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Not much helicity is needed to drive large-scale dynamos
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Understanding the in situ amplification of large-scale magnetic fields in turbulent astrophysical rotators has
been a core subject of dynamo theory. When turbulent velocities are helical, large-scale dynamos that substantially
amplify fields on scales that exceed the turbulent forcing scale arise, but the minimum sufficient fractional kinetic
helicity fh,C has not been previously well quantified. Using direct numerical simulations for a simple helical
dynamo, we show that fh,C decreases as the ratio of forcing to large-scale wave numbers kF /kmin increases. From
the condition that a large-scale helical dynamo must overcome the back reaction from any nonhelical field on the
large scales, we develop a theory that can explain the simulations. For kF /kmin � 8 we find fh,C � 3%, implying
that very small helicity fractions strongly influence magnetic spectra for even moderate-scale separation.

DOI: 10.1103/PhysRevE.85.066406 PACS number(s): 52.30.Cv, 47.65.Md, 95.30.Qd

I. INTRODUCTION

The origin of magnetic fields in turbulent astrophysical
rotators such as stars, galaxies [1], and accretion disks has
been a longstanding topic of research. A particular challenge
has been to understand the origin of fields on scales that are
large compared to those of any underlying turbulence [1–4].

That the large-scale field of the sun reverses every 11 years
reveals that such stellar fields cannot be simply the residual
of flux freezing from the primordial material and must be
amplified in situ. Complementarily, the continuous processing
by supernovae-driven turbulence in galaxies likely renders the
role of any primordial fields to be simply seed fields whose in
situ processing must be understood to account for the observed
present-day large-scale fields in galaxies. The presence of
astrophysical jets from accretion engines also highlights the
presence of large-scale fields in accretion disks, and accretion
disk simulations [3] commonly show the in situ generation of
large-scale magnetic fields that reverse on cycle periods of tens
of orbit times.

The study of in situ field amplification in the presence
of velocity flows is the enterprise of dynamo theory. Small-
scale dynamos (SSDs), in which turbulent velocity flows
amplify fields at or below scales of the forcing [5,6], can
be distinguished from large-scale dynamos (LSDs) in which
magnetic fields are amplified on spatial or temporal variation
scales larger than the scales of the underlying forcing. LSDs
and SSDs are often contemporaneous and interactive (see, e.g.,
Refs. [4,7]) but LSDs arise only when turbulent velocities
are sufficiently helical [8,9]. There has been little previous
work, however, on determining the minimum sufficient helicity
to incite LSD action and this is the topic of the present
paper. Astrophysical flows are unlikely to be 100% helical
in environments where LSDs are presumed; the galaxy for
example is estimated to have helicity of <10%. Thus the basic
question of how much helicity is required in even the simplest
LSDs is important in assessing the potential ubiquity of LSDs.

The standard twentieth century textbook [10] kinematic
approach to LSD theory has been classical mean-field theory
(MFT), which features the α effect: γ = |α|k − βk2, where γ

is the exponential growth rate in the kinematic dynamo regime
(presuming that any Lorentz-force feedback is negligible), k

is the wave number of magnetic field growth, the α effect
is proportional to kinetic helicity Hv = 〈v · ω〉, with v the
velocity and ω = ∇ × v the vorticity, and β is the turbulent
eddy diffusivity [10]. Such mean-field theory has been used to
model solar [11], stellar, and galactic observations, as well as
laboratory plasma dynamos [12], and geodynamos [13].

But the kinematic approach to LSD theory is incomplete.
Although many astrophysical rotators have differential ro-
tation and open boundaries, substantial progress in going
beyond the kinematic theory has emerged from studies of the
closed volume α2 helical dynamo without shear, in which
the evolution of an initially weak seed field is subject to
helical velocity forcing. The α2 dynamo was first tackled
semianalytically [9] using a spectral integro-differential model
with an eddy-damped quasinormal Markovian (EDQNM)
closure, consistently tracking the magnetic helicity. It was
shown that the actual driver of large-scale magnetic field
growth is not just the kinetic helicity, but the residual helicity,
HR = Hv − Hj where the current helicity Hj = 〈j · b〉 and
j = ∇ × b is the current density.

This α2 dynamo in a periodic box was simulated [14]
by forcing with kinetic helicity at wave number kF = 5kmin

(kmin = 1 was the smallest wave number of the flow). The
large-scale (k < 5) field grew as expected from Ref. [9].
Subsequently, a two-scale α2 LSD was developed [15]; it
incorporated magnetic helicity evolution using a simpler
closure than EDQNM and showed even a two-scale nonlinear
theory predicts the evolution and saturation of LSD growth
observed in Ref. [14]. Driving with kinetic helicity initially
produces a large-scale helical magnetic field, but the near
conservation of magnetic helicity leads to a compensating
small-scale magnetic (and current) helicity of opposite sign.
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This counteracts the kinetic helicity driving in the large-scale
field growth coefficient, and quenches the LSD, as proposed
in Ref. [9].

There has also been a plethora of work on the SSD. In
a periodic box with a weak initial seed field and nonhelical
forcing, the stochastic line stretching produces negligible field
growth above the forcing scale. Simulations of nonhelical
SSDs without large-scale shear show that the total magnetic
energy is amplified to near equipartition with the total kinetic
energy not only in the kinematic regime as predicted by
Ref. [5], but also in the saturated regime for large magnetic
Prandtl number PM = ν/η, where ν and η are the viscosity
and magnetic diffusivity [6,16,17], as reviewed in Ref. [7].
Astrophysical plasmas such as the galactic interstellar medium
do not seem to exhibit this pileup [18].

To address this disparity between simulations of nonhelical
SSDs and how conditions favorable for LSD growth might
influence the magnetic spectrum on both large and small scales,
results for dynamos in a periodic box forced with different
amounts of fractional kinetic helicity fh (a dimensionless
measure of the degree of alignment between the velocity and
the vorticity of the forcing function), were studied [19]. It
was found that the magnetic spectrum above and below the
forcing scale were contemporaneously affected by a sufficient
fh. The large-scale field grew, and the magnetic spectrum at
large wave numbers steepened. For fh = 1 and fh = 0, the
results of Refs. [14,17] were respectively recovered.

But the restriction in Ref. [19] to a forcing scale of kF = 5
and resolution of 643 grid points left key unexplored questions.
In particular, the minimum fh for LSD action, fh,C , could
not be determined as a function of kF . The smaller this
minimum, the potentially more ubiquitous LSD conditions
are in astrophysics. Here we perform much higher-resolution
simulations for fractionally helical dynamos and quantify how
fh,C depends on kF /kmin. We also develop a theory that
correctly predicts the dependence, seen in the simulations.

II. EQUATIONS AND SETUP

The incompressible MHD equations for velocity v and
magnetic field b are

∂tv + ω × v = j × b − ∇p + ν∇2 v + F

∂tA = v × b − ∇φ + η∇2A (1)

∇ · v = 0 , ∇ · A = 0.

The total pressure divided by the constant (unit) density p

and the potential φ are obtained self-consistently to ensure
incompressibility and the Coulomb gauge. The Reynolds num-
ber is Re = UrmsL0/ν, with Urms and L0 = 2π

∫
E(k)k−1dk/∫

E(k)dk the r.m.s. velocity and the integral scale respectively;
the magnetic Reynolds number is defined as RM = UrmsL0/η.
In the following, E denotes the total energy, and Ev and Eb

denote the kinetic and magnetic energy respectively.
We employ a well-tested pseudospectral code that uses a

hybrid parallelization, combining message passing interface
(MPI) and OpenMP [20]. The computational box has size
[2π ]3, and wave numbers vary from kmin = 1 to kmax = N/3
using a standard 2/3 de-aliasing rule, where N is the number
of grid points per direction.

The forcing applied at kF is F ≡ FR + cFA; FA is an ABC
flow at kF , and FR is the sum of all harmonic modes with
k = kF and random phases. We choose c for a given fractional
helicity of F, |fh| � 1, with fh ≡ 〈F · ωF 〉(〈|F|2〉〈|ωF |2〉)−1/2,
where ωF = ∇ × F. The entire forcing has random phases
applied, with a correlation time tcor = 0.1. In practice, the
ratio of helical to nonhelical forcing magnitudes is c �
[fh/(1 − fh)]1/2 ≡ Rh. The kinetic helicity at kF is typically
within 25% of fh. By choosing dimensional length and time
constants l0 ∝ kF and t0 (fixed), varying kF in our simulations
corresponds to dimensionalized physical systems described by
Eqs. (1), where the forcing scale is constant and the system size
increases ∝ kF . The dimensionless velocity vrms and forcing
are ∝ k−1

F , and the diffusivity ∝ k−2
F .

A hydrodynamic state is evolved for five forcing-scale
eddy turnover times, τ , before a magnetic seed field at
k = kseed is introduced. In the hydro steady state, the resulting
τ = 2π [kF Urms]−1 ≈ 4.2. In all simulations, dimensionalized
viscosity is constant, k2

F ν = 2.412 × 10−2, and, arbitrarily,
PM = 4 so that PM > 1 while limiting the computational cost
(see Table I for further details).

TABLE I. Parameters: Runs are labeled by the forcing wave
number kF followed by the percentage of helicity in the forcing fh;
RM and kseed are defined in the text (Re = RM/4). The SSD growth
rate is γSSD. Es

b is the magnetic energy and Hb is the magnetic helicity,
both at later times, between 60τ and 130τ ; the “f ” is for fluctuating,
and “g” is for growing exponentially (indicating a helical dynamo).
Forcing wave numbers are kF = 2,3,4,5,6, and 8 for runs on grids of
1923,2563,3843,4323,5123, and 7683 points respectively.

Run RM kseed γSSD γk=1 Es
b −100Hb

2-80 1500 [6.7,10.7] 0.24 (−1.2 ± 10)10−4 0.2 0.5f

2-85 1600 – 0.22 (5.6 ± 0.7)10−3 0.4 6g

2-90 1600 – 0.24 (6.0 ± 0.7)10−3 0.4 8g

3-40 2000 [10,16] 0.31 (−1.0 ± 7.6)10−4 0.1 0.1f

3-60 1900 – 0.32 (3.7 ± 7.3)10−4 0.1 0.2f

3-69 1700 – 0.27 (6.0 ± 0.7)10−3 0.1 1.0g

3-80 2000 – 0.33 (8.6 ± 1.4)10−3 0.3a 10ga

4-10 1700 [13.3,21.3] 0.25 (−1.6 ± 2.0)10−3 0.04 0.008f

4-20 1600 – 0.28 (5.9 ± 0.6)10−3 0.04 0.06g

4-40 1600 – 0.25 (1.5 ± 0.1)10−2 0.06 0.3g

4-60 1500 – 0.25 (2.8 ± 0.2)10−2 0.1 1.0g

4-80 1600 – 0.27 (2.8 ± 0.3)10−2 0.1 1.9g

5-09 2000 [16.7,26.7] 0.26 (5.9 ± 4.5)10−4 0.03 0.004f

5-19 1900 – 0.26 (−2.5 ± 0.7)10−3 0.03 0.007f

5-40 1800 – 0.27 (1.6 ± 0.7)10−3 0.03 0.03g

5-50 1900 – 0.27 (3.5 ± 1.4)10−3 0.03 0.06g

5-60 1800 – 0.28 (1.1 ± 0.09)10−2 0.04 0.3g

6-01 1700 [20,32] 0.27 (2.2 ± 11)10−4 0.02 0.002f

6-05 1700 – 0.24 (4.1 ± 5.0)10−4 0.02 0.003g

6-10 1700 – 0.27 (−1.5 ± 6.9)10−4 0.02 0.004g

6-15 1600 – 0.23 (1.1 ± 0.7)10−3 0.02 0.007g

6-20 1700 – 0.27 (4.5 ± 2.0)10−3 0.03 0.01g

6-30 1600 – 0.23 (3.6 ± 0.9)10−3 0.03 0.02g

6-40 1600 – 0.23 (7.4 ± 0.7)10−3 0.03 0.06g

8-03 1200 [26.7,42.7] 0.20 (5.4 ± 1.9)10−3 0.008 4 · 10−4g

aRun 3-80 was pursued until t ≈ 300τ , at which time Eb ∼ 0.3 and
Hb ∼ 10. See Fig. 2.
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FIG. 1. (Color online) Redimensionalized magnetic (solid) and
kinetic (dashed) energy spectra after 90τ for run 4-60 (thick black)
forced at kF = 4 and for run 3-60 (thin red/light gray) with kF = 3.
At a fixed fh = 60% here, increased scale separation provides for the
transition between SSD and LSD.

III. SIMULATION RESULTS

Table I summarizes our runs. The kinetic and magnetic
energy spectra after t = 90τ are displayed in Fig. 1, for runs
4–60 (with kF = 4) and 3–60 (with kF = 3). Both have fh =
60%, and for both, the small-scale fields grow; only for kF = 4
does k = 1 grow.

Figure 2 shows the growth of magnetic energy in the k = 1,
k = 6, and total over all modes for run 3-80. The evolution
exhibits an early phase in which both modes grow at the
same rapid rate, with γSSD ∼ 0.33 ∼ τ−1, followed by a slow
growth of the k = 1 mode and a saturation for the k = 6 mode.
The k = 1 mode accounts for nearly 10% of Eb by 100τ and
the growth rate slows, but has not fully saturated by 300τ . The
growth rate of magnetic energy at k = 1 during the SSD phase
is nearly the same for all of our runs, and is insensitive to fh,

FIG. 2. Magnetic energy density Eb(k) for k = 1 (solid line),
k = 6 (dashed), and total (dotted) versus time for run 3-80. The gray
line indicates the fit γ = (8.6 ± 1.4)10−3 to the solid curve for growth
of the k = 1 mode after SSD saturation.

FIG. 3. Growth rate γk=1 of Eb(k = 1) versus fractional helicity.
From Table I, ×(kF = 2), +(kF = 3), �(kF = 4), 
(kF = 5), �(kF =
6), ∗(kF = 8), and least-squares linear fits (dashed).

RM , and kF . Sensitivity to fh emerges once the SSD regime
ends.

The γk=1 growth rates [for Eb(k = 1)] that immediately
follow the SSD phase (see Table I) are shown in Fig. 3.
This LSD growth regime occurs only when fh > fh,C ; the
LSD growth rate varies linearly with fh for a fixed kF /kmin

(α ∝ Hv ∝ fh). Least-squares fits are dashed lines in Fig. 3
[the y intercept, β ∼ (kmin/kF )2.2]. The short exponential
growth phase of 4-80 makes for an inaccurate measure of
γk=1; it is thus excluded from the fit. As kF /kmin increases,
fh,C decreases.

The LSD exponential growth of Eb(k = 1) for fh � fh,C is
accompanied by a k = 1 growth of magnetic helicity. Studies
of the k = 1 growth for fh = 1 in a two-scale approach
[14,15] for a HR driven dynamo [9] suggest two phases of
kmin = 1 mode growth after the SSD regime: one phase that is
largely independent of RM , and a subsequent RM -dependent
asymptotic regime. The former phase has growth consistent
with our γk=1 phase. In all these runs, fh,C decreases with
increasing kF /kmin, as displayed in Fig. 4. For the largest

FIG. 4. fh,C from least-squares fits versus kF /kmin (symbols as in
Fig. 3). Dashed line is best fit to Eq. (2), giving C = 0.21 and ξ =
0.46. Dotted line is kinematic MFT prediction fh,C = βkmin/(|α0|kF ).
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kF /kmin (=8) case, fh ∼ 3% is sufficient. In Fig. 4, the
error bars and fh,C are calculated as follows: The x intercept
from the least-squares linear fits, γk=1 = mfh + b shown in
Fig. 3, determine our estimate of fh,C = −b/m for Fig. 4.
The 1−σ uncertainties for b and m are then propagated for
fh,C : σfh,C

= b/m
√

(σb/b)2 + (σm/m)2.

IV. THEORETICAL PREDICTION FOR fh,C

The following prediction for fh,C is based on the principle
that LSD helical field growth at k = kmin beyond the SSD
phase requires helical velocity forcing to overcome the Lorentz
force at k = kmin at the end of the kinematic SSD phase. For
that time, we assume the magnetic energy at kmin < kF to
be B2

min ∼ B2
F (kmin/kF )ξ , where BF is the magnetic field at

kF , and ξ − 1 is the slope of the magnetic energy spectrum
on a log-log plot. The associated Lorentz force is then
Mnh(fh)B2

F kF (kmin/kF )ξ+1, where the function Mnh(fh) < 1
accounts for the contribution from only nonhelical magnetic
energy.

The available helical velocity forcing that must overcome
this Lorentz force is only a fraction of the helical forcing at k =
kF : At early times when magnetic helicity is nearly conserved,
the forcing not only sources magnetic helicity at k = kmin but
also an oppositely signed, equal in magnitude, magnetic helic-
ity at k = kss � kF . The associated ratio of helical magnetic
energy growth at kmin to that at kss is then ∼kmin/kss < 1.
The helical force that needs to exceed the Lorentz force at
kmin to initiate growth is thus ∼Kh(fh)v2

rmskF (kmin/kss), where
the function Kh(fh) < 1 accounts for only kinetic helical
forcing.

Balancing the aforementioned forces assuming Kh/Mnh =
Rh(fh) (which is consistent with our data), and assuming fh =
fh,C , then gives

fh,C = 1

1 + C2(kF /kmin)2ξ+2
, (2)

where C ≡ (kminv
2
rms)/(kssB

2
F ) ∼ kmin/kss . Figure 4 shows the

data and the best fit using Eq. (2); ξ = 0.46 ≈ 1/2 is found.
This yields the prediction, fh,C ∼ (kF /kmin)−3 as kF /kmin →
∞. Note that taking the limit of infinite scale separation, we
have a LSD with zero helicity (but only fluctuations, as in
Ref. [21]).

The theory above, which considers the Lorentz force back
reaction from the large-scale field, can be contrasted with the
prediction from the purely kinematic theory of the standard
α2 dynamo, which does not include any Lorentz forces. Using
the formula presented in the introduction for the growth rate at
kmin, and the definition of fh, the critical fractional helicity
for the kinematic theory would be fh,C = βkmin/(|α0|kF )
where α0 ≡ α/fh. This formula is shown as the dotted line
in Fig. 4 and does not fit the data very well, highlighting
the importance of including the Lorentz force. This does not
imply the kinematic theory is irrelevant however. For values
of fh � fh,C the kinematic theory should be applicable to
estimating the early time growth rate because the driving
helicity overwhelms the back reaction associated with the
weak large-scale field produced by the SSD in that regime.

V. DISCUSSION OF LARGE-SCALE DYNAMOS GROWTH
AND SATURATION

At large RM , SSD action produces field at all scales, poten-
tially precluding a scale separation between the mean magnetic
field and velocity fluctuations (an essential assumption to
derive α2 MFT) [22]. The SSD magnetic energy spectrum at
scales above the forcing scale produces less magnetic energy
the larger the scale [5]. At large enough scales, the magnetic
energy production from the SSD will be negligible, and scale
separation becomes a meaningful concept (see thin red/light
gray, solid line in Fig. 1). This helps justify the mean-field
approach to LSDs.

In the mean-field, two-scale approach, once the small-scale
magnetic helicity has grown as a result of magnetic helicity
conservation to be large enough such that the associated small-
scale current helicity back-reacts on the driving kinetic helicity,
the α2 dynamo eventually slows to RM -dependent growth rates
and ultimately saturates completely. Previous studies have
typically focused on the fh = 1 case [14,15]. In this paper, we
have not run enough simulations long enough to determine how
strong the large-scale field gets before its evolution reaches
the RM -dependent regime. However, if cases with fractional
helicity fh,C < fh < 1 saturate by direct analogy to the fh = 1
cases studied in previous work, then the value of the large-
scale magnetic energy reached just before the RM -dependent
regime emerges would be expected to be simply proportional

to an extra factor of fh, namely B
2 ∼ fh(k1/kf )〈U 2

rms〉.
Similarly, for asymptotically saturated steady state at very

late times, we would expect B
2 ∼ fh(kf /k1)〈U 2

rms〉. Note
that in the fh = 1 case, the latter similarity highlights
the fact that that superequipartition field strengths (with
respect to the total kinetic energy) are able to grow by the
end of the nonlinear, saturated regime for fully helical α2

dynamo.
Note however that the RM -dependent regimes of the α2

dynamo are largely irrelevant for astrophysical objects, which
have such large RM that something else probably happens
before these regimes are reached. Open boundaries and helicity
fluxes are ingredients that have to be considered in realistic
systems. In addition, real astrophysical dynamos have large-
scale shear, which amplifies the total large-scale field beyond
its purely helical value. More work is needed to determine
the strength of the large-scale fields produced by fractionally
helical LSDs.

VI. CONCLUSION

Only a minuscule amount of fractional helicity is required
for LSD action at even modest astrophysically relevant scale
separations. For fh > fh,C , the k = 1 field grows and the
small-scale spectrum steepens (see Fig. 1 and Ref. [19]).
This may be important because our result that fh,C � 3% for
kF /kmin � 8 offers a basic principle for potentially reconciling
a disparity between a pileup of small-scale magnetic energy
in large PM nonhelical dynamo simulations [6] and Galactic
observations [18]. Our results also suggest that large-scale
separations should be a priority in designing laboratory
experiments to measure LSD action [2].
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(1976).
[10] H. Moffatt, Magnetic field generation in electrically conducting

fluids (Cambridge University Press, Cambridge, 1978).
[11] A. Brun, M. Miesch, and J. Toomre, Astrophys. J. 614, 1073

(2004); M. Browning, ibid. 676, 1262 (2008).
[12] A. Gailitis et al., Rev. Mod. Phys. 74, 973 (2002); H. Ji and

S. Prager, Magnetohydrodynamics 38, 191 (2002).

[13] P. Roberts and G. Glatzmaier, Rev. Mod. Phys. 72, 1081 (2000);
F. Busse, Annu. Rev. Fluid Mech. 32, 383 (2000).

[14] A. Brandenburg, Astrophys. J. 550, 824 (2001).
[15] E. G. Blackman and G. B. Field, Phys. Rev. Lett. 89, 265007

(2002).
[16] N. E. L. Haugen, A. Brandenburg, and W. Dobler, Astrophys. J.

Lett. 597, L141 (2003); Phys. Rev. E 70, 016308 (2004).
[17] A. A. Schekochihin et al., Astrophys. J. 576, 806 (2002)
[18] A. H. Minter and S. R. Spangler, Astrophys. J. 458, 194

(1996)
[19] J. Maron and E. Blackman, Astrophys. J. Lett. 566, L41

(2002).
[20] P. D. Mininni et al., Parallel Computing 37, 316 (2011).
[21] A. Gilbert, U. Frisch, and A. Pouquet, Geophys. Astrophys.

Fluid Dyn. 42, 151 (1988).
[22] F. Cattaneo and D. Hughes, Mon. Not. R. Astron. Soc. 395, L48

(2009).

066406-5

http://dx.doi.org/10.1146/annurev.astro.34.1.155
http://dx.doi.org/10.1063/PT.3.1166
http://dx.doi.org/10.1007/s11214-009-9490-0
http://dx.doi.org/10.1002/asna.200911304
http://dx.doi.org/10.1086/422547
http://dx.doi.org/10.1016/j.physrep.2005.06.005
http://dx.doi.org/10.1103/PhysRevLett.47.1060
http://dx.doi.org/10.1103/PhysRevLett.47.1060
http://dx.doi.org/10.1017/S0022112076002140
http://dx.doi.org/10.1017/S0022112076002140
http://dx.doi.org/10.1086/423835
http://dx.doi.org/10.1086/423835
http://dx.doi.org/10.1086/527432
http://dx.doi.org/10.1103/RevModPhys.74.973
http://dx.doi.org/10.1103/RevModPhys.72.1081
http://dx.doi.org/10.1146/annurev.fluid.32.1.383
http://dx.doi.org/10.1086/319783
http://dx.doi.org/10.1103/PhysRevLett.89.265007
http://dx.doi.org/10.1103/PhysRevLett.89.265007
http://dx.doi.org/10.1086/380189
http://dx.doi.org/10.1086/380189
http://dx.doi.org/10.1103/PhysRevE.70.016308
http://dx.doi.org/10.1086/341814
http://dx.doi.org/10.1086/176803
http://dx.doi.org/10.1086/176803
http://dx.doi.org/10.1086/339546
http://dx.doi.org/10.1086/339546
http://dx.doi.org/10.1016/j.parco.2011.05.004
http://dx.doi.org/10.1080/03091928808208861
http://dx.doi.org/10.1080/03091928808208861
http://dx.doi.org/10.1111/j.1365-2966.2009.14557.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14557.x

