1963) and an eddy noise (Leith 1971),

which mimics the stochasticity of the small scales [see

Meneveau and Katz (2000) for a recent review].

In the presence of helicity (velocity–vorticity corre-

lations), nonlinear terms are weakened. This was in-

voked by Lilly (1986) (see also Anthes 1982) to explain

the persistence of strong storms, as observations of

helical features are common in atmospheric flows, for

example when analyzing Verification of the Origin of

Rotation in Tornadoes Experiment (VORTEX) data

(Markowski et al. 1998). Tornadoes can be encountered

in two types of structures: one that is laminar (such as

water spouts) and one that is strongly turbulent, typical

of storms in the central United States. To study the

latter, two-dimensional incompressible studies of axi-

symmetric tornado-like vortices in the presence of ver-

tical forcing were performed in cylindrical coordinates
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with resolutions of 642 points using eddy viscosity

(Nolan and Farrell 1999). An analysis of 120 simulations

in terms of the Reynolds Re and Rossby Ro numbers

indicated that the determining parameter was Re/Ro 5

VL2/n
*
, where V is the imposed rotation, n

*
is the eddy

viscosity, and L is a characteristic scale. In such a study,

the rotation is imposed, whereas in a tornado the rota-

tion has a somewhat uncertain origin (Rotunno 1984;

Rotunno and Klemp 1985): it is thought to be linked

to the preexistence of a downdraft that, together with

precipitation introduced as in Markowski et al. (2003),

transports angular momentum to the ground where the

circulation is then closed [see Wicker and Wilhelmson

(1995), and references therein]. More recent studies of

tornadogenesis have included the effects of moisture

and buoyancy, together with stratification and latent

heat release; this leads to a more realistic modeling of

supercell storms and of their maximal vorticity. Helicity

has also been studied in the context of hurricanes [see,

e.g., Glebova et al. (2009); Molinari and Vollaro (2010),

and references therein] and is found to be sizable in

strong storms, possibly leading to the identification of

a developing tropical cyclone.

A variety of physical phenomena interact to create

the dynamics of such flow structures, among which are

strong local rotation (e.g., induced by rain in down-

drafts), strong winds with accelerations several times

that of gravity, stratification, and boundary layer effects.

Many experimental, observational, phenomenological,

theoretical, and numerical studies have been devoted

to these interactions and, as the power of instrumen-

tation increases, progress will continue to be made.

Crucially, such flows and flow structures are embedded

in an atmospheric circulation at very high Reynolds

number, leading to the formation of a myriad of small-

scale intense structures and to a turbulent, unpredictable

background flow. As usual, two approaches to studying

these flows can be contrasted. On the one hand, models

as complete as possible must be devised and analyzed in

a parametric fashion. On the other hand, a reductionist

approach, as in applied mathematics, calls for drastic

simplifications, as in the case, for example, of the studies

mentioned earlier that considered the tornado as an

axisymmetric two-dimensional feature.

Here we propose to reduce the problem in a different

way by considering the related issue of hydrodynamic

rotating turbulence, ignoring the thermodynamics but

considering highly resolved three-dimensional features

that can help determine turbulent properties that may

be relevant for complex atmospheric flows, and insisting

on the importance of attaining and modeling as high a

Reynolds number as possible with, at the same time, re-

alistic Rossby numbers. In Mininni and Pouquet (2010a,b),

using a direct numerical simulation (DNS) on 15363

points of rotating turbulence forced with a helical flow,

it was shown that the spectral indices for the energy and

helicity spectra differ from the classical Kolmogorov law.

The purpose of this paper is to reach higher Reynolds

numbers than those attained in this massive DNS, as

well as lower Rossby numbers. Our motivation is to

understand the effect of rotation on the flow and the

impact of Rossby waves on scaling laws, and to quantify

the effect of helicity. To this end, we shall first assess the

validity of several models against this DNS, based on

previous work for nonrotating turbulence [Baerenzung

et al. 2008b; see also Baerenzung et al. (2010) for the

rotating nonhelical case and Baerenzung et al. (2008a)

for the nonhelical case of coupling to a magnetic field].

Armed with this model, we shall examine the variation

of spectral indices for the energy and helicity cascade

to small scales as a function of both the Reynolds and

Rossby numbers and, using a parametric study, we shall

identify different behaviors depending on the dimen-

sionless parameters of the problem. The next section

gives the basic equations, and section 3 analyzes data

on temporal evolution and spectra stemming from the

models and the DNS. Then section 4 presents the para-

metric study, and finally in section 5 we offer our con-

clusions.

2. Equations and models

The incompressible ($ � v 5 0) Navier–Stokes equa-

tions for a flow corresponding to dry dynamics, with

velocity v and constant density r0 [ 1, reads

›v

›t
1 v � $v 1 2V 3 v 5 2$P 1 nDv 1 Fv, (1)

where P is the total pressure (including the centrifugal

force), V is the imposed solid body rotation, taken to be

in the z direction, and Fv is a forcing term mimicking the

input of energy (and helicity) to the system through, for

example, buoyancy forces. In the absence of viscosity

and forcing (n [ 0, Fv [ 0), the energy E 5 hv2/2i and the

helicity H 5 hv �v/2i (Moffatt 1969) are conserved (with

v 5 $ 3 v being the flow vorticity). Conservation laws

are thought to play an important role in the dynamics

of turbulent flows. The role of helicity in the absence of

rotation has been studied in a number of papers (see, e.g.,

Brissaud et al. 1973; Kraichnan 1973; André and Lesieur

1977; Hunt and Hussain 1991; Moffatt and Tsinober 1992;

Holm and Kerr 2002; Kurien et al. 2004; Chen et al. 2005;

Krstulovic et al. 2009): the energy and helicity spectra

E(k, t) and H(k, t) (averaged over spherical shells of

width Dk 5 1) follow a Kolmogorov law with E(k, t) ;

k25/3 and H(k, t) ; k25/3.
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Using the rms velocity Urms, the Reynolds and Rossby

numbers are defined, respectively, from Eq. (1) as

Re 5 UrmsL0/n and Ro 5 Urms/2L0 V, (2)

where L
0

5 2p
Ð

E(k)k21 dk/
Ð

E(k) dk is the isotropic in-

tegral length scale. We can also evaluate a micro Rossby

number Rov 5 vrms/2V, where vrms is the rms vorticity,

which measures the strength of local compared to im-

posed rotation. In all simulations, this number is close to

unity or larger; here and in section 3, n 5 1.6 3 1024.

Note that in the presence of strong rotation, an inverse

cascade of energy to large scales is observed and the

total energy is found to grow with time. In this case,

Re and Ro given in Table 1 below are assigned with the

turbulence statistics evaluated at the time of onset of the

inverse cascade TI.

The computations we analyze are set in a cubic

box of length 2p with minimum and maximum wave-

numbers kmin 5 1 and kmax 5 N/3, N being the number

of grid points in each direction and using the usual 2/3

dealiasing rule. The code is pseudospectral with tem-

poral integration using a second-order Runge–Kutta

scheme. The forcing of amplitude F0 is given by a Beltrami

flow:

Fv/F0 5 [B cos(kFy) 1 C sin(kFz)]x̂

1 [C cos(kFz) 1 A sin(kFx)]ŷ

1 [A cos(kFx) 1 B sin(kFy)]ẑ. (3)

This so-called ABC flow, an eigenfunction of the curl

with eigenvalue kF, injects both energy and helicity in

the system. Such flows give a periodic checkerboard of

overturning rolls with jets at the circulation centers and

were used in Lilly (1986) to mimic flows in rotating

thunderstorms. In all runs we take A 5 0.9, B 5 1, C 5

1.1, and kF 5 7 so as to cover both the direct cascade of

energy and helicity to small scales and the inverse cas-

cade of energy to large scales.

In what follows, we consider a DNS run that has been

performed on a grid of N3 5 15363 points, the largest

ever for rotating turbulence to our knowledge, and

several large-eddy simulation (LES) runs. The LES tests

presented in the next section were performed on a grid

of 963 points, while the parametric study of section 4 was

done with LES up to 5123 grid points for the highest

Reynolds number studied. A statistically steady state of

turbulence with almost no rotation (V 5 0.06) was first

reached in the DNS, after approximately 10 turnover

times t
NL

5 L
0
/U

rms
. Then, rotation was switched on,

TABLE 1. Parameters of the runs using the LES-PH model. Data are averaged 2[TI, TI 1 5]. Compared to their values at TI, Urms has

increased by roughly 20% at t 5 29 and vrms has decreased by between 10% and 20%, except for run R3 for which both are stationary, and

for run R5F, for which vrms has decreased by 30%. In the last three columns, e, e 1 h, and PH/[kFPE] are given at TI. R3 and R5z have no

discernible inverse cascade and should have a Kolmogorov spectrum except for the bottleneck that renders spectra shallower. The fiducial

run R5F is the 15363 DNS. Runs of Figs. 1 and 2 are not included, except for the DNS run R5F and the LES-PH run R5a.

Run Resolution 105n V vrms TI 102Ro 1023Re Urms Lo,I Lo,F e e 1 h PH/[kFPE]

R1 192 25.0 4.5 10.5 17 4.6 8.3 0.9 2.24 3.04 2.1 4.1 1.5

R2 192 25.0 9.0 11.7 8 2.9 9.3 1.1 2.10 4.30 2.2 4.2 1.7

R3 192 16.0 1.8 16.0 14 24.9 4.3 0.8 0.88 0.99 1.7 2.8 1.1

R4 192 16.0 4.5 12.4 14 6.1 9.7 0.9 1.67 3.79 1.9 3.6 1.3

R5F 1536 16.0 9.0 15.3 9 2.9 14.7 1.1 2.14 4.32 2.0 3.9 1.9

R5 192 16.0 9.0 12.8 8 3.3 13.3 1.1 1.88 4.55 2.1 3.8 1.8

R5a 96 16.0 9.0 8.5 10 2.7 15.3 1.1 2.23 5.21 2.2 3.8 1.9

R5z 192 16.0 0.1 21.8 7 1166 3.6 0.9 0.64 0.64 1.6 2.5 1.1

R6 192 16.0 18.0 10.4 10 1.6 16.7 1.2 2.16 4.58 2.1 3.9 2.5

R7 192 16.0 36.0 10.8 10 0.8 19.4 1.3 2.37 4.50 2.1 3.8 2.7

R8 192 16.0 117.0 12.5 8 0.3 14.9 1.3 1.77 2.99 2.2 4.1 2.3

R9 192 11.9 18.0 11.1 10 1.4 25.0 1.2 2.41 4.76 2.1 3.9 2.3

R10 192 10.2 42.4 11.7 10 0.6 32.0 1.3 2.46 3.93 2.1 3.8 2.6

R11 192 8.0 9.0 14.4 8 3.8 24.9 1.2 1.72 3.79 1.9 3.3 1.7

R11a 96 8.0 9.0 7.6 14 1.9 44.9 1.1 3.22 5.87 2.3 4.0 1.9

R12 192 8.0 18.0 11.1 10 1.3 43.3 1.3 2.75 4.70 2.1 3.8 2.5

R13 192 8.0 36.0 10.9 10 0.6 47.5 1.3 2.87 4.08 2.0 3.7 2.7

R14 384 8.0 36.0 15.1 10 0.9 36.6 1.4 2.14 4.18 2.1 3.9 3.2

R15 384 5.3 72.0 20.9 6 0.6 42.3 1.4 1.58 3.54 2.0 3.6 3.0

R16 192 5.0 18.0 12.4 9 1.5 62.6 1.3 2.44 4.08 2.0 3.5 2.5

R17 192 4.5 36.0 15.0 6 1.0 53.8 1.4 1.79 3.91 2.0 3.4 2.8

R18 192 2.5 36.0 13.9 8 0.9 108.8 1.3 2.02 3.79 1.9 3.2 3.4

R19 512 1.6 9.0 22.7 8 3.7 125.5 1.2 1.74 4.16 1.8 3.4 2.1
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with V between 1.75 and 117 for the parametric study, at

a time taken as the initial condition (defined as t 5 0) for

all the runs analyzed in this paper (DNS and LES). For

the LES initialization on grids of N3
L points (NL , N),

the 15363 data at t 5 0 was truncated at kmax 5 NL/2

(note that no de-aliasing is needed in an LES) and the

computations lasted roughly another 30 turnover times.

Since the runs use a pseudospectral scheme with a

spectral LES, we write the Navier–Stokes equation in

terms of the velocity in Fourier space:

(›t1 nk2)y
a

(k, t) 1 2VP
ab

«
bzg

y
g
(k, t)

5 ty
a(k, t) 1 Fy

a(k, t),

with «bzg being the usual antisymmetric tensor; ty
a(k, t) is

a bilinear operator for energy transfer written as

ty
a(k, t) 5 2iP

ab
(k)k

g
�

p1q5k
y

b
(p, t)y

g
(q, t), (4)

and the projector Pab(k) 5 dab 2 kakb/k2 enforces in-

compressibility (kaya 5 0); also, Einstein summation is

used. From the equation above, one builds the temporal

evolution for the energy and helicity spectra E(k) and

H(k), averaged over spherical shells of radius k 5 jkj:

(›t 1 2nk2)E(k, t) 5 TE(k, t) 1 FE(k, t), (5)

(›t 1 2nk2)H(k, t) 5 TH(k, t) 1 FH(k, t), (6)

where TE,H(k, t) is the energy and helicity nonlinear

transfers at wavenumber k and FE,H(k, t) the forcing

expressed in terms of its symmetric (energy) and non-

mirror symmetric (helicity) parts. The transfer terms

involve triple correlations among three Fourier modes

v(k, t), v(p, t), and v(q, t), with p 1 q 5 k, expressing the

fact that the Fourier transform of the nonlinear term is

a convolution. Hence, one speaks of triadic interactions

between the modes, and detailed energy and helicity

conservation occur for each such triad. This is where the

classical closure problem of turbulence arises: one now

needs an equation for triple moments that will involve

quadratic correlations, and so on. Many closure schemes

have been devised over the years, one of the most suc-

cessful in spectral space being the eddy damped quasi-

normal Markovian model (EDQNM; see Orszag 1977).

Within the framework of the closure, TE,H are replaced

byapproximations thatwedenote T̂E,H(k, t). The EDQNM

closure was written for helical turbulence in André and

Lesieur (1977); it leads to a set of integro-differential

equations for the energy and helicity spectra. The

EDQNM approximation has been used in atmospheric

studies, in applications to shear, rotating, or stratified

flows including non-Markovianized versions based on

extensions of the direct interaction approximation

(Frederiksen and O’Kane 2008, and references therein).

The EDQNM balance equations for both the energy

and the helicity can be expressed in terms of emission

and absorption. For the energy, the former is related to

eddy noise (an inhomogeneous term involving energy at

all pairs of modes (p, q) such that k 5 p 1 q as stated

before); the latter, linear in E(k), gives rise to eddy

viscosity, which corresponds to a drain on the energy at

mode k, although in some cases the eddy viscosity can be

negative.

The EDQNM closure in the helical case leads to two

extra contributions to the transport coefficients as hel-

icity contributes to eddy viscosity and eddy noise. Since,

dimensionally, the eddy viscosity [~nt] in the energy equa-

tion can be written [~n
t
] 5 [n/k], we can write

›tE(k) ; 22(n 1 nt)k2E(k) 2 2~ntk
2H(k). (7)

This uses a shorthand and simplified notation to bring

out the structure of the model [see Baerenzung et al.

(2008b) for details], which omits multiplicative coeffi-

cients as well as both the resolved scale contributions

and the eddy-noise contributions. While the EDQNM

eddy viscosity nt(k, t) ;
Ð

f1(k, p, q)E(q) dp dq depends

(through the function f1) on an integral of the energy

spectrum in the small scales and represents the drain of

energy from the resolved scales due to the unresolved

subgrid scales, ~nt(k, t) ;
Ð

f2(k, p, q)H(q) dp dq gives the

contribution of small-scale helicity through a different

function f2. The total eddy noise represents the effects of

the small-scale helicity as well as the effects of small-

scale energy on the large scales of the flow.

In a previous paper (Baerenzung et al. 2010), we

tested for rotating flows the nonhelical version of the

model, with all pseudoscalar terms (denoted with a tilde)

equal to zero. However, it was shown recently that when

both sizable rotation and helicity are present, the small-

scale cascade is dominated by helicity (Mininni and

Pouquet 2009, 2010a), whereas the energy mostly un-

dergoes an inverse cascade, as is well known. The ques-

tion then arises as to whether a helical model is needed

for flows where helicity plays a central role in the direct

cascade dynamics. To that effect, we contrast in the next

section results stemming from three models on 963 grids:

the full helical model, hereafter labeled LES-PH, the

nonhelical model, hereafter LES-P, and the Chollet–

Lesieur model, in short CL or LES-CL. For completeness,

we also compare the 15363 DNS data to an underresolved

DNS on a grid of 1603 points (which, using the 2/3 deal-

iasing rule, has kmax 5 53, slightly larger than for the LES

runs).
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The Chollet and Lesieur (1981) model introduces an

eddy viscosity of the form

nCL(k, t) 5 Cn1(k, t)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(kcut, t)/kcut

q
, (8)

where kcut 5 N/2 2 1 is the cutoff wavenumber. The

quantity n1(k, t) 5 1 1 3.58(k/kcut)
8 is a dimensionless

cusp function; nCL(k, t) replaces nt in Eq. (7) (with

~nt 5 0). The CL model was derived from the EDQNM

equations using the fact that C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(kcut, t)/kcut

p
is the

asymptotic expression of nonlocal transfer from subgrid

to resolved scales and assuming a Kolmogorov spec-

trum extending to infinity. Note that C in our runs was

adjusted with the Kolmogorov constant computed from

the ABC flow resolved by a DNS run using 5123 grid

points; C 5 0.14.

3. Testing of the helical model

We show in Fig. 1 a comparison of the temporal

evolution of the total energy (top), helicity (middle),

and enstrophy hv2i (bottom) for five runs that were done

specifically for comparison and validation purposes of

the LES models against the high-resolution DNS. They

correspond to three 963 LES runs (PH, P, and CL) and

an underresolved DNS with the same Re and Ro as the

15363 DNS; the reduced label stands for 15363 DNS data

filtered to 963 points. In all that follows, the DNS is

shown with a solid line, the LES with helical coefficients

with a thick dotted line and the LES without the helical

contributions with a thinner dashed–dotted line, the

Chollet–Lesieur model is shown with thin (gray) bars,

and finally the underresolved run is displayed with cir-

cles. The energy displays three distinct temporal phases,

all well reproduced by the models except for the un-

derresolved DNS, although to various degrees of accu-

racy. At first, the energy grows and then decays (up to

t 5 10) because of an initial adjustment as the Coriolis

force gets suddenly larger at t 5 0. Even though the

Coriolis force itself does not input energy in the sys-

tem, inertial wave resonances render the flow quasi-

bidimensional and, after t 5 10, the subsequent growth

of the energy is then attributed to the onset and fur-

ther development of an inverse cascade of energy with

a transfer to scales larger than the forcing scale LF. The

transition times between these phases are well repro-

duced by all models, and so is the growth rate in the in-

verse cascade, except for the LES-P model. As should be

expected, the underresolved run stands on its own: the

lack of small-scale dissipation produces an unphysical

growth of energy and its results, clearly unreliable, will

not be commented upon further other than to say that

with insufficient numerical resolution, a model indeed is

needed to mimic the effects of the unresolved scales.

The helical model LES-PH is the one closest to the

DNS, whereas the CL model is too dissipative because it

does not take into account the weaker nonlinearities due

in part to the partial Beltramization of the flow. The

temporal evolution of the total helicity follows the same

pattern, except that all the injected helicity undergoes

a direct cascade as can be verified by computing its flux

(Mininni and Pouquet 2010a), and therefore its total

value as a function of time attains a statistically steady

FIG. 1. Evolution of the (top) total energy, (middle) helicity, and

(bottom) enstrophy for several runs: DNS, 15363 grid points (solid

line); underresolved DNS, 1603 points (circles); and LES-CL

(dotted), LES-PH (dashed), and LES-P (crosses), all on 963 points.

In the bottom panel, the ‘‘DNS Red’’ (for ‘‘reduced’’) corresponds

to the data of the 15363 DNS filtered down to 963 grid points. As

a reference, the energy of the underresolved simulation at t 5 20 is

E 5 1.39, and at t 5 30 it is 1.69.
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equilibrium; when examining the errors (not shown), the

LES-PH model is best overall and the CL model is

worst. We also note that, at early time and up to the

onset of the inverse cascade of energy for t ; 10, the

nonhelical LES-P model behaves consistently better.

This may indicate that as long as the inverse energy

cascade has not begun and we are in a regime dominated

by waves, the direct cascade to small scale is as much

energy as it is helicity and thus the helicity in the model

is not as essential. Overall, the normalized error for the

total helicity using the LES-PH model is between 1023

and 1021, reasonable values considering the very large

difference in the linear grid resolution (up to a factor

of 16).

The comparisons between models and DNS for the

total dissipation D(t) 5 2hnv2(t)i (see Fig. 1 bottom,

noting all runs have the same n) show a large discrep-

ancy that can be partially removed when filtering the

DNS data down to the resolution of the LES runs.

Dissipation has its largest contribution from small scales

that are not resolved in the LES runs (see also Fig. 3 for

a comparison of dissipation between LES and unfiltered

DNS data for different values of n and V than those used

here). When comparing to the filtered DNS displayed

with triangles in Fig. 1, again LES-P and LES-PH give

the best results, while the CL model overestimates the

dissipation by a consistent amount (;30%). We note

that in the case of the Smagorinsky model, a study of

helical flows (Li et al. 2006) shows an underestimation of

helicity dissipation by 40%.

When comparing spectra for energy and helicity, the

same conclusions arise, with a better behavior for the

helical model LES-PH. We show in Fig. 2 the spectra

for energy (top) and helicity (bottom), averaged over

an interval of time after the start of the inverse cascade

of energy. All spectra stop at the maximum wavenumber

of the LES kLES
max (548) and do not show a dissipation

range by construction [note, however, that in our ap-

proach we keep the (bare) viscosity in the equations,

that of the DNS run on the grid of 15363 points]. In the

small scales, the LES-PH model reproduces very closely

the DNS up to kLES
max , particularly so for the helicity. In

the inverse cascade of energy, good agreement is ob-

tained as well, with the CL model being less faithful,

a feature already noted on the temporal evolution of the

total energy. The helicity does not undergo an inverse

cascade for any of the runs performed in this paper, but

the agreement with the DNS spectrum is less striking

than for energy.

For scales larger than LF, E(k) appears to follow

a classical Kolmogorov law. There is evidence in other

works for much steeper power laws in the large scales

of rotating turbulence [i.e., E(k) ; k23] (Smith and Lee

2005; see also Tran and Bowman 2003) when computing

in periodic boxes with variable aspect ratio and using

hyperviscosity. The differences may be linked to the

effect that wave interactions have on large scales on the

one hand, and to a subsequent direct cascade of ens-

trophy because of the bidimensionalization of the flow

on the other hand (Smith and Waleffe 1999). These re-

sults, which may also be Rossby dependent (Chen et al.

2005) are, however, beyond the scope of the present study,

which focuses on small-scale properties. The spectrum

H(k) at large scales is flat and no clear power law can be

identified. Note that the realizability condition jH(k)j #

kE(k) does not present a dynamical constraint for the

helicity as k / 0 in the inverse cascade.

Finally, we note that LES-PH reproduces well the

type of structures observed in the flow, in particular the

spatial juxtaposition of laminar updrafts that are fully

helical (Beltrami core vortices) and a tangle of small-

scale vortex filaments ordered in columnar structures

FIG. 2. (top) Energy and (bottom) helicity spectra averaged

during the inverse cascade, from t 5 20 to t 5 30; same notation as

in Fig. 1. Insets: zoom on the large scales; note the inadequacy of

all models in this range of wavenumbers except for LES-PH (i.e.,

when taking into account the helical contributions to subgrid

modeling).
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(Mininni and Pouquet 2010b). The size and shape of

eddies in the horizontal plane are correctly captured,

even though phase information is partially lost because

of the intrinsic stochasticity and lack of predictability of

the flow.

4. Turbulence versus waves

a. The procedure

Using the LES-PH model tested in section 3, we now

proceed to a parametric study of forced helical rotating

turbulence in terms of both the Reynolds and Rossby

numbers, examining the scaling laws of energy and hel-

icity in the direct cascade. The Reynolds number varies

from 4300 (for smaller values of the Reynolds number it is

difficult to ascertain the inertial index of the spectra) to

1.1 3 105, and the Rossby number varies from approxi-

mately 12 to 0.003. Most runs are done on a grid of 1923

points, although both lower- and higher-resolution runs

are performed to evaluate to what extent the results de-

pend on the resolution of the LES. All runs are started in

the same fashion, using the same developed turbulence

state with weak rotation (V 5 0.06) as an initial condi-

tion, and with the forcing via the ABC flow as given in

section 2 with kF 5 7. Data pertinent to the runs can be

found in Table 1. In the presence of moderate to strong

rotation, an inverse cascade develops, in which case the

parameters listed in the table were computed at TI ; note

that only two runs (R3 and R5z) do not show an inverse

cascade. Note also that vrms depends on the resolution

since the enstrophy spectrum peaks in the vicinity of the

dissipative scale—which is in general not resolved in the

LES—for energy spectra shallower than k22, leading to

an underestimation of the micro Rossby number vrms/2V

by roughly 50% in some cases.

We first contrast in Fig. 3 the temporal evolution of

energy, dissipation, and helicity for several runs. Times

are indicated in units of eddy turnover time, and as the

rotation rate increases, the inertial wave time decreases

FIG. 3. Temporal evolution of (top) energy, (middle) dissipation, and (bottom) helicity. The solid line represents

the DNS run R5F (n 5 1.6 3 1024, V 5 9), while all other runs are performed with LES-PH. (left) Fixed viscosity (n 5

1.6 3 1024) with V varying between 4.5 and 18 by factors of 2 for runs R4 (dashed), R5F, and R6 (dotted). (right)

Fixed rotation rate (V 5 9) and n decreasing from 2.5 3 1024 to 8 3 1025 for runs R2 (dashed), R5F, and R11

(dotted).
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in the same manner so that the same physical time on the

plots corresponds to a larger number of wave periods.

At fixed viscosity (left column), the growth rate of the

energy associated with the inverse cascade is rather in-

dependent of rotation except for the lowest rotation

rate. Otherwise, the time scales are the same for the

onset of the cascade itself. This is valid as well at fixed

rotation rate and variable Re as seen in the right column,

with now comparable energy levels. The discrepancy in

the dissipation between the DNS and LES at early times

has already been commented upon in the preceding

section (see also Fig. 1). The dynamics of helicity is very

similar for all these runs, with again variations in the

amplitude with Re but not so with Ro.

The main objective of the parametric study is to mea-

sure the spectral indices of energy e and helicity h, as well

as the helicity to energy flux ratio normalized by kF (see

below). To measure e and h, a fit is performed in the in-

ertial range of E(k) and H(k) of the form

E(k) ; k2e, H(k) ; k2h. (9)

The spectra for the fit were computed in three ways:

(i) using the spectra at TI; (ii) as a time average over an

interval Dt 5 5 starting from t 5 TI; and (iii) as an av-

erage in the interval t 2 [TI, 2TI]. Although the actual

values of the spectral indices are observed to depend

slightly on how these estimations were performed, it is

observed that a classification based on whether the sum

satisfied e 1 h ’ 4 (which will be associated with a wave-

dominated regime, and corresponds to the black dots

in Fig. 6) or e 1 h 6¼ 4 (which will be associated with

helical turbulence, and corresponds to the gray dots)

remains unchanged irrespective of the estimation crite-

ria. The choice used to define the spectral indices is thus

to perform a temporal average over a not too long time

interval (method ii) to avoid problems associated with

nonstationarity because of the inverse energy cascade

and the energy accumulation at large scales. Once the

time-averaged spectra are obtained, a least squares fit to

get the indices is done in the range k 2 [15, 45]. We also

performed a spectral fit in the interval k 2 [19, 45] and

k 2 [15, 60] but saw no measurable difference in the

results.

The choice to measure e 5 h has to do with the two

expected regimes for helical rotating turbulence. If ro-

tation is weak, a regime close to Kolmogorov occurs,

where both the energy and the helicity cascade directly

to small scales with a k25/3 spectrum. In this case, which

we refer to as ‘‘helical turbulence,’’ e 1 h 5 10/3. When

rotation is strong, waves slow down the energy transfer,

giving E(k) ; k22 in the nonhelical case (Dubrulle and

Valdettaro 1992) and e 1 h 5 4 in general if helicity is

present (see Mininni and Pouquet 2010a). We refer to

this case as the ‘‘wave-dominated regime.’’

An important ingredient for the helical regime e 1 h 5 4

to occur is that the energy flux to small scales be negli-

gible compared to the helicity flux, so that the direct

cascade is dominated by helicity. This can be indepen-

dently verified by computing the energy and helicity

fluxes: PE(K) 5 �K

k51TE(k) and PH(K) 5 �K

k51TH(k).

After averaging over the same time interval used to

measure e and h, a dimensionless ratio PH/(kHPE) can

be computed over the same range of wavenumbers k 2
[15, 45]. When examining this ratio as a function of both

the Rossby and Reynolds numbers, it is found that at low

rotation rate the ratio is close to unity, as expected, but

it is clear that it increases with rotation rate, confirming

a previous analysis using DNS (Mininni and Pouquet

2009); this ratio increases as well as the turbulence

strengthens (see Table 1). Thus, one can expect that

helical rotating flows in the wave-dominated regime

will be characterized by helicity dynamics at small scale.

Before proceeding to the details of the parametric

study, we give a few examples of the different behaviors

that arise as the Reynolds and Rossby numbers are

changed. While for most of the flows the temporal evo-

lution of global statistics is rather similar (see Fig. 3), the

resulting spectra in the runs do differ. This is illustrated

by Fig. 4, which gives (top) the product of spectra

E(k)H(k) for two different runs compensated by the two

laws discussed above: k4 (solid line with circles) and k10/3

(dashed line). Individual energy and helicity spectra are

also shown in the figure for the same two runs (middle),

compensated by laws that are the best fit to the data.

Even though the resolution of the LES is modest, the

fact that the spectra do not need to display a dissipation

range (dissipation being taken care of through the effect

of the eddy viscosities) allows for a good determination

of spectral indices. All of the spectra shown in the figure

correspond to a time average from t 5 TI to t 5 30. The

run on the right side of Fig. 4 shows a scaling that seems

to be close to the classical Kolmogorov law (e 1 h 5 10/3),

whereas in the run on the left side of Fig. 4 the e 1 h 5 4

law emerges rather convincingly, with an energy spec-

trum measurably different from a e 5 5/3 law and mea-

surably different from one another as well (i.e., e 6¼ h), the

best fit giving E(k) ; k22.2, H(k) ; k21.8. Finally, the

energy and normalized helicity fluxes are given in Fig. 4

(bottom); there is no helicity flux to large scales, whereas

the energy flows both ways as stated before; also note the

dominance of the normalized helicity flux to small scales

in both cases (see also Table 1).

As previously mentioned, spectral indices vary with

time as seen in Fig. 5, where a fit to obtain e 1 h is

performed in the same range of wavenumbers for the
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instantaneous spectra as a function of time, using the

same five runs as in Fig. 3; the solid and dashed lines

represent, respectively, the law derived in Mininni and

Pouquet (2009) and the dual Kolmogorov law and are

provided for reference. Apart from a slower evolution

toward an established spectral law in the case of lower

rotation rate (middle row, left panel), the data are com-

patible with a breaking of universality in helical rotating

turbulence; however, other spectral indices cannot be

ruled out (observe the middle column). More numerous

as well as better-resolved runs may be needed to assess

this point further; there may be some ambiguity in as-

sessing inertial indices when the runs are close to the

transition observed in Fig. 6 (see section 4b below);

furthermore, there could be other, as yet unknown, dy-

namical regimes with measurably e 6¼ h.

b. The emergence of two regimes

With the previously discussed caveats in mind, we now

examine all runs reported in Table 1 and classify them

based on the resulting sum of spectral indices, e 1 h.

A first look at the table indicates that, at fixed Reynolds

number, a transition toward the wave-dominated regime

takes place as the rotation rate increases, whereas at

fixed rotation once the eddy turnover time becomes

smaller than the inertial wave period, Kolmogorov-like

turbulence takes over. It is not clear from these simu-

lations whether the solution e 5 h 5 5/3 is favored, or

whether a solution like the one postulated in Brissaud

et al. (1973) for helical turbulence emerges (with e 1 2h 5

5), the differences between inertial indices being too

minute and the resolution of the simulations not large

enough.

To check consistency of the results, R13 and R14 are

run with the same [n, V] but different resolutions;

the corresponding (dynamically determined) Reynolds

and Rossby numbers differ respectively by 6% and

15%, whereas the flux ratio differs by 18% (see Table 1).

However, these two runs have the same inertial index

dynamics. Other convergence tests have been per-

formed that are not reported here, leading to similar

conclusions.

FIG. 4. (left) Compensated product of (top) spectra E(k)H(k) for run R1, and (middle) individual spectra E(k)

(circles) and H(k) (dashes), compensated respectively by k22 and k18; (bottom) corresponding fluxes for energy

(solid) and helicity (dashed), in the latter case normalized to an energy flux by dividing by the forcing wavenumber.

The spectra and fluxes are all averaged over the time interval t 2 [TI, 30]. (right) As at left, but for run R17 (higher

rotation and Reynolds number), with the spectra now both compensated by a Kolmogorov law. Note the dominance

of the helicity flux in both cases.

NOVEMBER 2011 B A E R E N Z U N G E T A L . 2765



A demarcation seems therefore clear: at a fixed Rossby

number, a higher Reynolds number gives access to

smaller scales and shorter turnover times with the result

of having turbulence prevailing over waves and a transi-

tion to a state that is consistent with a Kolmogorov-like

scaling with dual energy and helicity cascade. Con-

versely, at fixed Reynolds number, increasing rotation

leads to a smaller inertial wave time scale and a preva-

lence of rotation and of the e 1 h ’ 4 regime found in

Mininni and Pouquet (2009) for helical rotating turbu-

lence. A pure helicity cascade with no energy flux is not

observed, the highest value of the normalized ratio of

fluxes PH/[kFPE] ’ 3.4. It is also remarkable that when

examining separately the energy and helicity spectra, in

several cases we observe that the latter is well defined

(either a Kolmogorov law or close to but shallower than

a k22 law), while the index of the energy spectrum may

not be so well defined; this could be due to the fact that,

at high rotation rate, the energy flux to small scales be-

comes negligible and thus the direct energy cascade is

less well established.

These results are summarized in Fig. 6, which shows

the runs that have e 1 h ’ 4 with black dots and the

other runs with gray dots. The two axes correspond to

PH/[kFPE] as a function of the dimensionless parameter

NC 5 ReRo 5 U2
rms/[nV]. Since the effect of viscosity

and rotation is to act in opposite ways, their product,

properly nondimensionalized by the kinetic energy of

the system, can be a determining parameter. Indeed, the

clear demarcation discussed before can be observed as

the abrupt partition of the black and gray dots around

NC ’ 500. This parameter is easily obtained in the case

FIG. 5. Sum of the energy and helicity indices n(t) 5 2(e 1 h) as a function of time. R5F is the large DNS and all other cases are LES.

Runs 2, 5F, and 11 have the same imposed rotation (V 5 9) and decreasing viscosity, whereas runs 4, 5F, and 6 have the same viscosity (n 5

1.6 3 1024) and increasing rotation. The resulting dynamics leads to Reynolds and Rossby numbers not quite so well ordered (see Table 1):

for the runs in the vertical, the Rossby numbers vary by 50%, and the Reynolds numbers by a factor of approximately 2.3, whereas for the

runs in the horizontal, they vary respectively by a factor of 6 and 1.8. Axes have the same scales in all plots; the values of 24 and 210/3 are

shown as solid and dashed horizontal lines.
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when the energy spectrum is E(k) ; (�EV)1/2k22

(Dubrulle and Valdettaro 1992; Zhou 1995) by simply

searching for the proportionality of the inverse of the

dissipation wavenumber that emerges from the above

spectrum kD ; [�E/(n2V)]1/2 and the characteristic large

scale of the flow (Canuto and Dubovikov 1997). This is

consistent with the idea stated above that sufficiently

small scales must be excited for the eddy turnover time

to be smaller than the inertial wave period and have

a transition toward the turbulent regime. Taking helicity

into account, its flux �H also comes into play and di-

mensional analysis becomes undetermined, but the idea

remains that the dissipation of energy evaluated using

the appropriate energy spectrum where waves play a role

should lead to a parameter that governs the dynamics.

This result may seem at odds with the conclusions

drawn in Nolan (2005) where the importance of a dif-

ferent combination of dimensionless numbers, namely

Re/Ro 5 VL2/n
*
, is emphasized for studying the physics

of tornadoes. This latter parameter can be viewed as the

ratio of the vortex circulation to n
*

and is sometimes

called the vortex Reynolds number, balancing frictional

and advective terms in the boundary layer. However, it

should be noted that in our simulations there are no

boundary layers (although internal boundary layers

develop), and, furthermore, in the presence of strong

turbulence, the eddy viscosity that replaces n
*

in the

above expression becomes proportional to U2
rms, and

thus it may be that in the turbulent case the parameter

ReRo 5 U2
rms/(nV) becomes the relevant parameter.

Moreover, note that the purpose of our parametric study

is quite different: whereas Nolan (2005) seeks a pre-

dictive parameter before a tornado forms, we are here

dealing with the overall scaling properties of small-scale

fluctuations in a rotating turbulent flow with updrafts or

downdrafts (provided by the helicity).

Besides different scaling laws, the other measurable

differences we find between the two regimes identified

in this paper, at fixed rotation rate, are a longer tNL in

the case when e 1 h 5 4 together with a slightly slower

growth rate in the inverse cascade, due presumably to a

more efficient Beltramization of small scales because of

the excess of small-scale helicity. It would be of interest

to investigate in detail the structure of strong laminar

columns that form in these flows (Beltrami core vortices;

see Mininni and Pouquet 2010b) and relate them to their

far-field environment, but this is left for future work.

However, a preliminary examination of these structures

does not reveal any marked difference of behavior be-

tween the two regimes: the same spatial juxtaposition

of persistent laminar large columnar vortices elongated

along the axis of rotation, and a web of intense small-scale

vortices, is visible in both cases (Mininni and Pouquet

2010a,b). These structures are different from what hap-

pens in a nonhelical flow (Mininni et al. 2009) in which

case no laminar columnar vortices appear in the turbu-

lent regime; this may indicate that, whatever the spectral

law, helicity plays an important role in determining the

statistical properties of rotating helical turbulence and

the stability of its structures.

Another remark that can be made at this point is that,

throughout the preceding discussion, the emphasis has

been on the importance of helicity, which is a topologi-

cal invariant measuring the knottedness of vortex lines

(Moffatt 1969), but no computations are considered of

rotating turbulence without net helicity. A continuation

of this work will obviously involve performing computa-

tions with forcing possessing different degrees of relative

helicity. In fact, in the nonhelical case of a Taylor–Green

forcing studied in Mininni et al. (2009), a k22 spectrum

was found, and one may ask whether it will also disappear

in favor of a pure Kolmogorov spectrum as the Reynolds

number is increased for fixed Rossby number. This point

is left for future investigation.

5. Discussion and conclusions

A significant effort has been put into modeling tur-

bulent flows, both in the engineering and atmospheric

contexts, as well as in astrophysics. The results presented

in this paper show the fact that the helical model de-

veloped previously in Baerenzung et al. (2008b) works

reasonably well when compared to high-resolution high

Reynolds number and moderate Rossby number direct

numerical simulations of helical rotating turbulence. In

this particular case, the inclusion of helicity improves the

FIG. 6. Scatterplot of the normalized ratio of helicity flux to

energy flux as a function of N
C

5 ReRo 5 U2
rms/[nV]. Note the

rather sharp vertical partition at NC ’ 500.
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results, whereas in the nonrotating case with either

nonhelical or helical forcing, or in the rotating case with

nonhelical forcing, the inclusion of helicity in the model

neither enhances nor degrades the results. We also show

that the Chollet and Lesieur (1981) model does not

obtain the correct growth rate of energy in the inverse

cascade; it can be viewed as somewhat deficient insofar

as it seems too dissipative. This can be linked to the fact

that in the presence of strong helicity, the nonlinearities

are damped (Kraichnan and Panda 1988) and thus the

turbulent dissipation is substantially diminished when

compared to the nonhelical case, particularly so in the

rotating case (Teitelbaum and Mininni 2009).

The CPU and memory usage savings when computing

with the model are impressive, since a grid of 963 points

was used in all tests of the LES against the DNS run on

a grid of 15363 points for the same Reynolds and Rossby

numbers. It is possible that further gain may be obtained

when comparing to DNS performed on larger grids at

higher Reynolds numbers, but such an evaluation of the

optimum gain in a LES will have to wait for petascale

computers and beyond. Indeed, a minimum of inertial

range has to be resolved in the LES computation in

order to compute the eddy diffusivity and eddy noise

expressed in terms of the resolved energy and helicity

spectra. Another advantage of the LES model is that

doing temporal three-dimensional visualization of flows

at resolution of 10243 grid points and above is still a

costly exercise, demanding in memory usage as well as

computer and human time. The LES runs, from that

point of view, give a proxy visualization of the flow at

almost no cost and are potentially very useful even when

errors in some of the global statistical properties of the

flow may be as large as 10%, as observed in some of the

LES test runs on grids of 963 points.

Not surprisingly, a comparison with an underresolved

DNS on a grid of 1603 points shows that all LES trials

perform significantly better. Both the energy evolution

and its spectral distribution are wrong for the under-

resolved DNS: there is insufficient dissipation and the

inverse energy cascade is too vigorous with an accu-

mulation of energy at the largest scale as well as in the

smallest scales, while the spectrum at intermediate

scales is greatly undervalued. There is no doubt that at

an equivalent resolution and/or numerical cost, the sev-

eral LES tested here work significantly better. Finally, we

note that the LES-PH model has twice the cost in com-

putational time compared to a DNS at the same grid

resolution.

An obvious application of the helical model tested

here for rotating flows is to explore regimes unattainable

today with DNS. We have done so in the second part of

this paper, examining the scaling laws of energy and

helicity in rotating flows in the direct cascade range. We

find that there can be two regimes, one where inertial

waves interact with helical eddies in the limit of low

Rossby number, yielding energy spectra steeper than

the Kolmogorov law, and one close to the Kolmogorov

regime.

Several questions need to be examined in the future,

among them are the following: what are the structures

that are obtained in the regime of a large Reynolds num-

ber? Are the properties of fully developed turbulent flows

at a low Rossby number close to the predictions of weak

turbulence theory (Galtier 2003)? How does the inverse

cascade scale, and how does it saturate, when sufficient

resolution is present at a large scale? What will be the

effect of adding a friction term at a large scale? What is the

effect of a moderate amount of helicity (only the cases of

maximal or zero helicity forcing have been tested up to

now)? Would a different choice of forcing (such as a two-

dimensional force, or a random force) affect the results?

Furthermore, the model presented in this paper does

not include anisotropies or inhomogeneities of the small

scales, nor does it take into account bottom topography

(see, e.g., Frederiksen 1999) or other realistic physics

relevant when dealing with atmospheric flows. Aniso-

tropic spectra, relevant in the case of rotating flows, have

not been investigated in this paper because the data,

given the resolution of the LES runs, are insufficient

when partially integrating over cylinders or over planes

(see Mininni et al. 2009). This point will require sub-

stantially higher resolutions in the LES, a task left for

future work. However, we note that it was shown in

Mininni and Pouquet (2010a) that the perpendicular

spectra for both the energy and helicity, on the large

DNS performed on the 15363 grid, were almost identical

since roughly 95% of the energy and 75% of the helicity

reside in the kk 5 0 mode.

Memory effects are neglected as well in our modeling

since the EDQNM on which it is based is a Markovian-

ized closure. In this light, a stochastic approach as de-

veloped by several authors (see, e.g., Majda et al. 2003;

Delsole 2004; Frederiksen and Kepert 2006) has led to

significant progress in the modeling of turbulent flows

as tested against direct numerical simulations at mod-

erate resolutions. Further improvements and tests will

be needed to capture as well the memory effects of

turbulent flows. Another obvious drawback of closure

models of turbulence such as the EDQNM is that all

information on moments of the stochastic velocity field

above second order is lost, and phase information among

Fourier modes is lost as well. Thus, for example, in-

termittency is not present in the EDQNM, although it is

observed in the EDQNM-based LES since the LES, in

principle, captures sufficient information on the structure

2768 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 68



of the inertial range. Such improvements will require

nontrivial developments. On the other hand, adding to

the dynamics one or several scalar fields, such as the

potential temperature and the water vapor, cloud water,

and rainwater mixing ratios as done in Wicker and

Wilhelmson (1995), passively advected by the flow, is

not necessarily that cumbersome, since the EDQNM for

the passive scalar problem has been written and thus the

transport coefficients are known. Using adaptive mesh

refinement in the presence of boundaries, as done in

Wicker and Wilhelmson (1995), or possibly with spectral

accuracy (Rosenberg et al. 2006, 2007), will also enhance

our capacity to analyze complex flows.

Some physical models have also incorporated helicity

on the dynamics (Lautenschlager et al. 1988; Yokoi and

Yoshizawa 1993; Li et al. 2006). For example, motivated

by observations of tropical cyclones giving estimates for

the averaged helicity in a variety of flows (Anthes 1982;

Etling 1985; Lilly 1986), a helical subgrid-scale param-

eterization was proposed in Lautenschlager et al. (1988),

following similar studies in magnetohydrodynamics

[MHD; see Krause and Rüdiger (1974) for the case of

neutral fluids]. These analyses differ from the present

study insofar as they concentrate on large-scale instabi-

lities, whereas this paper has been devoted to the issue

of small-scale statistics. For example, in Lautenschlager

et al. (1988), the modeling, supported by low-resolution

DNS, is done using transport coefficients proportional

to the vorticity, inspired by the equivalent destabilizing

effect of small-scale helicity on large-scale magnetic

fields in MHD. Instabilities involving three derivatives

of the velocity [in Fourier space ;k3v̂(k, t)] in the pres-

ence of helicity were computed in Pouquet et al. (1978)

using the renormalization group when considering the

limit k / 0, in which case they are subdominant. The

problem remains of properly modeling the effect of

small-scale helicity on large-scale flows, the approach

taken in this paper being a modification to the eddy vis-

cosity integrating a helical component, although large-

scale instabilities may develop as well (Frisch et al. 1984).

Finally, our model is isotropic in the unresolved scales,

an assumption that can of course be relaxed [see Cambon

and Scott (1999); Sagaut and Cambon (2008), and refer-

ences therein]. It would lead to more complex expressions

for the energy transfer terms involving variations of cor-

relation functions in terms of both k? and kk (where? and

k refer to the direction of rotation). This implies that a

numerical integration of such anisotropic closures is sig-

nificantly more costly than what is performed in the work

presented here, since angles as well as wavenumbers have

to be discretized. As shown above, the isotropy assump-

tion works relatively well at the moderate Rossby num-

bers tested here, which are close to atmospheric values,

although at substantially lower values of the Rossby

number more complex models may have to be developed.
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