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Casimir force for absorbing media in an open quantum system framework: Scalar model
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In this article we compute the Casimir force between two finite-width mirrors at finite temperature, working in a
simplified model in 1 + 1 dimensions. The mirrors, considered as dissipative media, are modeled by a continuous
set of harmonic oscillators which in turn are coupled to an external environment at thermal equilibrium. The
calculation of the Casimir force is performed in the framework of the theory of open quantum systems. It is
shown that the Casimir interaction has two different contributions: the usual radiation pressure from the vacuum,
which is obtained for ideal mirrors without dissipation or losses, and a Langevin force associated with the noise
induced by the interaction between dielectric atoms in the slabs and the thermal bath. Both contributions to the
Casimir force are needed in order to reproduce the analogous Lifshitz formula in 1 + 1 dimensions. We also
discuss the relationship between the electromagnetic properties of the mirrors and the spectral density of the
environment.
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I. INTRODUCTION

Given the precision that has been recently achieved in the
measurement of the Casimir forces [1], the use of realistic
models for the description of the media that constitute the
mirrors is an unavoidable step for the improvement of Casimir
energy calculations, which is needed for comparison with
the experimental data. Moreover, from a conceptual point
of view, the theoretical calculations for mirrors with general
electromagnetic properties, including absorption, is not a
completely settled issue [2–4]. Since dissipative effects imply
the possibility of energy interchange between different parts
of the full system (mirrors, vacuum field, and environment),
the theory of open quantum systems [5] is the natural approach
to clarify the role of dissipation in Casimir physics. Indeed, in
this framework, dissipation and noise appears in the effective
theory of the relevant degrees of freedom (the electromagnetic
field) after integration of the matter and other environmental
degrees of freedom.

Dielectric slabs are, in general, nonlinear, inhomogeneous,
dispersive, and also dissipative media. These aspects render
difficult the quantization of a field when they all have to
be taken into account simultaneously. There are different
approaches to address this problem. On the one hand, one can
use a phenomenological description based on the macroscopic
electromagnetic properties of the materials. The quantization
can be performed starting from the macroscopic Maxwell
equations and including noise terms to account for absorption
[6]. In this approach, a canonical quantization scheme is not
possible, unless one couples the electromagnetic field to a
reservoir (see [3]) following the standard route to include
dissipation in simple quantum mechanical systems. Another
possibility is to establish a first-principles model in which
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the slabs are described through their microscopic degrees of
freedom, which are coupled to the electromagnetic field. In
this kind of model, losses are also incorporated by considering
a thermal bath to allow for the possibility of the absorption of
light. There is a large body of literature on the quantization of
the electromagnetic field in dielectrics. Regarding microscopic
models, the fully canonical quantization of the electromagnetic
field in dispersive and lossy dielectrics has been performed
by Huttner and Barnett (HB) [7]. In the HB model, the
electromagnetic field is coupled to matter (the polarization
field), and the matter is coupled to a reservoir that is included
into the model to describe the losses. In the context of the
theory of open quantum systems, one can think of the HB
model as a composite system in which the relevant degrees
of freedom belong to two subsystems (the electromagnetic
field and the matter), and the matter degrees of freedom are
in turn coupled to an environment (the thermal reservoir). The
indirect coupling between the electromagnetic field and the
thermal reservoir is responsible for the losses. As we will
comment below, this will be our starting point to compute the
Casimir force between absorbing media.

Regarding the Casimir force, the celebrated Lifshitz for-
mula [8] describes the forces between dielectrics in terms
of their macroscopic electromagnetic properties. The original
derivation of this very general formula is based on a macro-
scopic approach, starting from stochastic Maxwell equations
and using thermodynamical properties for the stochastic fields.
As pointed out in several papers, the connection between this
approach and an approach based on a fully quantized model
is not completely clear. Moreover, some doubts have been
raised about the applicability of the Lifshitz formula to lossy
dielectrics [2–4].

The first calculation of the Casimir force between two
absorbing slabs using a microscopic approach is, to our knowl-
edge, due to Kupiszewska [9], who modeled dielectric atoms
as a set of harmonic oscillators coupled to an environment
with T = 0 and in which the atoms can dissipate energy. In
that work, a scalar field in 1 + 1 dimensions was considered,

052517-11050-2947/2011/84(5)/052517(12) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.84.052517
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and all the environmental effects were described through a
dissipative constant and a Langevin force. In the context
of open quantum systems, this is tantamount to considering
an Ohmic environment. The force between slabs was then
obtained in terms of the reflection coefficients associated with
the slabs, which are described by a complex dielectric function.
This result was rederived using a Green-function method
for quantizing the macroscopic field in absorbing systems
in one-dimension (1D) in conjunction with the scattering
matrix approach [10]. This was also extended to two identical
absorbing superlattices [11]. Esquivel-Sirvent et al. demon-
strated an alternative Green-function approach that makes the
quantization of the field within the slabs unnecessary and
calculated the Casimir force in an asymmetric configuration
[12] which was earlier considered only in the lossless case
[13]. In Ref. [14], the Casimir force was calculated in a
lossless dispersive layer of an otherwise absorbing multilayer
by using the macroscopic field operators considered by [15].
In the series of works [4,16,17], Rosa et al. considered
the evaluation of the electromagnetic energy density in the
presence of an absorbing and dissipative dielectric, using the
HB model for T = 0 and constant dissipation. In particular,
in the recent Ref. [17], they obtained the force density
associated with spatial variations of the permittivity from
which, in principle, one could obtain the Casimir force between
slabs.

In this paper we will follow a program similar to that
of Ref. [9], generalizing it by considering a general and
well-defined open quantum system. We will work with a
simplified model analogous to the HB model, assuming that
the dielectric atoms in the slabs are quantum Brownian
particles and that they are subjected to fluctuations (noise)
and dissipation due to the coupling to an external thermal
environment. We will keep generality in the type of spectral
density to specify the bath to which the atoms are coupled,
generalizing the constant dissipation model used in Ref. [9].
Indeed, after integration of the environmental degrees of
freedom, it will be possible to obtain the dissipation and
noise kernels that modify the unitary equation of motion
of the dielectric atoms. As we will see, general non-Ohmic
environments do not provide constant dissipation coefficients
in the equation of motion of the Brownian particles, even
at high temperatures. Moreover, the spectral density of the
environment determines the electromagnetic properties of the
mirrors and therefore have a direct influence on the Casimir
force.

In addition to the conceptual issues described above,
there are additional motivations to consider detailed mi-
croscopic models of the Casimir force, in particular, the
controversy about its temperature dependence. Assuming
simple phenomenological descriptions of the materials based
on the plasma or Drude models, the theoretical predictions
for the Casimir force are different due to the contribution
(or not) of the transverse electric (TE) zero mode [18].
At small distances a such that aT " 1, the differences
are not too large, and the experimental results by Decca
et al. [19] seem to be well described by the plasma
model. However, at large distances aT # 1, the theoretical
predictions differ by a factor of two. The Casimir force
at such large distances have been recently measured [20],

and the results are compatible with the Drude model af-
ter taking into account the interactions due to patch po-
tentials on the surfaces of the conductors (some authors
disagree with the evaluation of the effects of the patch
potentials; see [21]). In any case, these controversies show
that more detailed microscopic models are necessary to
clarify the situation. For example, considering that the
slabs contain classical or quantum nonrelativistic charges
interacting via the static Coulomb potential, the result for
the large-distance limit agrees with that of the Drude
model [22].

Another motivation for considering the Casimir forces in
the framework of open quantum systems is the possibility
of analyzing nonequilibrium effects, such as the Casimir force
between objects at different temperatures [23] and the power of
heat transfer between them [24], including the time-dependent
evolution until reaching a stationary situation.

This paper is organized as follows: In the next section we
present the model, the Heisenberg equations of motion
for the different operators, and the vacuum and Langevin
contributions to the field operator. In Sec. III we study
in depth the relationship between the microscopic model and
the macroscopic electromagnetic properties of the mirrors.
Section IV is dedicated to the evaluation of the Casimir force.
After adding the vacuum and Langevin contributions, we
show that the total force is given by a Lifshitz-like formula,
where the reflection coefficients of the slabs depend on the
properties of the atoms and the environment considered in the
model. In Sec. V we comment on the relationship of the open
quantum systems approach developed in this paper and the
Euclidean computation of the Casimir force. We summarize
our findings in Sec. VI. The appendices contain some details
of the calculations.

II. THE MODEL

A. Lagrangian density

With the aim of including effects of dissipation and noise in
the calculation of Casimir force, we will use the theory of open
quantum systems, having in mind the paradigmatic example
of quantum Brownian motion (QBM) [5].

The model consists of a system composed of two parts:
a massless scalar field and dielectric slabs which, in turn,
are described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems conform a composite
system which is coupled to a second set of harmonic oscillators
that plays the role of an external environment or thermal
bath. For simplicity we will work in 1 + 1 dimensions.
In our toy model the massless field represents the elec-
tromagnetic field, and the first set of harmonic oscillators
directly coupled to the scalar field represents the atoms in the
slab.

Considering the usual interaction term between the electro-
magnetic field and the ordinary matter, the coupling between
the field and the atoms in the slab will be taken as a current-type
coupling, where the field couples to the velocity of the atoms.
The coupling constant for this interaction is the electric
charge e. We will also assume that there is no direct coupling
between the field and the thermal bath. The Lagrangian density
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is therefore given by

L = Lφ + LS + Lφ−S + LB + LS−B

= 1
2
∂µφ∂

µφ + 4πη
(

1
2
mṙ2(x; t) − 1

2
mω2

0r
2(x; t)

)

+ 4πηeφ(x; t)ṙ(x; t)

+ 4πη
∑

n

(
1
2
mnq̇

2
n(x; t) − 1

2
mnω

2
nq

2
n(x; t)

)

− 4πη
∑

n

λnqn(x; t)r(x; t), (1)

where we have stressed the fact that r and qn are also
functions of the position (i.e., each atom interacts with a
thermal bath placed at the same position). We have denoted
by η the density of atoms in both slabs. The constants λn

are the coupling constants between the atoms and the bath
oscillators. It is implicitly understood that Eq. (1) represents
the Lagrangian density inside the plates, while outside the
plates the Lagrangian is given by the free-field one. The
configuration of the slabs, of thickness d and separated by
a distance a, is shown in Fig. 1.

The quantization of the theory is straightforward. It should
be noted that the full Hilbert space of the model H , where the
quantization is performed, is not only the field Hilbert space
Hφ (as is considered in others works where the field is the
only relevant degree of freedom), but also includes the Hilbert
spaces of the atoms HS and the bath oscillators HB , in such a
way that H = Hφ ⊗ HS ⊗ HB . We will assume, as frequently
done in the context of QBM, that for t < 0 the three parts of
the systems are uncorrelated and not interacting. Interactions
are turned on at t = 0. Therefore, the initial conditions for the
operators φ̂ and r̂ must be given in terms of operators acting
in each part of the Hilbert space. The interactions will cause
initial operators to become operators over the whole space H .
The initial density matrix of the total system is of the form

ρ̂(0) = ρ̂φ(0) ⊗ ρ̂S(0) ⊗ ρ̂B. (2)

FIG. 1. (Color online) Plate configuration defining the five
regions in space. The plates are formed by oscillators which are
in contact with thermal environments. The entire system is in thermal
equilibrium at a temperature T . In this work we consider a 1 + 1
version of this configuration.

Since we are interested in the steady state (t → +∞), we will
assume thermal equilibrium at temperature T = 1/β between
the three parts. Each density matrix in Eq. (2) will be taken as
thermal type (we have set h̄ = kB = c = 1).

B. Heisenberg equations of motion

Starting from the Lagrangian (1), it is easy to derive the
Heisenberg equations of motion for the different operators.
They are are given by

p̂n = mn
˙̂qn, (3)

˙̂pn = −mnω
2
nq̂n + λn̂r, (4)

p̂ = m ˙̂r + eφ̂, (5)
˙̂p = −mω2

0 r̂ +
∑

n

λnq̂n, (6)

!φ̂ = 4πηe ˙̂r , (7)

where the operators p̂ and p̂n are the conjugate momentum
operators associated with the operators r̂ and q̂n, respectively.
Substituting Eq. (3) into Eq. (4), we get

mn
¨̂qn + mnω

2
nq̂n − λn̂r = 0. (8)

As usual in the context of QBM, we solve the equations
for the operators q̂n taking r̂ as a source, and substitute the
solutions into Eq. (6). In this way, the microscopic degrees of
freedom in the slabs satisfy a Langevin-like equation of the
form

˙̂p = −mω2
0 r̂ − m

d

dt

∫ t

0
dτγ (t − τ )̂r(x; τ ) + F̂ (x; t), (9)

where the damping kernel γ and the stochastic force operator
F̂ are the same as those of QBM (see [5] for a general and
complete view). They are given by

γ (t) = 2
m

∫ +∞

0
dω

J (ω)
ω

cos(ωt), (10)

F̂ (t) =
∑

n

λn√
2mnωn

(
e−iωnt b̂n + eiωnt b̂†n

)
. (11)

Here, b̂n and b̂
†
n are the annihilation and creation operators

associated with q̂n, and J (ω) is the spectral density that
characterizes the environment. This function gives the number
of oscillators in each frequency for given values of the coupling
constants λn:

J (ω) =
∑

n

λ2
n

2mnωn

δ(ω − ωn). (12)

In order to obtain a true irreversible dynamics, we introduce
a continuous distribution of bath modes that replaces the
spectral density by a smooth function of the frequency ω of the
bath modes. Different functions will describe different types of
environments. Physically, the thermal bath has a finite number
of oscillators in a given range of frequencies. Then, a cutoff
function must be introduced, containing some characteristic
frequency scale ,. In this case, the spectral density takes the
following form:

J (ω) = 2
π

mγ0ω
(ω

,

)α−1
f
(ω

,

)
. (13)
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In the equation above, γ0 is the relaxation constant of the
environment, while f is the frequency cutoff function. The
values of α classify the different types of environments:
α = 1 corresponds to an Ohmic environment (in which there
is a dissipative term proportional to the velocity in the
Langevin equation for the Brownian particle), while α < 1 and
α > 1 describe sub-Ohmic and supra-Ohmic environments,
respectively [5].

At equilibrium, the stochastic force operator in Eq. (11)
and the damping kernel γ in Eq. (10) are not independent. The
statistical properties of the stochastic force operator are given
by the dissipation and noise kernels

D(t − t ′) ≡ i〈[F̂ (t); F̂ (t ′)]〉 = i[F̂ (t); F̂ (t ′)]

= −2
∫ +∞

0
dωJ (ω) sin[ω(t − t ′)], (14)

D1(t − t ′) ≡ 〈{F̂ (t); F̂ (t ′)}〉

= 2
∫ +∞

0
dωJ (ω) coth

( ω

2T

)
cos[ω(t − t ′)],

(15)

which are the formal open quantum systems generalization of
the relations employed in Ref. [9] for general environments
and arbitrary temperature. Note that only the noise kernel
D1 involves the environmental temperature T as a parameter.
Considering Eqs. (10) and (14), it is easy to show that

d

dt
γ (t − s) = − 1

m
D(t − s), (16)

which relates the damping kernel γ to the statistical properties
of the stochastic force operator F̂ .

All in all, the set of equations to solve now are Eqs. (5), (7),
and (9).

It is possible to obtain a formal solution for the operators
r̂(x; t) by considering the field φ as a source for the equation.
This solution generalizes the crude approximation made in
Ref. [9] for the evolution of the microscopic degrees of
freedom in the mirrors. It is given by

r̂(x; t) = G1(t )̂r(x; 0) + G2(t)˙̂r (x; 0)

+ 1
m

∫ t

0
dsG2(t − s)[F̂ (x; s) − e ˙̂φ (x; s)], (17)

where G1,2 are the Green functions associated with the QBM
equation that satisfy

G1(0) = 1, Ġ1(0) = 0, (18)

G2(0) = 0, Ġ2(0) = 1, (19)

for which, the Laplace transforms are given by

G̃1(z) = z

z2 + ω2
0 + zγ̃ (z)

, (20)

G̃2(z) = 1
z2 + ω2

0 + zγ̃ (z)
, (21)

where γ̃ is the Laplace transform of the damping kernel. Note
that, given these conditions, one can prove that G1(t) = Ġ2(t).

Inserting this solution into Eq. (7), we obtain the following
equation for the field operator:

!φ̂ + 4πηe2

m

∫ t

0
G1(t − τ ) ˙̂φ(x; τ )dτ

= 4πηe

(

Ġ1(t )̂r(x; 0) + G1(t)˙̂r (x; 0)

+ 1
m

∫ t

0
G1(t − τ )F̂ (x; τ )dτ

)

, (22)

subjected to the free-field initial conditions

φ̂(x; 0) =
∫

dk

(
1
ωk

) 1
2

(̂ake
ikx + â

†
ke

−ikx), (23)

˙̂φ (x; 0) =
∫

dk

(
1
ωk

) 1
2

(−iωkâke
ikx + iωkâ

†
ke

−ikx),

(24)

where âk and â
†
k are the annihilation and creation operators for

the free field, and ωk = |k|. The boundary conditions are the
continuity of the field and its spatial derivative at the interface
points.

We will compute the Casimir force from the xx-component
of the energy-momentum tensor

T̂xx(x; t) = 1
2 [(∂0φ̂)2 + (∂x φ̂)2]. (25)

The force is explicitly given by

FC =
〈
T̂ ext

xx

〉
−

〈
T̂ int

xx

〉
, (26)

where the expectation values are taken on the regions outside
the planes (regions I or V) and between them (region III),
respectively, in a thermal equilibrium situation.

For this calculation, we need the explicit solution for
the field equation (22). Considering the properties of the
fundamental solutions G1,2, the first step is to take the Laplace
transform of the equation in order to obtain

0 = ∂2

∂x2
φ̂(x; s) − s2

(
1 + 4πηe2

m
G̃2(s)

)
φ̂(x; s)

+ sφ̂(x; 0) + ˙̂φ(x; 0)

+ 4πηe
m

G̃1(s)F̂ (x; s) + 4πηe
m

G̃1(s)p̂(x; 0)

+ 4πηêr(x; 0)(sG̃1(s) − 1). (27)

Since we are interested in the long-time behavior (t →
+∞), we can omit terms containing the positions r̂ and
momenta p̂ of the oscillators at t = 0. This assumption is well
justified for t # 1/γ0, the scale associated with the damping
or relaxation time of the environment. Therefore, the equation
for the field can be approximated by

∂2

∂x2
φ̂(x; s) − s2

(
1 + 4πηe2

m
G̃2(s)

)
φ̂(x; s)

= −sφ̂(x; 0) − ˙̂φ(x; 0) − 4πηe
m

G̃1(s)F̂ (x; s). (28)

This is the equation for the Laplace transform of the field,
with the initial conditions and the Laplace transform of the
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stochastic Langevin force as sources. For simplicity, the spatial
dependence of the matter terms was omitted, but it is important
to remember that this expression is valid for the points inside
the plates. Note also that, because there is no contribution from
the atoms to the sources, the field operator φ̂ acts on HS as an
identity.

We propose a solution of the form φ̂(x; t) = φ̂V (x; t) +
φ̂L(x; t), where two contributions are distinguished: the vac-
uum contribution φ̂V (x; t), which results from the modified
field modes, and the Langevin contribution φ̂L(x; t), which
depends linearly on the Langevin forces. Each contribution
satisfies

∂2

∂x2
φ̂V (x; s) − s2

(
1 + 4πηe2

m
G̃2(s)

)
φ̂V (x; s)

= −sφ̂(x; 0) − ˙̂φ (x; 0), (29)

∂2

∂x2
φ̂L(x; s) − s2

(
1 + 4πηe2

m
G̃2(s)

)
φ̂L(x; s)

= −4πηe
m

G̃1(s)F̂ (x; s). (30)

It is worth noting that the first equation presents only
operators acting on Hφ , thus the associated field contribution is
an operator on that space. In the same way, the second equation
depends only on operators acting on HB , and therefore the
Langevin contribution acts nontrivially only there. Taking all
this into account, the field operator reads

φ̂(x; t) = φ̂V (x; t) ⊗ IS ⊗ IB + Iφ ⊗ IS ⊗ φ̂L(x; t). (31)

In summary, the atoms act like a bridge between the field
and the thermal bath, making no contributions to the total
field. The problem, then, has been completely separated into
two parts that will be computed in the next subsection.

C. Vacuum and Langevin contributions

We will now solve the two independent equations (29) and
(30). For the vacuum contribution φ̂V , the solution for t →
+∞ is assumed to have the form

φ̂V (x; t) =
[∫ +∞

0
+

∫ 0

−∞

]
dk

2π

(
π

ωk

) 1
2

×
(
âke

−iωk t fk(x) + â
†
ke

iωk t f ∗
k (x)

)
, (32)

where the first integral comprises the waves going from left
to right, and the second one comprises the waves going from
right to left. The mode functions fk(x) satisfy the equation

d2

dx2
fk(x) + ω2

kn
2(ωk)fk(x) = 0. (33)

The refractive index n(ωk) is given by

n2(ωk) = 1 + 4πηe2

m
G̃2(−iωk)

= 1 + ω2
P

ω2
0 − ω2

k − iωk γ̃ (−iωk)
, (34)

where ω2
P = 4πηe2

m
is the plasma frequency.

It is worth noting that Eq. (33) is of the same form as the
equation for the modes in a nonabsorbing dielectric medium

[25], except that, in this case, the refractive index is frequency-
dependent. On the other hand, Eq. (34) depends on the Fourier
transform of the damping kernel, which is associated with a
general environment. There is no assumption either about the
spectral density of the environment or about the value of the
equilibrium temperature. In the next section we will analyze in
more detail the relation between the electromagnetic response
of the medium and the spectral density.

Equation (33) for the modes can be solved by imposing
continuity of the mode functions fk at all interfaces. The
calculation is long but straightforward and is described in
Appendix A.

In order to obtain the Langevin contribution, we must solve
Eq. (30). Since the interaction begins at t = 0, the equations
for the Laplace and Fourier transforms for this contribution
are identical and related by s = −ik. Thus, the long-time
solution can be written as φ̂L(x; t) =

∫ +∞
−∞

dk
2π φ̂L(x; k)e−ikt ,

where φ̂L(x; k) satisfies

∂2

∂x2
φ̂L(x; k) + k2φ̂L(x; k) = 0, (35)

in regions I, III, and V, and

∂2

∂x2
φ̂L(x; k) + k2n2(k)φ̂L(x; k)

= −4πηe
m

ik[
k2

0 − k2 − ikγ̃ (−ik)
] F̂ (x; k), (36)

in regions II and IV. Here, F̂ (x; k) is the Fourier transform of
the stochastic force operator. The explicit solution is presented
in Appendix B.

In Sec. IV we will use the vacuum and Langevin contri-
butions to the field operator in order to obtain the Casimir
force between slabs. Before doing that, we describe in more
detail the relation between the macroscopic electromagnetic
properties of the slabs and the microscopic model.

III. GENERALIZED PERMITTIVITY FROM OPEN
QUANTUM SYSTEM

With the aim of checking if our model is physically
consistent, we analyze the properties of the refraction index
given in Eq. (34). Considering that ε(ω) = n2(ω) is the
permittivity of the material plates, we have

ε(ω) − 1 = ω2
P

ω2
0 − ω2 − iωγ̃ (−iω)

. (37)

We can define the susceptibility kernel χ (τ ) for the model
as [26]

χ (τ ) = 1
2π

∫ +∞

−∞
[ε(ω) − 1]e−iωτdω

= ω2
P

2π

∫ +∞

−∞

e−iωτ

ω2
0 − ω2 − iωγ̃ (−iω)

dω. (38)

In principle, this integral can be evaluated by contour integra-
tion. Inversely, the permittivity can be expressed in terms of
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χ (τ ) as

ε(ω) = 1 +
∫ +∞

−∞
χ (τ )eiωτdτ, (39)

which can be viewed as a representation of ε(ω) in the complex
ω-plane. The permittivity is well defined whenχ (τ ) is finite for
all τ and χ (τ ) → 0 as τ → ±∞, and its analytical properties
can be studied directly from this expression.

All properties of the permittivity and susceptibility func-
tions are strongly dependent on the Laplace transform of the
damping kernel γ̃ (ik), which in turn depends on the spectral
density of the environment. After taking the Laplace transform
of Eq. (10), we obtain

γ̃ (s) = 2
m

∫ +∞

0
dω

J (ω)
ω

s

(s2 + ω2)
. (40)

As already described, a physical spectral density must in-
corporate a cutoff function. One could use a sharp cutoff
or, alternatively, choose a continuous cutoff function that
approaches zero rapidly for frequencies greater than the cutoff
frequency ,, ensuring the convergence of the integral.

The first alternative, although simpler, makes the function
γ̃ (ik) not well defined in the complex plane. The second
alternative solves this problem and allows the use of the
residue theorem to evaluate the integral. Inserting Eq. (13)
into Eq. (40), we obtain

γ̃ (s) = 4γ0s

π,α−1

∫ +∞

0
dω

ωα−1

(s2 + ω2)
f
(ω

,

)
. (41)

In order to apply the residue theorem, the integrand must
be holomorphic on the superior complex half plane, except
at a finite number of points which are not on the real axis.
Thus, different results are obtained considering distributions
with or without poles on the superior half plane. For an Ohmic
environment (α = 1) and no cutoff function it is easy to see
that γ̃ (s) = 2γ0.

In the case of distributions without poles (for example, a
Gaussian cutoff function), we have

γ̃NP(−ik) = π

mk
J (k) ≡ γ̃1(k), (42)

where the subscript NP denotes the fact that the distribution
has no poles. The resulting function is real and even in the
variable k.

On the other hand, the distributions usually considered in
the literature have poles on ±i, (for example, a Lorentzian

distribution). In these cases, for oddωα [withα < 4 to maintain
the convergence in Eq.(41)], we get

γ̃P (−ik) = π

mk
J,(k) + i(−1)

α−1
2

π

mk

(
− k

,

)α−1

J−k(,),

(43)

where the subscripts on J denote the location of the pole.
Although the resulting function is complex, the second equality
in Eq. (42) remains valid.

Taking into account the above properties of the damping
kernel, we now continue analyzing the properties of the per-
mittivity and susceptibility functions. As a particular example,
in the Drude model one has γ̃ (−iω) ≡ γ0. Therefore, the
denominator in Eq. (38) has two poles, both in the lower-half
ω plane. Thus, as expected from a physical point of view,
the susceptibility kernel shows a causal behavior, since it
vanishes for τ < 0. The analyticity of ε(ω) in the upper-half
ω plane allows the use of Cauchy’s theorem, resulting in
the well-known Kramers-Kronig relations for the real and
imaginary part of the permittivity function ε(ω).

In our more general case, the physical properties of ε(ω) are
determined by the function γ̃ (−iω). This dissipation function
is given by the theory of open quantum systems through
Eqs. (42) and (43) and depends on the chosen cutoff function.

Let us first consider, for simplicity, the case in which the
cutoff function has no poles, which is represented by the
Eq. (42). For a given spectral density, the denominator in
Eq. (38) reads

D
(α)
NP(ω) = ω2

0 − ω2 − i2γ0ω
(ω

,

)α−1
f
(ω

,

)
. (44)

If we choose an Ohmic environment (α = 1) and no cutoff
function (which is equivalent to putting f ≡ 1), we reobtain the
Drude model (if ω0 = 0) or the one-resonance model (when
ω0 .= 0). In principle, we could consider other values of α
while keeping f ≡ 1. In this case,ωα should be an odd function.
For example, α = 3 gives an ill-defined pole configuration,
since one of the poles lies on the upper-half ω plane, breaking
the analyticity of the integrand in Eq. (38) and resulting in a
noncausal susceptibility, which turns out to be unphysical.

Therefore, we see that, for this supra-Ohmic environment,
the use of a cutoff is unavoidable. We may use an analytical
cutoff (like a Gaussian function), or a Lorentzian cutoff
function. The first alternative leads to a denominator D

(α)
NP

whose zeros cannot be obtained analytically. The second
alternative, valid for α < 4 such that ωα is an odd function,
leads to a denominator

D
(α)
P (ω) =

(,2 + ω2)
(
ω2

0 − ω2
)
+ 2γ0,

3−αω2
[
(−1)

α−1
2 ,α−2 − iωα−2

]

(,2 + ω2)
, (45)

which for α = 3 gives

D
(3)
P (ω) = ,ω2

0 − iω2
0ω − (2γ0 + ,)ω2 + iω3

, − iω
. (46)

We denote the zeros of D
(3)
P asωi = ω0xi (with i = 1, 2, 3).

The three roots turn out to be located in the lower-half ω plane,
which ensures the causality property. Also, one of the roots
is purely imaginary (x1 = −x∗

1 = −i|x1|) and the two others
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have the same (negative) imaginary part but opposite real parts
(x3 = −x∗

2 ). Thus, the susceptibility kernel reads

χ
(3)
P (τ ) = −

(
ωP

ω0

)2
{

(, − ω0|x1|)
(x1 − x2)(x1 + x∗

2 )
e−ω0|x1|τ

+ 2Re
[

(, − iω0x2)
(x2 − x1)(x2 + x∗

2 )
e−iω0x2τ

]}

θ (τ ), (47)

where it is clear that it is a causal real function and, due
to the negativity of the imaginary part of the roots xi , we
have χ

(3)
P (τ ) → 0 for τ → +∞, as expected. We also have

that χ (3)
P (0) = 0 but χ (3)′

P (0) .= 0, and therefore the asymptotic
expression found in [26] still remains valid as well as the
Kramers-Kronig relations.

It is worth noting that an Ohmic environment (α = 1) can
be also studied with a cutoff function, obtaining similar results.

All in all, we have shown that our model is physically
consistent and generalizes previous results for the permittivity
of absorbing media, including as a particular case the Drude
model. Plasma-like models do not contain dissipation and
can be obtained by taking γ0 = 0, which corresponds to no
coupling between the system and the bath.

IV. CASIMIR FORCE

A. Energy-momentum tensor and the different
contributions to Casimir force

Once we have determined the two contributions to the field,
we proceed to compute the Casimir force between the plates, as
given by Eq. (26). For this purpose, it is necessary to compute
the expectation value of T̂xx which is given by Eq. (25).

Considering the vacuum and Langevin contributions ac-
cording to Eq. (31), we have

T̂xx(x; t) = 1
2 {[∂0(φ̂V + φ̂L)]2 + [∂x(φ̂V + φ̂L)]2}

= T̂ V
xx ⊗ IS ⊗ IB + Iφ ⊗ IS ⊗ T̂ L

xx

+ (∂x φ̂V ) ⊗ IS ⊗ (∂x φ̂L) + (∂t φ̂V ) ⊗ IS ⊗ (∂t φ̂L).

(48)

It is worth remarking that there are cross terms which act over
two parts of the total Hilbert space.

Because we are interested in the steady state of the system,
which is assumed to be at thermal equilibrium, each part of the
total density matrix is represented by a thermal-type density
matrix. On the other hand, both field contributions φ̂V and
φ̂L are linear on the annihilation and creation operators of
their respective parts of the total Hilbert space. Thus, the cross
terms do not contribute to the force in the case of thermal
equilibrium. Then, the problem is reduced to computing the
expectation values over thermal states of the operators T̂ V

xx and
T̂ L

xx ; namely,

f = 〈T̂xx〉 = Trφ
(
ρ̂φ T̂

V
xx

)
+ TrB

(
ρ̂BT̂ L

xx

)
= fV + fL. (49)

Thus, the Casimir force also has two contributions:

FC = fI − fIII =
(
fVI + fLI

)
−

(
fVIII + fLIII

)
= FV

C + FL
C .

(50)

B. Vacuum Casimir force

For the vacuum contribution, T̂ V
xx is quadratic in the

annihilation and creation operators. Thus, in order compute the
expectation value over the thermal state, we need to evaluate
the expectation values of the products of the annihilation and
creation operators. These are given by the known expressions

〈 âkâk′ 〉 = 〈 â†
kâ

†
k′ 〉 = 0, (51)

〈 âkâ
†
k′ 〉 = δ(k − k′)[1 + N (ωk)], (52)

〈 â†
kâk′ 〉 = δ(k − k′)N (ωk), (53)

where N (ωk) = 1/(eβωk − 1).
Taking into account Eq. (32), we have, in region l

fVl (x) = Trφ
(
ρ̂φ T̂

V ,l
xx

)
= 1

4

[∫ +∞

0
+

∫ 0

−∞

]
dk

2π
coth

(
βωk

2

)

×
(

ωk

∣∣f l
k (x)

∣∣2 + 1
ωk

∣∣∣∣
df l

k

dx

∣∣∣∣
2
)

, (54)

which is identical to the expression for a nonabsorbing medium
except that, in this case, there is a thermal factor coth(βωk/2)
related to the temperature of the field.

Using the solutions for the modes functions f l
k in regions I

and III (see Appendix A), the vacuum Casimir force is given
by

FV
C = fVI − fVIII = 1

2

∫ +∞

0

dk

2π
k coth

(
βωk

2

)

× [1 + |Rk|2 + |Tk|2 − 2(|Ck|2 + |Dk|2)]. (55)

The coefficients Rk , Tk , Ck , and Dk are given explicitly in
Appendix A. It is worth noting the appearance of a thermal
global factor in the last expression, which comes from the
field’s thermal state at temperature T , based on the equilibrium
assumption.

C. Langevin Casimir force

For computing the Langevin contribution to the force, it
is necessary to know the expectation value (over the bath’s
thermal state) of the force operator, where binary products are
evaluated at different frequencies.

For any time-dependent Hermitian operator, the expectation
value evaluated at different times corresponds to the correlation
function of the operator. This matches with half of the
anticommutator expectation value at different times. Thus,
making Fourier transforms over both times, we can compute
the desired products of the Fourier transform of the force
operator at different frequencies.

For the case of thermal equilibrium, the anticommutator
expectation value at different times of the force operator is
provided by the QBM theory. One can show that it matches
the noise kernel D1(t − t ′) of Eq. (15). Thus, we obtain

〈{F̂ (k); F̂ (k′)}〉 = J (ωk) coth
(
βωk

2

)
δ(k + k′). (56)
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Considering that, in our case, the stochastic force operator
depends on the position where the atom is located, we finally
have

〈F̂ (x; k)F̂ (x ′; k′)〉 = δ(x − x ′)
J (ωk)

2η
coth

(
βωk

2

)
δ(k + k′),

(57)

where we have included the atom density η due to dimensional
issues. As can be seen, the frequency spectrum is not flat.

Taking all this into account, T̂ L
xx in regions I and III are

given by

T̂ L,I
xx (x; t) =

∫ +∞

−∞

dk

2π

∫ +∞

−∞

dk′

2π
(−kk′)Ŵ1(k)Ŵ1(k′)

× e−i(k+k′)(x+t), (58)

T̂ L,III
xx (x; t) =

∫ +∞

−∞

dk

2π

∫ +∞

−∞

dk′

2π
(−kk′)e−i(k+k′)t

× (Ŵ2(k)Ŵ2(k′)ei(k+k′)x

+ Ŵ3(k)Ŵ3(k′)e−i(k+k′)x). (59)

The coefficients Ŵi(k) in these equations are given in
Appendix B and are linear functions of the Fourier transform
of the stochastic force operator. Taking into account the
explicit expressions in Appendix B and Eq. (57), the desired
expectation values are

〈Ŵ1(k)Ŵ1(k′)〉

= |W(k)|2 2π
m

J (ωk)
k2γ̃1(k)

e−z2 coth
(
βωk

2

)
δ(k + k′)

× {n1(1 − e−z2 )(|t |2ez2 + |rn + rei2ka|2 + ez2 |1
+ rrne

i2ka|2 + |t |2|rn|2) + 2n2Re[|t |2i(e−iz1 − 1)r∗
n

+ i(1 − eiz1 )(1 + r∗r∗
ne−i2ka)(rn + rei2ka)]},

(60)

〈Ŵ2(k)Ŵ2(k′)〉

= 〈Ŵ3(k)Ŵ3(k′)〉 = |W(k)|2 2π
m

J (ωk)
k2γ̃1(k)

(1 + |r|2)

× coth
(
βωk

2

)
δ(k + k′){n1(1 − e−z2 )(1 + |rn|2e−z2 )

+ 2n2e
−z2 Re[i(1 − eiz1 )rn]}, (61)

where n = n1 + in2 [i.e., n1 = Re(n) and n2 = Im(n)],
γ̃ (ik) = γ̃1(k) + iγ̃2(k), z1 = 2kn1d, and z2 = 2kn2d. The
explicit expressions for the coefficients r , rn, and t can be
found in Appendix A.

Therefore, the Langevin contribution to the force in regions
I and III is given by

fLI = TrB
(
ρ̂BT̂ L,I

xx

)
=

∫ +∞

−∞

dk

2π
|W(k)|2 2π

m

J (ωk)
γ̃1(k)

e−z2

× coth
(
βωk

2

)
{n1(1 − e−z2 )(|t |2ez2 + |rn + rei2ka|2

+ ez2 |1 + rrne
i2ka|2 + |t |2|rn|2)

+ 2n2Re[|t |2i(e−iz1 − 1)r∗
n + i(1 − eiz1 )

× (1 + r∗r∗
ne−i2ka)(rn + rei2ka)]}, (62)

fLIII = TrB(ρ̂BT̂ L,III
xx ) =

∫ +∞

−∞

dk

2π
|W(k)|2 4π

m

J (ωk)
γ̃1(k)

× coth
(
βωk

2

)
(1 + |r|2){n1(1 − e−z2 )(1 + |rn|2e−z2 )

+ 2n2e
−z2 Re[i(1 − eiz1 )rn]}. (63)

Taking advantage that the integration is over all the values
of k, the fact that the change k ↔ −k is equivalent to complex
conjugation, and the second equality of Eq. (42), we obtain

fLI =
∫ +∞

0

dk

2π
k

2
|n + 1|2

|n|2
8|t |2n1e

−z2

|1 − r2ei2ka|2
coth

(
βk

2

)
(1 − e−z2 )

×(|t |2ez2 +|rn + rei2ka|2+ez2 |1 + rrne
i2ka|2+|t |2|rn|2),

(64)

fLIII =
∫ +∞

0

dk

2π
k

2
|n + 1|2

|n|2
16|t |2n1

|1 − r2ei2ka|2
coth

(
βk

2

)
(1−e−z2 )

×(1 + |r|2)(1 + |rn|2e−z2 ). (65)

Note that the presence of the thermal factor coth( βk
2 ) is in

agreement with the null temperature result obtained in other
works for an Ohmic environment [9], since when T → 0,
coth( βk

2 ) → 1.
Finally, the Langevin contribution for the Casimir force is

FL
C = fLI − fLIII =

∫ +∞

0

dk

2π
k

2
|n + 1|2

|n|2
8|t |2n1

|1 − r2ei2ka|2

× coth
(
βk

2

)
(1 − e−z2 )[|t |2 + |rn + rei2ka|2e−z2

+ |1 + rrne
i2ka|2 + |t |2|rn|2e−z2 − 2(1 + |r|2)

× (1 + |rn|2e−z2 )]. (66)

It should be noted that here also appears a global thermal
factor, as in the vacuum case, but this comes from the bath’s
temperature while in the vacuum case comes from the field’s
equilibrium temperature.

Note also that FL
C vanishes when there is no coupling to an

environment, since in this case the refraction index is real and
therefore z2 = 0.

D. Total Casimir force

The total Casimir force is determined from the expressions
(50), (55), and (66). The resulting force can be written in a
very compact form. On the one hand, it can be proven that the
total free energy in region I (outside the plates) coincides with
that for the free field at temperature T ; that is,

fI = fVI + fLI =
∫ +∞

0

dk

2π
k coth

(
βk

2

)
, (67)

which is expectable due to translational invariance outside the
plates and our assumption of thermal equilibrium. On the other
hand, in region III we have

fIII = fVIII + fLIII =
∫ +∞

0

dk

2π
k coth

(
βk

2

)
(1 − |r|4)

|1 − r2ei2ka|2
.

(68)
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Therefore, the total Casimir force is finally written as

FC[a] = fI − fIII =
∫ +∞

0

dk

2π
k coth

(
βk

2

)

×
(

1 − 1 − |r|4
∣∣1 − r2ei2ka

∣∣2

)

, (69)

or equivalently

FC[a] = − 1
π

Re
[∫ +∞

0
dkk coth

(
βk

2

)
r2ei2ka

1 − r2ei2ka

]
.

(70)

This expression is formally identical to the case of a dissipative
material (Ohmic environment) at zero temperature found in
previous works [9,25]. However, it contains two general-
izations: On the one hand, temperature has been included
in the formalism in a natural way by means of the open
quantum systems theory. On the other hand, the equation is
valid for a general environment: the refraction index is in
general complex and is dependent on the function γ̃ (ik), which
comes from the interactions at the microscopic level. The
associated permittivity depends on the type of environment and
reproduces known results (as the Drude model) as particular
examples.

E. Convergence and limits

In this section we study some properties and limits of our
final result Eq. (70). Let us first study the convergence of this
expression. In general, the Casimir force calculations involve
several regularization methods to achieve a finite result. A
usual approach is to introduce a high-frequency cutoff in order
to take into account the fact that real materials are transparent
at high frequencies. This characteristic is already incorporated
in our model. Indeed, the complex refraction index n includes
all the environment properties which produce dissipation and
noise. For large values of k, taking into account Eq. (34), one
can check that

n1 → 1 − 2πηe2

m

1
k2

, (71)

n2 → 2πηe2

m

γ̃1(k)
k3

. (72)

Then, in the same limit, the reflection coefficient r behaves as

r → πηe2

m

1
k2

(1 − ei2kd ), (73)

and in consequence the integrand of Eq. (70) is O(k−3) for
large values of k. Thus, the convergence is ensured when k →
+∞, regardless of the temperature and the type of environment
considered.

On the other hand, Eq. (70) contains as particular cases
some known results. The nonabsorbing-medium case can be
easily obtained by setting the relaxation constant γ0 = 0 in all
the expressions. This makes the refraction index real, which
cancels the Langevin contribution in Eq. (66) since the factor
1 − e−z2 → 0. Thus, only the vacuum contribution in Eq. (55)
survives but with a real refraction index [25].

Another important limit is the well-known Lifshitz formula.
In the original work [8], Lifshitz considered semispaces

separated by a finite distance. Therefore, one should take the
limit of large thickness (d → +∞), in which r should be
replaced by rn. After a rotation to the imaginary-frequency
axis, Eq. (70) becomes, in the T = 0 case,

FC[a] = 1
π

∫ +∞

0
dss

r2
n(is)e−2sa

1 − r2
n(is)e−2sa

, (74)

which is of the form of the Lifshitz formula for a scalar
field in 1 + 1 dimensions. In the case T .= 0, we must take
into account that coth( βk

2 ) has poles on the imaginary axis
at the Matsubara frequencies 2π iβj = iξj ,j = 0, 1, 2, . . ..
Therefore, the integration path can be rotated to the imaginary
axis, but must be deformed to avoid the poles. This is a standard
procedure that converts the integral over frequencies into the
Matsubara sum

FC[a] = 2T
∑

j"1

ξj

r2
n(iξj )e−2ξj a

1 − r2
n(iξj )e−2ξj a

, (75)

which is the standard expression for Lifshitz formula at T .= 0.
It is interesting to remark that, in our simplified 1 + 1

model, there is no discontinuity in the transition between the
Drude and plasma models. The Drude model is recovered,
in the Ohmic-environment case, by setting ω0 = 0 (i.e., free
particles instead of harmonic oscillators for modeling the
dielectric atoms) and, once this limit is taken, the plasma
model corresponds to the particular case γ0 = 0 (no coupling
to the environment). The reflection coefficient rn → 1 in
the zero-frequency limit, for any value of ωP and γ0, even
setting γ0 = 0 from the beginning. In the case of absence
of coupling to an environment, of course one must assume
thermal equilibrium. Analogies between thermodynamics of
a free Brownian particle and that of an electromagnetic field
between two mirrors of finite conductivity have been studied
in Ref. [27].

V. CONNECTION WITH EUCLIDEAN FORMALISM

Given that we are assuming thermal equilibrium between
the different parts of the system, the results presented in
this paper for the Casimir force could be derived following
a functional approach in Euclidean space, as described for
instance in Refs. [28,29]. We mention briefly the relation
between both approaches.

As is well known, in 1 + 1 dimensions the free energy E
for a quantum system in thermal equilibrium at temperature T
can be computed as

E = −T ln
Z(a)
Z(∞)

, (76)

where Z(a) is the partition function when the plates are
separated by a distance a. The partition function can be
represented by the functional integral

Z =
∫

DφDrDqne
−SE , (77)

where SE is the Euclidean action for the full system. The
integration is performed by imposing periodic boundary
conditions on the temporal coordinate.
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After integrating the matter and bath degrees of freedom it
is possible to find an effective action for the scalar field of the
form

Seff =
∫

d2x
1
2
∂µφ∂µφ +

∫
d2x

∫
d2x ′V (x,x ′)φ(x)φ(x ′),

(78)

and the vacuum-persistence amplitude reads

Z =
∫

Dφe−Seff . (79)

The effective action for the scalar field is quadratic because
of the linear coupling we are choosing for the interaction
between the vacuum field and the matter degrees of freedom.
The potential V (x,x ′) is different from zero only inside the
plates and, as in our model the field φ(x,t) interacts only with
the atom at x, it can be shown that the potential is of the
form V (x,t,x ′,t) = δ(x − x ′)λ(t − t ′). The function λ(t − t ′)
encodes the information about the interaction of the vacuum
field with the matter degrees of freedom, and also of the
influence of the thermal bath. Its Fourier transform is related
to the reflection coefficient of the slab.

Formally, the vacuum persistence amplitude is given by the
functional determinant

Z = (det[−! + V ])−
1
2 . (80)

An explicit evaluation of this determinant leads to the Lifshitz
formula [29]. So when considering thermal equilibrium, one
has an alternative route to the evaluation of the Casimir force,
even when the field is coupled to other degrees of freedom.
However, this Euclidean functional approach would not be
adequate to compute the force for other initial states or, in
general, in nonequilibrium situations. In these cases, the use
of the theory of open quantum systems as described in this
paper is unavoidable.

VI. CONCLUSIONS

In this paper we have presented a derivation of the Casimir
force between two absorbing slabs in the framework of the
theory of open quantum systems. We worked with a simplified
model of a scalar vacuum field in 1 + 1 dimensions. In order to
describe the interaction of the vacuum field with the mirrors,
we considered a model analogous to the HB model for QED,
where the matter degrees of freedom are described by a
continuous set of harmonic oscillators, which are coupled not
only to the vacuum field but also to a thermal bath that accounts
for dissipative effects.

Following a standard procedure in the theory of open
quantum systems, we showed that the field operator satisfies
the modified Klein Gordon equation (22). This is a nonlocal
Langevin equation, which describes the interaction of the
vacuum field with the matter degrees of freedom and the
effects of the thermal bath on its dynamics (the environment is
indirectly coupled to the quantum field through the matter).
This equation is similar to the equation that describes a
Brownian particle coupled to an environment. Both the noise
and dissipation are determined by the properties of the
environment.

The field operator that solves this “Klein-Gordon–
Langevin” equation can be written as the sum of two terms: a
vacuum contribution and a Langevin contribution. The same
happens with the associated energy-momentum tensor, and
therefore we have a similar decomposition for the Casimir
force between slabs. The final result for the total Casimir
force is equivalent to a 1 + 1 version of the Lifshitz formula,
expressed in terms of the reflection coefficients associated
with the slabs. Therefore, we have presented, in this simplified
model, a first-principles derivation of Lifshitz formula in the
framework of quantum open systems.

The present work is closely related to Ref. [9], which has
been improved upon and generalized in several directions.
Indeed, that work assumes the simplest forms for noise and
dissipation (Ohmic environment and constant dissipation,
respectively), without specifying the properties of the environ-
ment. Moreover, it is doubtful whether a general non-Ohmic
environment can produce such effects at T = 0. Here we
worked at T .= 0 and considered very general environments.
We also linked the properties of the environment with the
macroscopic electromagnetic properties of the mirrors. There
is also a close relationship with the recent work [17],
where the authors computed the force density associated with
spatial variations of the permittivity. As compared with ours,
in this reference the authors considered the more realistic
case of a 3 + 1 dimensional electromagnetic field, but only
in the particular case of T = 0 and constant dissipation.
Moreover, they did not consider the presence of boundaries
as we did here, which allowed us to compute explicitly
the Casimir force between slabs and to obtain Lifshitz
formula.

In order to apply the open quantum systems approach
to a realistic calculation of the Casimir force, we should
generalize our results to a 3 + 1 model with the electromag-
netic field. Although technically more complex, we do not
expect conceptual complications in doing so. Regarding the
long-standing controversy about the temperature corrections
to the Casimir force, a crucial point is the behavior of the
quantity

lim
ζ→0

ζ 2[ε(iζ ) − 1],

which vanishes for the Drude model and is different from zero
for the plasma model, producing in the latter case an additional
contribution to the force coming from the TE zero mode. In
the kind of microscopic models considered here, the TE zero
mode is suppressed as long as ω0 .= 0, as can be seen from
Eq. (37).

Finally, in 3 + 1 dimensional models one could con-
sider more general initial states and/or nonequilibrium sit-
uations. We hope to address this issue in a forthcoming
presentation.
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APPENDIX A: BOUNDARY CONDITIONS AND
SOLUTIONS FOR VACUUM CONTRIBUTION

In this appendix we present the explicit form of the solutions
of Eq. (33). In each region we have

f I
k (x) = eikx + Rke

−ikx, (A1)

f II
k (x) = Ake

iknx + Bke
−iknx, (A2)

f III
k (x) = Cke

ikx + Dke
−ikx, (A3)

f IV
k (x) = Eke

iknx + Fke
−iknx, (A4)

f V
k (x) = Tke

ikx . (A5)

The different coefficients can be obtained by imposing
continuity of the mode functions and their derivatives at the
interfaces. They are given by

Rk = e−ika

(
r + t2rei2ka

(1 − r2ei2ka)

)
, (A6)

Ak = e−ik a
2 eikn a

2
t(1 + rnre

i2ka)
tn(1 − r2ei2ka)

, (A7)

Bk = e−ik a
2 eikn a

2
t(rn + rei2ka)
tn(1 − r2ei2ka)

, (A8)

Ck = t

(1 − r2ei2ka)
, (A9)

Dk = treika

(1 − r2ei2ka)
, (A10)

Ek = t2

tn(1 − r2ei2ka)
eik a

2 eikde−ikn a
2 e−iknd , (A11)

Fk = t2rn

tn(1 − r2ei2ka)
eik a

2 eikdeikn a
2 eiknd, (A12)

Tk = t2

(1 − r2ei2ka)
, (A13)

for k > 0 (while for k < 0 the order of the solutions must be
reversed and the refractive index and the coefficients should
be conjugated), where r = [rn(ei2knd − 1)]/(1 − r2

nei2knd ) and
t = 4n

(n+1)2 (eiknde−ikd )/(1 − r2
nei2knd ) are the reflection and

transmission coefficients for one plate, while rn = n−1
n+1 and

tn = 2n
n+1 are those for an interface. The coefficients Rk

and Tk can be interpreted as the reflection and transmission
coefficients of the two-plate configuration. However, it should
be noted that, due to the presence of absorption, |r|2 + |t |2 .= 1
and |Rk|2 + |Tk|2 .= 1 in this case.

APPENDIX B: BOUNDARY CONDITIONS AND
SOLUTIONS FOR LANGEVIN CONTRIBUTION

In this appendix we solve Eqs. (35) and (36). Due to the
presence of a source in regions II and IV [see Eq. (36)],
the solutions will have to parts: one associated with the
homogeneous equation and other related directly to the source.
Therefore, the solutions are

φ̂I
L(x; k) = Ŵ1(k)e−ikx, (B1)

φ̂II
L (x; k) = Û1(k)eiknx + Û2(k)e−iknx

+ Â1(x; k)eiknx + Â2(x; k)e−iknx, (B2)

φ̂III
L (x; k) = Ŵ2(k)eikx + Ŵ3(k)e−ikx, (B3)

φ̂IV
L (x; k) = V̂1(k)eiknx + V̂2(k)e−iknx

+ B̂1(x; k)eiknx + B̂2(x; k)e−iknx, (B4)

φ̂V
L (x; k) = Ŵ4(k)eikx, (B5)

with

Â1(x; k) = 1
2n

∫ x

−d− a
2

Ĝ(x ′; k)e−iknx ′
dx ′, (B6)

Â2(x; k) = − 1
2n

∫ x

−d− a
2

Ĝ(x ′; k)eiknx ′
dx ′, (B7)

B̂1(x; k) = 1
2n

∫ x

a
2

Ĝ(x ′; k)e−iknx ′
dx ′, (B8)

B̂2(x; k) = − 1
2n

∫ x

a
2

Ĝ(x ′; k)e−iknx ′
dx ′, (B9)

where, for simplicity, we write Ĝ(x; k) = 4πηe
m

F̂ (x; k)/
[k2

0 − k2 − ikγ̃ (−ik)].
The coefficients Ŵl(k), Ûl(k), and V̂l(k) are obtained by

means of the appropriate boundary conditions. Thus, they are
given by

Ŵ1(k) = W(k)eiknde−ik(a+d)[K̂
(
1 + rrne

i2ka
)

+ L̂(rn + rei2ka) + M̂teikdeik(a−nd)

+ N̂ trne
ikdeik(a+nd)], (B10)

Ŵ2(k) = W(k)(K̂rne
i2knd + L̂ + M̂reika + N̂rrne

ik(a+2nd)),

(B11)

Ŵ3(k) = W(k)(K̂rrne
ik(a+2nd) + L̂reika + M̂ + N̂rne

i2knd ),

(B12)

Û1 = rn

tn
eik(n+1)( a

2 +d)Ŵ1, (B13)

Û2 = 1
tn

eik(1−n)( a
2 +d)Ŵ1, (B14)

V̂1 = 1
tn

eik(1−n) a
2 (Ŵ2 + rne

−ikaŴ3), (B15)

V̂2 = 1
tn

eik(n−1) a
2 (rne

ikaŴ2 + Ŵ3), (B16)

Ŵ4 = eik(n−1)d
(

Ŵ2 + rne
−ikaŴ3 + e−ik a

2

(n + 1)
N̂

)
, (B17)

where

K̂ = eikn a
2

∫ − a
2

−d− a
2

Ĝ(x; k)eiknxdx, (B18)

L̂ = e−ikn a
2

∫ − a
2

−d− a
2

Ĝ(x; k)e−iknxdx, (B19)

M̂ = e−ikn a
2

∫ d+ a
2

a
2

Ĝ(x; k)eiknxdx, (B20)
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N̂ = eikn a
2

∫ d+ a
2

a
2

Ĝ(x; k)e−iknxdx, (B21)

W(k) = weik a
2

2n(1 − r2ei2ka)
with w = 2n

(n + 1)(1 − r2
nei2knd )

.

(B22)

The Langevin contribution is evaluated in the five regions.
Since K̂,L̂,M̂ , and N̂ depend linearly on the Fourier transform
of the stochastic force operator, it should be noted that the
coefficients also depend on the same way. In fact, since
the stochastic force operator depends linearly on the bath’s
annihilation and creation operators, the Langevin contribution
depend in that way too.
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