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a b s t r a c t

A theoretical approach, based on exact calculations of configurations on finite rectangular
cells, is applied to study the percolation of homonuclear dimers on square lattices. An
efficient algorithm allows us to calculate the detailed structure of the configuration space
for M = Lx × Ly cells, with M varying from 16 to 36. The percolation process has been
monitored by following the percolation function, defined as the ratio between the number
of percolating configurations and the total number of available configurations for a given
cell size and concentration of occupied sites. The percolation threshold has been calculated
by means of two complementary methods: one based on well-known renormalization
techniques and the other based on determining the inflection point of the percolation
function curves. A comparison of the results obtained by these two methods has been
performed. The study includes the use of finite-size scaling theory to extrapolate numerical
results towards the thermodynamic limit. The effect of jamming due to dimers is also
established. Finally, the critical exponents ν, β and γ have been obtained and values
comparedwith numerical results and expected theoretical estimations. The present results
show agreement and even improvement (in the case of γ ) with respect to some numeric
values available in the literature.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The percolation problem is a topic being increasingly considered in statistical physics. One reason for this current interest
is that it is clear that generalizations of the pure percolation problem are likely to have extensive applications in science
and technology [1–5]. Although it is a purely geometric phenomenon, the phase transition involved in the process can be
described in terms of a usual continuous phase transition. This mapping to critical phenomena has made percolation a full
part of the theoretical framework of collective phenomena and statistical physics.

In this context, percolation of monomers (particles occupying one lattice site each) has been one of the most studied
models in the literature, and the corresponding percolation threshold pc has been measured to high precision for decades
[6–10]. The problem becomes considerably difficult when some sort of correlation exists, such as particles that occupy
several k contiguous lattice sites (k-mers). Consequently, there have been fewer studies devoted to the problem of
percolation of structured objects. Among them, Leroyer and Pommiers [11] studied the percolation behavior of a random
sequential adsorption (RSA) of linear segments with different sizes, and Gao and Yang [12] and Cherkasova et al. [13]
analyzed the percolation of dimers. In all cases, the dependence of the percolation threshold on the parameters of the
problem and the universality of the phase transition have been discussed. However, Ref. [11] is limited due to finite-size
effects, while Refs. [12,13] are just restricted to the case k = 2 (dimers). In fact, Leroyer and Pommiers found that, as the
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Fig. 1. (a) Snapshot corresponding to one of the possible configurations for a system of four dimers on a 4×4 cell. Full circles and empty squares represent
dimer units and empty sites, respectively. (b) As part (a) for a system of eightmonomers on a 4×4 cell. Full circles and empty squares representmonomers
and empty sites, respectively.

segment length grows, the percolation threshold decreases, goes through a minimum, and then increases slowly for large
segments. Further studies by Cornette et al. [14] showed a monotonic dependence of the percolation threshold on the size
of the deposited element, in contrast with the results of Ref. [11]. This discrepancy was explained because of the finite-size
effect not being considered in Ref. [11].

As discussed in the previous paragraph, it took until 2003 to elucidate the dependence of pc on k for tortuous and rigid
k-mers deposited according to an RSA process. In addition, the phase transition predicted by Monte Carlo (MC) techniques
in Refs. [11–14] has not been corroborated yet by analytical methods. In this framework, the main objective of the present
work is, using an analytical technique, to determine the full set of characteristic parameters of percolation (percolation
threshold and critical exponents) for a system of dimers, randomly and irreversibly deposited on a square lattice.1 Wemake
use of the opportunity of considering the effect of jamming on the coverage of square lattices upon using dimers. The study
is based on (i) exact calculation of configurations on finite M = Lx × Ly cells, with M varying from 16 to 36 and (ii) the use
of finite-size scaling techniques [15–17].

The rest of the paper is organized as follows. In Section 2, the theoretical formalism is presented. The analysis of the
results and discussion are given in Section 3. Finally, the conclusions are drawn in Section 4.

2. Theory

In the filling process, rigid dimers are deposited sequentially and irreversibly on an initially empty square cell of
M = Lx × Ly sites with the following restrictions: (1) the depositing objects contain two identical units; (2) the distance
between dimer units is assumed in registrywith the lattice constant a; hence exactly two sites are occupied by a dimerwhen
deposited; (3) the incoming particles must not overlap with previously added objects; and (4) the elements remain frozen
in the lattice. In any case, the procedure is iterated untilN dimers are placed on the cell and the desired concentration (given
by p = 2N/M) is reached. A configuration is a distribution of empty and occupied sites on the cell. Fig. 1(a) shows one of
the possible configurations corresponding to a system of four dimers on a 4 × 4 cell. In part (b), one possible configuration
of monomers at the same concentration as that in part (a) is plotted. Note that the configuration in part (b) is not available
for dimers. Thus, not all the available configurations of empty and occupied sites can be reached by dimer deposition.

A central idea of percolation theory is based on finding the minimum concentration p for which a cluster (a group of
occupied sites in such a way that each site has at least one occupied nearest-neighbor site) extends from one side of the
system to the opposite one. This particular value of the concentration rate is named the critical concentration or percolation
threshold pc , and it determines a phase transition in the system. In themonomeric randompercolationmodel, any single site
(or a bond connecting two sites) is occupied with probability p. For the precise value of pc , the percolation threshold of sites
(bonds), at least one spanning cluster connects the opposite borders of the system (indeed, there exists a finite probability of
finding n (> 1) spanning clusters [18–21]). In that case, a continuous phase transition appears at pc which is characterized
by well-defined critical exponents.

Let us define p(t) as the fraction of lattice sites covered at time t by the deposited objects. Due to the blocking of the
lattice by the already randomly adsorbed elements, the limiting or jamming coverage, pj = p(t → ∞), is less than that
corresponding to close packing (pj < 1). Consequently, p ranges from 0 to pj for objects occupying more than one site. An
extensive overview of this field can be found in the excellent work by Evans [22] and the references therein. In the case of

1 The dimer is the simplest case of a polyatomic adsorbate, and it contains all the properties of multisite-occupancy adsorption.
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Table 1
Values of ℓmon , Tmon

ℓ and Cmon
ℓ (as indicated in the text) for a system of monomers on a 4 × 4

cell.

Percolating trajectory, ℓmon Polynomial Tmon
ℓ Cmon

ℓ

0 (1 − p)16 1 0
1 p(1 − p)15 16 0
2 p2(1 − p)14 120 0
3 p3(1 − p)13 560 0
4 p4(1 − p)12 1820 4
5 p5(1 − p)11 4368 60
6 p6(1 − p)10 8008 390
7 p7(1 − p)9 11440 1452
8 p8(1 − p)8 12870 3416
9 p9(1 − p)7 11440 5272

10 p10(1 − p)6 8008 5414
11 p11(1 − p)5 4368 3736
12 p12(1 − p)4 1820 1752
13 p13(1 − p)3 560 560
14 p14(1 − p)2 120 120
15 p15(1 − p) 16 16
16 p16 1 1

dimers on square lattices, pj ≈ 0.907 [13,23,24]. More recently, interesting results have been presented in Refs. [13,23–30],
treating the relationship between the jamming coverage and the percolation threshold.

In this paper, the percolation is measured along the x-axis, and symmetric (Lx = Ly) and asymmetric (Lx ≠ Ly) cells
are used in the calculations. The percolation trajectory ℓ is defined as the number of objects belonging to the percolating
cluster. Thus, the minimum percolation trajectory, represented by ℓmin, corresponds to the direct percolation path from left
to right (or vice versa), with ℓmin = Lx and Lx/2 for monomers and dimers, respectively (when Lx is even). On the other
hand, the maximum percolation trajectory, represented by ℓmax, corresponds to the number of objects in the saturated cell,
with ℓmax = M and M/2 for monomers and dimers, respectively (when M is even). In general, the length of a percolation
trajectory varies between ℓmin and ℓmax.

In the case of monomers, the probability of percolation for any given cell considers the addition of the individual
probabilities of all percolating trajectories leading to a polynomial function f mon

ℓmin,ℓmax
(p), where ℓmin = Lx determines the

minimum degree of the polynomial function, and ℓmax = M corresponds to the maximum degree associated to it. Then,

f mon
ℓmin,ℓmax

(p) =

ℓ=ℓmax
ℓ=ℓmin

Cmon
ℓ pℓ(1 − p)ℓmax−ℓ, (1)

where the coefficients Cmon
ℓ correspond to the totality of the trajectories of length ℓ leading to percolation. As an example,

Table 1 shows the coefficients corresponding to the polynomial function f mon
ℓmin,ℓmax

(p) for a systemofmonomers on a 4×4 cell.
Table 1 also includes the coefficients Tmon

ℓ , corresponding to the total number of available configurations for ℓ monomers
on the cell.

The counting is more complex in the case of dimers. As mentioned in the first paragraph of this section, not all the
available configurations of empty and occupied sites can be reached by dimer deposition. Then, the function f in Eq. (1)
must be normalized with a term involving the number of available configurations for dimers on the cell. In this way, the
percolating function for dimers can be written as

f dimℓmin,ℓmax
(d) =

ℓ=ℓmax
ℓ=ℓmin

Cdim
ℓ dℓ(1 − d)ℓmax−ℓ

ℓ=ℓmax
ℓ=0

T dim
ℓ dℓ(1 − d)ℓmax−ℓ

, (2)

where ℓmin = Lx/2, ℓmax = M/2, and d = p2 is the probability of having simultaneous occupation of two neighboring sites.
The coefficients Cdim

ℓ and T dim
ℓ can be calculated exactly for any given geometry by means of computer algorithms. As the

size of the cells expands, the computation of all possible percolating transitions becomes extremely time consuming, which
imposes a limitation on the size of the cells to be reached for exact calculations. Table 2 shows the results of this procedure
for a 4 × 4 cell.

In order to compare the data collected in Tables 1 and 2, Fig. 2 presents the curves of Cmon
ℓ versus Tmon

ℓ (solid symbols)
and Cdim

ℓ versus T dim
ℓ (open symbols) for different values of length of the percolating trajectories as indicated. Two regimes

can be clearly identified: (i) for small and intermediate values of ℓ, the number of percolating configurations of monomers
is larger than the corresponding value for dimers (as an example, this is shown in detail in the inset of Fig. 2 for a 4×4 cell);
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Table 2
Same as Table 1 for the case of dimers.

Percolating trajectory, ℓdim Polynomial T dim
ℓ Cdim

ℓ

0 (1 − d)8 1 0
1 d(1 − d)7 24 0
2 d2(1 − d)6 224 4
3 d3(1 − d)5 1044 138
4 d4(1 − d)4 2593 1068
5 d5(1 − d)3 3388 2596
6 d6(1 − d)2 2150 2074
7 d7(1 − d) 552 552
8 d8 36 36

Fig. 2. Log–log curves of Cmon
ℓ versus Tmon

ℓ (solid symbols) and Cdim
ℓ versus T dim

ℓ (open symbols) for three cell sizes (4 × 4, 5 × 5 and 6 × 6) and different
values of length of the percolating trajectories as indicated. Each point in a given curve corresponds to a determined value of length of the percolating
trajectory ℓmon(dim) , as indicated. Inset: the case corresponding to the 4 × 4 cell is plotted on linear axes.

and (ii) for large values of ℓ, the number of percolating configurations is similar for monomers and dimers. Such behavior
holds for different cell sizes.

For each curvewhich corresponds to a given cell size: (1) amaximum is clearly observed indicating themaximumnumber
of percolating configurations of the cell, and (2) the values of these maxima are higher for monomers than for dimers. The
two regimes described in the previous paragraph are also seen for each cell size. It is interesting to mention that during the
second regime all the number of configurations Cmon

ℓ versus Tmon
ℓ (solid symbols) and Cdim

ℓ versus T dim
ℓ (open symbols) lie on

the same line to which all configurations with maximal percolating trajectories tend.

3. Results and discussion

By following the scheme presented in Section 2, the percolation function has been obtained for monomers and dimers
deposited on cells of different sizes. To simplify the notation, we shall write f mon

L (p) and f dimL (p) instead of f mon
ℓmin,ℓmax

(p) and
f dimℓmin,ℓmax

(p), where L = Lx = Ly for symmetric cells and L = (Lx + Ly)/2 for asymmetric cells. The results are shown in Fig. 3
(in this case, L = 4, 5 and 6). From a simple inspection of this figure it is observed that: (a) for a fixed size of depositing
particle, the slope of the curves increases with increasing cell size. This effect allows us to make a finite-size scaling analysis
in both systems (monomers and dimers); (b) the curves shift to lower values of p as the adsorbate changes from monomer

to dimer. This finding, also observed from the maxima of λ
mon(dim)
L (p) ≡

dfmon(dim)
L (p)

dp (see inset of Fig. 3), is a first indication
that the percolation threshold of dimers is lower than the corresponding one formonomers. In the forthcoming subsections,
the scaling properties of the percolation function will be used to estimate the critical parameters (percolation threshold and
critical exponents ν, β and γ ) corresponding to monomers and dimers on square lattices.

3.1. Exponent ν

As observed in Fig. 3, f mon(dim)
L (p) exhibits the typical behavior of an order parameter for the percolation transition. Then,

as expected from the finite-size scaling theory [15–17,31–33],

f mon(dim)
L (p) = f mon(dim)


(p − pc) L1/ν


, (3)

being f mon(dim)(u) the scaling function and u ≡ (p − pc) L1/ν .
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Fig. 3. Percolation functions and their derivatives (inset) versus concentration p formonomers and dimers deposited on cells of different sizes as indicated.

Fig. 4. Size dependence of the maximum value of the derivative of the percolation function used to determine ν. Full and open symbols correspond to
monomers and dimers, respectively.

The derivative of this expression is

df mon(dim)

dp
= L1/ν f mon(dim)


(p − pc) L1/ν


, (4)

which leads to

ln


dfmon(dim)
L

dp


max

ln L
=

1
ν
. (5)

Reynolds et al. [34] proposed that, for small lattice sizes (as used here), Eq. (5) should be replaced by

ln


dfmon(dim)
L

dp


max

ln L
=

1
ν

−
B
ln L

, (6)

with B being a correction constant.

In Fig. 4,
ln


dfmon(dim)
L /dp


max

ln L has been plotted as a function of 1/ ln L for monomers and dimers as indicated. According to
Eq. (6), the slope and intercept of each line correspond to B and 1/ν, respectively [35]. The results for ν from these fits are
ν = 1.4140 for monomers and ν = 1.4910 for dimers, which differ by 6% and 12%, respectively, from the expected exact
value ν = 4/3 for ordinary percolation [13,14].

3.2. Percolation threshold and jamming coverage

The first step for determining the percolation threshold consists in evaluating the effective threshold pc(L) for a cell of
finite size L. For this purpose, two procedures were applied, as described next.
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a b

Fig. 5. Extrapolation of pc(L) towards the thermodynamic limit according to the theoretical prediction given by Eq. (7). Squares and circles denote the
values of pc(L) obtained by using Methods A and B, respectively. (a) Data corresponding to monomers. (b) Data corresponding to dimers.

Fig. 6. Numerator in Eq. (2)
ℓ=ℓmax

ℓ=ℓmin
Cdim

ℓ dℓ(1 − d)ℓmax−ℓ

as a function of concentration p for dimers deposited on cells of different sizes as indicated.

Method A. The effective thresholds are obtained from the inflection points of the functions f mon(dim)
L (p), corresponding

to the maxima of the first derivatives of the polynomial functions as shown in Fig. 3. The positions of these maxima will be
designated by pic(L).

Method B. An alternative way of finding the effective percolation thresholds consists in using standard renormalization
theory [2] and then solving the equation f mon(dim)

L (p) = p for the different lattice sizes. The values of concentration satisfying
the last equation will be designated by prc(L).

Once the effective thresholds pi(r)c (L) are obtained by Methods A and B, the percolation threshold in the thermodynamic
limit, pc(∞), is calculated by following the Reynolds scheme for small cells [7]:

pi(r)c (L) ≈ pc(∞) + L−1/ν 
a + bL−1

+ cL−2
+ dL−3

+ · · ·

, (7)

where a, b, c, . . . are adjustable parameters.
Fig. 5 shows the extrapolation towards the thermodynamic limit of pi(r)c (L) according to Eq. (7) and a correction of second

order (a, b ≠ 0 and c, d, . . . = 0). Parts (a) and (b) present the results corresponding tomonomers and dimers, respectively.
The values obtained for monomers, pic(∞) = 0.5926(2) and prc(∞) = 0.5961(50), agree very well with recent calculations
on classical site percolation (for a complete overview on this topic we refer the reader to Ref. [36]). In the case of dimers,
the results obtained by both methods, pic(∞) = 0.5616 and prc(∞) = 0.5617, are consistent with previous simulation
values [11,13,23,24].

On the other hand, it is interesting to analyze the behavior of the denominator (normalization factor) in Eq. (2). In the
case of monomers, this term is equal to 1 (all sites have equal probability of being occupied). The situation is different for
dimers, where the principle of equiprobability of occupation does not hold (see Fig. 2). Then, as can be seen in Fig. 6, when
the function

ℓ=ℓmax
ℓ=ℓmin

Cdim
ℓ dℓ(1 − d)ℓmax−ℓ (numerator in Eq. (2)) is plotted as a function of p, each curve corresponding to

a given cell size presents a pronounced maximum at a concentration close to 0.8986. This value, which was obtained as an
average over the five cell sizes indicated in the figure, accounts for the maximum number of particles that can be deposited
on the lattice (the so-called jamming coverage θj). The result obtained here for θj is in excellent agreement with previous
published results: θj = 0.90668 [13], θj = 0.906 [23] and θj = 0.907 [24].
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a b

Fig. 7. Linear fittings used to determine β (squares) and γ (circles). (a) Data corresponding to monomers. (b) Data corresponding to dimers.

Table 3
Comparison of published and present results for percolation of dimers on square lattices.

Critical parameters This work Previous work

pc 0.5616(pic), 0.5617(p
r
c) 0.5618(2) [11], 0.5617 [13], 0.562 [24], 0.562(3) [25]

θj 0.8986 0.90668 [13], 0.906 [24], 0.907(3) [25]
ν 1.491 4/3 [2], 1.368(24) and 1.373(23) [14]
β 0.1941 5/36 [2], 0.179(2) [13], 0.121(13) [14]
γ 2.3941 43/18 [2], 2.37(5) [13], 2.452(13) [14]

3.3. Exponents β and γ

The strength or weight of the percolating cluster P vanishes at the transition and is non-analytic,

P ∼ |p − pc |β , (8)

defining the exponent β . Here, P plays the role of an order parameter. On the other hand, the divergence of themean cluster
size,

S =


s

s2ns

pc
∼ |p − pc |γ , (9)

introduces the exponent γ .
In order to determine these critical exponents, it must be considered that the parameters P and S can be expressed as a

function of f dimℓmin,ℓmax
(d) in the interval p > pc and p < pc , respectively. Thus, the critical exponents obtained for each cell

size, β(M) and γ (M), are plotted as function of the inverse of theminimum percolation length in Fig. 7 [35,37]. In the figure,
identical correction criteria as in Fig. 4 are used. A nearly linear tendency is clearly observed in Fig. 7(a) (monomers) and
Fig. 7(b) (dimers). Note that in the figure both symmetrical and asymmetrical cells have been included. Thus, the tendency
to the thermodynamic limit determines the values of the critical exponents: (i) β = 0.1851 and γ = 2.3769 for monomers,
and (ii)β = 0.1941 and γ = 2.3941 for dimers. In both cases, the reported values ofβ and γ are in agreementwith expected
results [13,14].

Finally, Table 3 summarizes the results obtained for dimers in the present work in comparison to previously published
results using simulation techniques. In the case of ν, β and γ , the table also includes the exact expected theoretical values
given as rational numbers.

4. Conclusions

In this work, percolation of homonuclear dimers on square lattices has been studied by using a theoretical approach,
which is based on the exact calculation of configurations on finite rectangular cells. An efficient algorithm allows us to
calculate the detailed structure of the configuration space forM = Lx × Ly cells, with M varying from 16 to 36.

From the counting of the number of configurations leading to percolation (normalized over a term involving the number
of available configurations for dimers on the cell), the percolating function f dimL (p) was introduced. Taking advantage of its
definition, the percolation threshold, jamming coverage and critical exponents were calculated.

In the case of pc , two methods have been used. In the first, the percolation threshold is obtained from extrapolation
towards the thermodynamic limit of the positions of the inflection points of the percolation function curves. In the second,
the percolation threshold is determined from the well-known renormalization equation f dimL (p) = p. The values of pc
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calculated by both methods are in excellent agreement with previous simulation data reported in the literature [11,13,
23,24].

On the other hand, the maximum number of particles that can be deposited on the lattice was calculated by analyzing
the behavior of the numerator of f dimL (p). For each cell size, the corresponding curve presents a pronounced maximum at a
concentration close to 0.8986. This value of θj is in excellent agreement with previous published results [13,23,24].

With respect to the critical exponents for dimers, the results reported here for ν, β and γ (1) differ by 12%, 40% and 0.2%,
respectively, from the expected exact values ν = 4/3, β = 5/36 and γ = 43/18 for ordinary percolation; and (2) are in
general good agreement with previous published data [13,14].

The extension of the method to other geometries and adsorbate structures will be the object of future studies.
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