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Abstract. In the present paper, the site-percolation problem corresponding to linear k-mers (containing k
identical units, each one occupying a lattice site) on a simple cubic lattice has been studied. The k-mers
were irreversibly and isotropically deposited into the lattice. Then, the percolation threshold and critical
exponents were obtained by numerical simulations and finite-size scaling theory. The results, obtained for
k ranging from 1 to 100, revealed that (i) the percolation threshold exhibits a decreasing function when it
is plotted as a function of the k-mer size; and (ii) the phase transition occurring in the system belongs to
the standard 3D percolation universality class regardless of the value of k considered.

1 Introduction

The percolation problems have been attracting a great
deal of interest for several decades, and the activity in this
field is still growing [1–25]. It settles the basis to the under-
standing of the behavior of many systems such as network
theory [3,8,9,13], transport and flow in porous media [3–5],
transport in disordered media [14,15], spread of disease
in populations [16], forest fire propagation [17], simulated
spread fire in multi-compartmented structures [18], spread
of the computer virus [19], network failures [20], formation
of gels [21]. They are just a few examples of the wide appli-
cability of percolation, also known as percolation theory.

The first mathematical formulation of classical
percolation threshold was that of Broadbent and
Hammersley [26,27]. They exposed concepts that nowa-
days are widely used, representing the flow of fluid through
porous media by a simplified lattice percolation model. In
addition, the authors were able to prove that their model
has a percolation threshold. To illustrate this percolation
threshold, we shall describe the stages of the percolation
problem on a lattice of sites which are occupied with prob-
ability p or empty (nonoccupied) with probability (1−p).
Nearest-neighboring occupied sites form structures called
clusters. Quantities relevant to percolation will depend on
the concentration of sites and geometry of the lattice.

When the concentration is low, the sites appear singly
or in small isolated clusters of adjacent elements. As p in-
creases, the mean size of the clusters increases monotoni-
cally. When the occupation probability exceeds a critical
value (called the percolation threshold pc), a macroscopic,
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spanning, or an infinite cluster, occupying a finite frac-
tion of the total number of sites, emerges. The percolation
threshold can be depicted as the concentration of sites for
which a complete path of adjacent sites crossing the en-
tire system becomes possible. The percolation transition
is then a geometrical phase transition where the critical
concentration separates a phase of finite clusters (p < pc)
from a phase where an infinite cluster is present (p > pc).
This transition is a second-order phase transition and can
be characterized by well-defined critical exponents.

One may also consider a percolation problem in which
both sites and bonds are independently occupied, with oc-
cupancy fractions ps and pb, respectively. This more gen-
eral model, known as the site-bond percolation model [28],
has been widely used to study the phenomenon of polymer
gelation [29].

Most studies are devoted to single occupied site (bond)
on different lattices (like square, triangular, simple cubic,
face centered cubic, and many others) in the framework
of Monte Carlo (MC) analysis. On the other hand, there
have been a few studies focused on generalizing the pure
percolation model by including deposition of elements
occupying more than one site (bond) [30–40].

In reference [31] is shown (by studying the multiple-
site percolation problem) that pc exhibits an exponentially
decreasing behavior as a function of the k-mer size. This
feature was observed both for straight rigid k-mers and
tortuous k-mers isotropically deposited on 2D square lat-
tices. In all the studied cases, the problem was shown to
belong to the random percolation universality class. Nev-
ertheless, in a recent work by Tarasevich et al. [40] a dif-
ferent behavior was found for the percolation threshold:
namely a non-monotonic k-mer size dependence.
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Fig. 1. Schematic representation of a simple cubic lattice in
which some k-mers (k = 4) have been deposited; for sake of
simplicity the lattice site are not shown. A percolation path
is indicated with a blue line on the red k-mers, which are
percolating in the z-direction.

In this context, the present paper deals with the per-
colation of straight rigid k-mers on a simple cubic lattice.
Using MC simulations and a detailed finite-size scaling
analysis, the main percolation properties are studied. The
main objectives of the paper are (i) to determine the de-
pendence of the percolation threshold on the size of the
deposited k-mers and (ii) to discuss the universality class
of the phase transition. This work is also motivated by
the particular behavior reported in reference [40]. The
only study on these systems has been reported for dimers
(k-mers with k = 2) in reference [39].

The paper is organized as follows. In Section 2, the
basis of the model for the deposition of the k-mers on the
simple cubic lattice is presented. In Section 3, finite-size
scaling analysis of MC simulations is carried out. In Sec-
tion 4, the dependence of the percolation threshold on the
k-mer size is discussed. Finally, in Section 5 conclusions
are drawn.

2 Model and Monte Carlo simulation details

The following scheme is usually called standard model of
deposition or Random Sequential Adsorption (RSA). Let
us consider an initially empty simple cubic lattice of lin-
ear size L on which k-mers are randomly deposited. When
the size of the k-mers is one (monomers), the procedure of
deposition is as follows: a lattice site is chosen at random,
if the selected site is unoccupied then the monomer is de-
posited, otherwise, the attempt is rejected. When k > 1
the process is as follows: (i) one of the tree possible di-
rections (x,y,z ) and a starting site are randomly chosen;
(ii) if, beginning at the chosen site, there are k empty sites,
then a k-mer is deposited on those sites. Otherwise, the
attempt is rejected. When N k-mers are deposited, the
concentration is p = kN

L3 . In Figure 1, a typical final state
generated by RSA is depicted.

As it was already mentioned, the central idea of per-
colation theory is based on finding the minimum concen-
tration p for which a cluster extends from one side of the
system to the opposite. This particular value of the con-
centration is called critical concentration or percolation
threshold and determines a well defined phase transition
in the system. We are interested in determining (i) how
the percolation threshold is modified when the size of
the k-mer is increased and (ii) what universality class the
phase transition of this problem belongs to.

The finite-scaling theory gives us the basis to deter-
mine the percolation threshold and the critical exponents
of a system with a reasonable accuracy. The probability
R = RX

L,k(p) that a L × L × L lattice percolates at the
concentration p of occupied sites by k-mers of size k can
be defined according to [3,41–43]. According to the last
definition X , for our problem, can mean:

– RR
L,k(p): the probability of finding a rightward

percolating cluster, along the x-direction;
– RD

L,k(p): the probability of finding a downward
percolating cluster, along the z-direction;

– RF
L,k(p): the probability of finding a frontward

percolating cluster, along the y-direction.

Other useful definitions for the finite-size analysis are:

– RU
L,k(p): the probability of finding a cluster which

percolates on any direction;
– RI

L,k(p): the probability of finding a cluster which
percolates in the three (mutually perpendicular)
directions;

– RA
L,k(p) = 1

2 [RU
L,k(p) + RI

L,k(p)].

In order to express RX
L,k(p) as a function of continuous val-

ues of p, it is convenient to fit RX
L,k(p) with some approx-

imating function through the least-squares method. The
fitting curve is the error function because dRX

L,k(p)/dp is
expected to behave like the Gaussian distribution [42,43]

dRX
L,k

dp
=

1√
2πΔX

L,k

exp

⎧⎨
⎩−1

2

[
p − pX

c,k(L)
ΔX

L,k

]2
⎫⎬
⎭ , (1)

where pX
c,k(L) is the concentration at which the slope of

RX
L,k(p) is the largest and ΔX

L,k is the standard deviation
from pX

c,k(L).
In addition to the different probabilities, the percola-

tion order parameter (P = 〈SL〉/L3) [44,45] has been mea-
sured; where SL represents the size of the largest cluster
and 〈...〉 means an average over MC runs. The correspond-
ing percolation susceptibility χ has also been calculated,
χ = [〈S2

L〉 − 〈SL〉2]/L3.
MC simulations were applied to determine each of the

previously mentioned quantities. Thus, each MC run con-
sists of the following steps: (a) construction of a simple cu-
bic lattice of linear size L, with a given coverage p, (b) per-
form the cluster analysis using the Hoshen and Kopelman
algorithm [46]. In the last step, the size of largest clus-
ter SL is determined, as well as the existence of a per-
colating island. This spanning cluster, as was mentioned,
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Fig. 2. Fraction of percolation lattices as a function of the
concentration p defined as p = kN/L3, where k is the k-mer
size, N the number of deposited k-mers and L the lattice linear
size.

could be R, D or F . At the same time I, U and A were
determined.

For the above algorithm n ∼ 105 runs were carried out
for several values of the system size (L/k = 6, 8, 10, 12, 24).
The L/k ratio is kept constant to prevent spurious effects
due to the k-mer size in comparison with the lattice linear
size L.

3 Results

In Figure 2, the probabilities RU
L,k(p), RI

L,k(p) and RA
L,k(p)

are shown for two different values of k (k = 1 and k = 5
as indicated).

From a simple inspection of the figure (and from data
not shown here for the sake of clarity) it is observed that:
(a) the curves, corresponding to the various percolation
criteria (R, D, F , etc.), cross each other in a unique uni-
versal point, RX∗

, which depends on the criterion X used;
(b) those points do not modify their numerical value for
the different k used (ranged between k = 1 to k = 100);
(c) those points are located at very well defined values in
the p-axes determining the critical percolation threshold
for each k and (d) pc decreases for increasing k-mer sizes.

The probability RX
L,k(p) is also called in the literature

the percolation cumulant, whose properties are identical
to those of the Binder cumulant UL in standard thermal
transitions [41,47]. Namely, RX

L,k(p) obeys the same scal-
ing relation as UL, and the intersection of the curves of
RX

L,k(p) for different system sizes can be used to determine
the critical point that characterizes the phase transition
occurring in the system [3,31,48–50]. From this perspec-
tive, the result given in point (b) could be taken as a
preliminary indication that the universality class of the
phase transition involved in the problem is conserved no
matter the value of k. However, as pointed out by Selke

Fig. 3. Extrapolation of pX
c,k(L) towards the thermodynamic

limit according to the theoretical prediction given by equa-
tion (3). Squares, circles and triangles: the values of pc,k(L) ob-
tained by using the criteria I , A and U , respectively. Different
values of k are presented as indicated.

and Shchur [51,52], the measure of the cumulant intersec-
tion may depend on various details of the model which do
not affect the universality class, in particular, the bound-
ary condition, the shape of the lattice, and the anisotropy
of the system. Consequently, more research is required to
determine the universality class of the phase transition.

For each RX
L,k(p) and dRX

L,k(p)

dp curve, the fitting func-
tion was determined by least mean-square method using
equation (1). In this way, pX

c,k(L) is determined for the
different values of k and L.

We extrapolate the previous results of pX
c,k(L)

for L → ∞ by using the finite-scaling hypothesis. Thus,
the correlation length, ξ, associated with emergence of the
percolation cluster, has the scaling relation:

ξ ∝ |p − pc,k|−ν
, (2)

where ν is the critical exponent. It is known [53] that
ν = 7/8 for random 3D percolation. As p → pX

c,k(L) the
correlation length ξ → L, being L the linear dimension of
the system. Thus, we have

pX
c,k(L) = pc,k(∞) + AXL−1/ν , (3)

where AX is a non-universal constant. Figure 3 shows the
extrapolation towards the thermodynamic limit of pX

c,k(L)
according to equation (3) for different values of k as in-
dicated. This figure supports the relation given by equa-
tion (3): (a) all the curves (different criteria) are well cor-
related by a linear function, and (b) they have a quite
similar value for the ordinate in the limit L → ∞.

From the procedure shown in Figure 3, one obtains
pX

c,k(∞) for the criteria I, A and U . Combining the
three estimates for each k, the final values of pc,k(∞)
are obtained. The maximum of the differences between
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Fig. 4. The percolation threshold as a function of k. The error
in each measurement is smaller that the size of the symbols.

∣∣∣pI
c,k(∞) − pA

c,k(∞)
∣∣∣ and

∣∣∣pU
c,k(∞) − pA

c,k(∞)
∣∣∣ gives the

error bar for pc,k(∞).
In Figure 4 the percolation threshold pc,k(∞) is plot-

ted as a function of the k-mer size. The values for k = 1
[pc,k=1(∞) = 0.3116077(4)] and k = 2 [pc,k=2(∞) =
0.2555(1)] have been already reported in [39] and [54],
respectively. The points corresponding to k = 80 and
k = 100 were calculated for three relatively small values
of L/k (4, 6, 8), with an effort reaching almost the limits
of our computational capabilities. A compilation of the
numerical values is also presented in Table 1.

For all the range of studied sizes, the percolation
threshold decreases upon increasing k. This result con-
trasts with the one of Tarasevich et al. [40], who found
that, for two-dimensional square lattices, the percolation
threshold shows a nonmonotonic k-mer size dependence.
Namely, the percolation threshold decreases for small par-
ticle sizes, goes through a minimum at k ≈ 13, and finally
monotonically increases as k increases. This nonmonotonic
behavior observed in two dimensions has been explained
accounting for the local alignment effects occurring for
large values of k [40]. In the case of cubic lattices, the
same effects are not detected in the range of values of k
between 1 and 80.

In Figure 3 the value ν = 7/8 was used. Neverthe-
less, the value of ν can be obtained through the scaling
relationship for RX

L,k(p):

RX
L,k(p) = RX

k

[
(p − pc,k)L

1
ν

]
, (4)

being RX
k (u) the scaling function and u ≡ (p − pc,k)L

1
ν .

Thus, the maximum of the derivative of equation (4) leads

to
(

dRX
L,k

dp

)
max

∝ L
1
ν . In the inset of Figure 5, this

relation has been plotted as a function of L/k (in log-
log scale) for different k-mers as indicated. As it can be
observed, the slopes of the curves (1/ν) remain constant
(and close to 8/7) for all values of k. The results match,

Table 1. Compilation of the percolation thresholds for differ-
ent k-mer sizes.

k-mer size, k Percolation threshold, pc,k

1 0.3116077(4) [46]
2 0.2555(1) [36]
3 0.2129(1)
4 0.1800(1)
5 0.1555(1)
6 0.1364(1)
7 0.1218(1)
8 0.1089(1)
9 0.0990(1)
10 0.0901(1)
11 0.0831(1)
12 0.0772(1)
13 0.0714(1)
14 0.0661(1)
15 0.0632(1)
20 0.0478(1)
24 0.0411(1)
32 0.0299(1)
48 0.0191(1)
64 0.0143(1)
80 0.0110(2)
100 0.0091(2)

within numerical errors, the value of the critical exponent
reported in reference [53].

The scaling behavior can be further tested by plotting
RX

L,k(p) vs. (p − pc,k)L
1
ν and looking for data collapsing.

Using the values of pc,k previously calculated and the value
ν = 7/8, an excellent scaling collapse was obtained (Fig. 5)
for RI

L,k and all value of k-mer size. This leads to inde-
pendent control and consistency check of numerical value
of the critical exponent ν.

In order to bear out the universality class of the prob-
lem, the critical exponents β and γ were calculated from
the scaling behavior of P and χ [3] as follows:

P = L−β/νP
[
|p − pc,k|L1/ν

]
, (5)

and
χ = Lγ/νχ

[
(p − pc,k)L1/ν

]
, (6)

where P and χ are scaling functions for the respective
quantities. According to equations (5) and (6), Figure 6
shows the excellent collapse of curves of P and χ (inset)
for a typical k-mer size (k = 5) and different lattice sizes
as indicated.

The data scaled extremely well using the reported per-
colation exponents β = 0.41 and γ = 1.82 [3]. The results
obtained in Figures 5 and 6 suggest that the universality
class corresponds to 3D percolation problem and clearly
does not depend on the k-mer size. This kind of behav-
ior has been observed in previous studies of percolation
of extended objects. Thus, Cornette et al. [31] found that
straight rigid k-mers and tortuous k-mers isotropically de-
posited on two-dimensional square lattices are in the same
universality class as the standard percolation in two di-
mensions. The same result was obtained for percolation
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Fig. 5. Data collapse the fraction of percolation samples
RI

L,k(p) as a function of the argument (p− pc,k)L1/ν . Each set
of curves corresponds to different values of k as indicated. For
each k, different lattice sizes (L/k = 6, 8, 10, 12, 24) have been

considered. Inset: ln
[

d
dp

(RI
L,k)max

]
as a function of ln(L/k) for

different values fo k as indicated. According to equation (4) the
slope corresponds to 1/ν.

of aligned rigid rods [38] and percolation of rigid rods un-
der equilibrium conditions [55] on two-dimensional square
lattices. The authors reported that even though the inter-
section points of the curves of RX

L,k(p) for different system
sizes exhibit nonuniversal critical behavior1, the perco-
lation transition occurring in the system belongs to the
standard random percolation universality class regardless
of the value of k considered.

4 Conclusions

In this paper, the percolation behavior of straight rigid
k-mers deposited on a simple cubic lattice has been stud-
ied by numerical MC simulations and finite-size analysis.

For each value of k, the probability RX
L,k(p) that a

system of linear size L percolates at concentration p was
used to obtain the critical concentration pc,k.

The plot of pc,k vs. k showed a monotonic decrease
in all the studied k range. This result is quite surprising
when compared with the results reported in reference [40],
where a steep increase is shown after an initial low-k
[k ∈ (1, 13)] decrease. This finding yields two possible con-
clusions: (a) the results reported by Tarasevich et al. in
reference [40] are not applicable to the present system,
(b) the upmost k value studied in the present work is not
large enough to appreciate the reported behavior.

Finally, the analysis of the critical exponents ν, β
and γ, supported by the excellent data collapse of the
curves of RX

L,k(p), P and χ, strongly suggested that the

1 The nonuniversality of the intersection points of the curves
of RX

L,k(p) has also observed for percolation of partially ordered
k-mers [40].

Fig. 6. Data collapse of the order parameter, PLβ/ν vs. |p −
pc,k|L1/ν , and of the susceptibility χL−γ/ν vs. (p − pc,k)L1/ν

(inset) for k = 5. The plots were made using the percolation
exponents ν = 7/8, β = 0.41 and γ = 1.82.

percolation phase transition involved in the considered
problem belongs to the same universality class of the or-
dinary 3D random percolation.
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