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A B S T R A C T

We studied the existence, biochemical characteristics and response to different environmental salinities of
amylase, maltase and sucrase activity in the intertidal euryhaline crab Cyrtograpsus angulatus (Dana, 1852) along
with the response to distinct salinities of glycogen and free glucose content in storage organs. Amylase, maltase
and sucrase activities were kept over a broad range of pH and temperature and exhibited Michaelis–Menten
kinetics. Zymography showed the existence of two amylase forms in crabs exposed to 35 (osmoconformation)
and low (6–10 psu; hyper-regulation) or high (40 psu) (hypo-regulation) salinities. Carbohydrases activity in the
hepatopancreas and glycemia were not affected in crab exposed to different environmental salinities. In 6 and
40 psu, the glycogen content in anterior gills was lower than in 35 psu. In 6, 10 and 40 psu, glycogen con-
centration in hepatopancreas, muscle and posterior gills were similar to that in 35 psu. Free glucose con-
centration in chela muscle was higher in 6 and 40 psu than in 35 psu. The existence and biochemical char-
acteristics of carbohydrases activity and the adjustments in concentration of glycogen in anterior gills and free
glucose in chela muscle suggests the ability to perform complete hydrolysis of glycogenic substrates and to keep
glucose homeostasis in relation to acclimation to different salinity conditions.

1. Introduction

In decapod crustaceans, glucose homeostasis is fundamental for
maintaining organ functions and for compensation to numerous en-
vironmental stress factors (Verri et al., 2001; Lorenzon, 2005; Dutra
et al., 2008). The carbohydrates digestion such as starch, glycogen,
disaccharides as well as the absorption of glucose via the hepatopan-
creas are principal origin of hemolymphatic glucose (Verri et al., 2001;
Obi et al., 2011). The hepatopancreas is multifunctional organ. It is the
principal site of digestive enzymes synthesis and where intracellular
digestion begins and is accomplished (Zeng et al., 2010; Ribeiro et al.,
2014; Wang et al., 2014). The occurrence and level of key carbohy-
drases in the hepatopancreas has a fundamental role in the metabolism
of glycogenic carbohydrates.

α-amylases (α-1,4 glucan-4-gluconohydrolase) are hydrolytic en-
zymes responsible for the hydrolysis of internal α-D-(1, 4) glycoside
bonds of α-glucans (Janeček et al., 2014; Xie et al., 2014; Peng et al.,

2015; Tiwari et al., 2015). In all animals, α-amylases have a central
physiological importance due to their function in the initial steps of
hydrolysis of dietary starch and of dietary and/or storage glycogen
(Date et al., 2015; Saborowski, 2015). Amylase activity was detected in
the hepatopancreas of various decapod crustaceans and has been found
that several forms occur although with a high grade of interspecific
variability (Le Moullac et al., 1997; Van Wormhoudt and Sellos, 2003;
Johnston and Freeman, 2005; Perera et al., 2008a, 2008b; Coccia et al.,
2011; Aragón-Axomulco et al., 2012; Castro et al., 2012; Rodríguez-
Viera et al., 2016). However, very little information is available about
the occurrence and biochemical characteristics of amylase in the he-
patopancreas of intertidal euryhaline crabs (Blandamer and Beechey,
1966; Van Wormhoudt et al., 1995; Asaro et al., 2011, 2017). Maltase,
which hydrolyzes α-1,4 glycosidic linkages from non-reducing ends,
has a main role in glycogenic carbohydrates digestion by participating
in the initial (assisting to α- amylase) and in the final steps (Lin et al.,
2012, 2014, 2015; Dhital et al., 2013).The existence of specific
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disaccharidases in the hepatopancreas would also facilitate the poten-
tial use of glycogenic disaccharides (i.e. maltase, sucrose) as glucose
sources. Reports about existence and biochemical characteristics of
maltase and sucrase in the hepatopancreas of intertidal euryhaline
crabs are still limited (McClintock et al., 1991; Asaro et al., 2011).

In estuaries and coastal lagoons, intertidal euryhaline crabs must
deal with sharp and broad changes in environmental salinity.
Biochemical adaptation to environmental salinity implies adjustments
in different tissues (Michiels et al., 2013, 2015a; Pinoni et al., 2013,
2017; Larsen et al., 2014). In intertidal euryhaline crabs, simultaneous
determinations of diverse parameters in different organs are needed for
an integral analysis of the adaptation at biochemical level to different
salinities (Romano and Zeng, 2012; Pinoni et al., 2013, 2015).

Cyrtograpsus angulatus (Dana, 1852) is a euryhaline crab common in
intertidal areas of southwestern Atlantic coast from Rio de Janeiro
(Brazil) to Patagonia (Argentina) and of the Pacific coast in Chile and
Perù. C. angulatus is one of the dominant crabs in these regions (Boschi,
1964; Spivak, 1997). This crab is a predator-omnivorous-carrion
(Spivak, 1997; Botto et al., 2005). The digestive battery at the bio-
chemical level subjacent to its dietary behavior is not totally under-
stood. We have shown the occurrence of different digestive enzymes
activities (i.e. endo and ectoproteases and lipase) (Michiels et al., 2013;
Michiels, 2015) in the hepatopancreas of C. angulatus, but studies on
carbohydrase activities (i.e. amylase, maltase and sucrase) are still
lacking. In Mar Chiquita coastal lagoon (Argentina) C. angulatus is ex-
posed to sharp, recurrent and deeply changes in salinity (from 4 to
40 psu and from time to time reaching lower and higher values) (López
Mañanes et al., 2002; Pinoni and López Mañanes, 2004, 2008; Michiels
et al., 2013). We showed that biochemical acclimation to salinity im-
plicates multiple and integral responses (López Mañanes et al., 2002;
Pinoni and López Mañanes, 2004, 2008; Pinoni, 2009). The distinct
regulation of proteolytic and lipase activities in the hepatopancreas
suggest that different adjustments in proteins and lipids metabolism are
triggered by exposure to high salinity (Michiels et al., 2013). Nothing is
known yet about the occurrence of adjustments in components involved
in glucose homeostasis at the biochemical level. The aims of this work
were to determine i) the occurrence and biochemical characteristics of
amylase, maltase and sucrase activities in the hepatopancreas of C.
angulatus and ii) the effect of low and high salinity on these activities in
the hepatopancreas and on the content of carbohydrate reserves in
different tissues of this crab.

2. Methods

2.1. Collection and maintenance of animals

Crabs in intermolt (carapace width> 2.5 cm) (Drach and
Tchernigovtzeff, 1967) were captured from the mudflat area of Mar
Chiquita coastal lagoon (37°32′–37°45′S; 57°19′–57°26′W, Argentina)
in autumn. Crabs were transported to the laboratory on the same day of
capture in lagoon water. The salinity for all experiments was de-
termined in practical salinity units (psu). The individuals of C. angulatus
were distributed in 3 groups (4–8 individuals per condition): I) dilute
seawater (6–10 psu), II) seawater (35 psu), and III) concentrated sea-
water (40 psu) for 10 days (Michiels et al., 2013). Dilute and con-
centrated seawater preparation and the maintenance of crabs in aquaria
were done as previously described (Michiels et al., 2015a). The aquaria
contained 36 L of water which was continuously aerated and filtered
(Atman filter HF-0400). A regime of 12 h light/12 h dark was applied
and the temperature was kept at 22 ± 2 °C. The animals were fed with
commercial food (43% carbohydrates, 44% proteins, 13% lipids; 0.07 g
per individual), three times a week ad libitum and were starved for one
or two days before sampling (Michiels et al., 2013). No changes in the
feeding behavior and no mortality occurred under the experimental
conditions utilized. The regulations and statements of Ethics Committee
CICUAL (OCA 1499/12) FCEyN Universidad Nacional de Mar del Plata

were followed.

2.2. Sample procedures

Animals were weighed and anesthetized by cold for about 25 min.
For glucose and osmolality determination a sample of hemolymph was
taken to be used as described below. The hepatopancreas, chelae
muscles, anterior (1–5) and posterior (6–8) gills were at once cut out
and gently dried on a paper towel and weighed. Wet mass was mea-
sured to the nearest 0.01 g. Immediately after weighing, the hepato-
pancreas was homogenized in Tris/HCl buffer (0.1 M, pH 7.4;
4 mL g tissue−1) (CAT homogenizer 9120, tool T10) and centrifuged at
10,000 ×g for 15 min at 4 °C. A sample of the homogenate was kept for
posterior determination of glycogen content. The supernatant was
fractionated and stored at −20 °C for further enzymatic assays.
Glycerol (1.3% v v−1) was added to supernatant samples before
freezing (Ljungström et al., 1984).The chela muscle and anterior and
posterior gills were mixed with homogenizing medium (0.25 M su-
crose/0.5 mM EGTA-Tris, pH 7.4) (8 mL or 4 mL g tissue−1, respec-
tively) and homogenized on ice with homogenizer as described for
hepatopancreas (chela muscle) or in a motor-driven hand-operated
Teflon-glass homogenizer (Potter–Elvehjem, 1700 rpm) (anterior and
posterior gills), the homogenates were fractionated and stored at
−20 °C until use.

2.3. Hemolymph osmolality

Hemolymph was sampled from the intrabranchial sinus at the base
of the cheliped with a syringe flushed with an anticoagulant (sodium
citrate buffer, 10% w v−1 pH 7.4) and put in an iced centrifuge tube to
separate plasma (2,000 ×g during 3 min at 0 °C) (IEC-Centra 7R). A
cryoscopic osmometer (Osmomat 030, Gonotec) was used to determine
the osmolality (mOsm kg−1) of the hemolymph and external medium.
The values are given as hemolymph osmolality (measurement of solutes
concentration) defined as the number of osmoles (Osm) of solutes per
kilogram of solvent and as osmoregulatory capacity which is calculated
as the difference between the value of osmolality of the hemolymph and
that of the medium (Lignot et al., 2000; Charmantier and Anger, 2011).
Osmoregulatory capacity is a common parameter to analyze the os-
moregulatory performance at a given salinity (Lignot et al., 2000;
Charmantier and Anger, 2011).

2.4. Biochemical assays

2.4.1. Amylase activity
Amylase activity in hepatopancreas was measured according to

Biesiot and Capuzzo (1990) using starch (15 mg mL−1) as substrate, as
we previously detailed (Asaro et al., 2011). Briefly, the sample was
incubated for 15 min at 30 °C in the presence of starch in 50 mM
phosphate buffer (pH 5.2), 1.5 mL of dinitrosalicylic acid reagent
(Miller, 1959) was added for further incubation for 10 min at 100 °C.
After cooling, the released maltose was assessed reading absorbance at
540 nm (ZL5000 PLUS, Zeltec). To determine the effect of varying pH,
temperature and starch concentration, the activity was assayed at
varying pH (5.2–7.0) (50 mM phosphate buffer), temperature (4–45 °C)
and starch concentration (0.03–17.97 mg mL−1) in the reaction mix-
ture. Individuals acclimated to 35 psu were used in these experiments.

2.4.2. Maltase and sucrase activity
Maltase and sucrase activity in hepatopancreas were determined

measuring the glucose released from the specific substrate as we de-
tailed (Asaro et al., 2011). Briefly, the sample was incubated during
10 min at 37 °C with 42 mM of maltose or sucrose in 0.1 M maleate-
NaOH buffer (pH 5.2). The reaction was arrested with 1.5 mL of a
glycemia kit (glucose oxidase 10 kU L; peroxidase 1 kU; l,4-amino-
phenazone 0.5 mmol L−1; phosphates pH 7.0100 mmol L−1,
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hydroxybenzoate12 mmol L−1) (Wiener Lab Glicemia AA) and further
incubated during 5 min at 37 °C. Glucose amount was quantified
reading absorbance at 505 nm of the colored quinone complex. The
effect of pH, temperature and substrate concentration disaccharidases
activity was studied measuring the activity at various pH (3.5–8.3)
(0.1 mM maleate buffer), temperatures (4–45 °C) and substrate con-
centration (0.56–42 mM) in the assay mixture. Individuals acclimated
to 35 psu were used in these experiments.

2.4.3. Glycogen and free glucose content
Glycogen content in hepatopancreas, muscle, anterior gills and

posterior gills was measured as glucose equivalent according to Pinoni
et al. (2011). Free glucose was assessed from assay without α-amy-
loglucosidase. Released glucose from glycogen hydrolysis was calcu-
lated as the difference between the values obtained with and without α-
amyloglucosidase.

2.4.4. Plasma glucose
Plasma glucose was determined at once after hemolymph sampling

and centrifugation using glycemia kit as we previously described
(Pinoni et al., 2011).

2.4.5. Protein concentration
The protein concentration in hepatopancreas was assayed according

to Bradford (1976), using bovine serum albumin as standard.

2.5. Zymogram analysis of amylolytic activity in the hepatopancreas

Zymogram analysis (Substrate-SDS-PAGE) for amylolytic activity
was carried out in the corresponding samples as described by Perera
et al. (2008a), with modifications. The samples were not boiled or
treated with mercaptoethanol before electrophoresis on 10% poly-
acrylamide gels. The gels were run at 15 mA and 4 °C in a vertical
electrophoresis equipment (Hoeffer SE260, 8 × 10 × 0.75 cm). After
electrophoresis, the gels were put into a starch solution (1%) at pH 6.0
for 90 min. After incubation, staining was carried out with iodine/KI
solution (10 mM). Molecular weight markers (MWM) (12–250 kDa,
Amersham full-range rainbow), in the absence of reducing agent, were
utilized for apparent MW determination.

2.6. Statistical analysis

The statistic program Sigma-Stat 3.0 statistical package was used for
all tests carried out. This program automatically performs a previous
test for equal variance and normality. The effect of different pH or
temperature on amylase, maltase and sucrase activities were analyzed
using One Way ANOVA. A posteriori ANOVA (the Holm–Sidak) was
used to identify differences. The effect of varying concentrations of

Fig. 1. Effect of pH, temperature and starch concentration on amylase activity in hepatopancreas of C. angulatus submitted to 35 psu. (A) Effect of pH (5.2–7.0). The activity was measured
at 30 °C and in the presence of 15 mg mL−1 of starch (B) Effect of temperature (4–45 °C). The activity was measured at pH 5.2 and in the presence of 15 mg mL−1 starch. (C) Effect of
starch concentration (0.03–17.97 mg mL−1). The activity was measured at 30 °C and at pH 5.2. The curves are the ones which best fit the experimental data (GraphPad Prism 5.01). Data
are the mean ± S.E. for five individuals. Different letters indicate significant differences (One-way ANOVA, p < 0.05). (D) Zymogram of amylolytic activity from hepatopancreas
extract of C. angulatus acclimated to 35 psu. The right arrows indicate the bands of 31 and 38 kDa.
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starch, maltose and sucrose were analyzed by means of non-linear re-
gression analysis and Km values (Michaelis-Menten constant) were es-
timated by analysis of these curves by GraphPad Prism 5.01 software.
p < 0.05 was considered to be significant. The difference between
hemolymph and external osmolality (water of the aquarium) was ana-
lyzed using the parametric (t-test) or non-parametric test (Mann-
Whitney). The difference between the osmoregulatory capacity be-
tween 6 and 10 psu was analyzed with the nonparametric test (Mann-
Whitney). The differences in the activities of amylase, maltase and
sucrase in hepatopancreas, glucose concentration in hemolymph, gly-
cogen concentration or free glucose in different organs in relation to
environmental salinity were analyzed using the parametric test (One
Way ANOVA) or non-parametric (Kruskal-Wallis). A posteriori ANOVA
or Kruskal–Wallis test (the Holm–Sidak or the Dunn's method, respec-
tively) was used to identify differences (Zar, 2010).

3. Results

3.1. Carbohydrases activities in hepatopancreas: biochemical characteristics

Amylase activity in hepatopancreas was determined within the
ranges of pH 5.2–7.0 and of temperature 4–45 °C (Fig. 1A and B).
Amylase activity was similar within the ranges of pH and temperature
studied (F = 0.45, p = 0.77; F = 1.025, p = 0.48, respectively). The
Fig. 1C illustrates the effect of starch concentrations on amylase ac-
tivity. The results showed that amylase activity of C. angulatus pre-
sented a Michaelis-Menten kinetics (Km= 0.11 ± 0.04 mg mL−1).
The zymogram analysis showed that hepatopancreas of crabs accli-
mated to 35 psu exhibited two bands with amylolytic activity with
molecular mass of about 38 and 31 kDa. The band of 31 kDa appeared
to exhibit the highest activity (Fig. 1D).

Maltase activity in hepatopancreas was similar within the ranges of
pH (3.5–8.3) and temperature (4–45 °C) (F = 0.50, p = 0.77; F = 2.95,
p = 0.055, respectively) (Fig. 2A and B). The effect of maltose con-
centrations on maltase activity of hepatopancreas of C. angulatus is
shown in Fig. 2C. Maltase activity showed Michaelis-Menten kinetics
(Km = 8.08 ± 3.96 mM).

Sucrase activity in hepatopancreas was assayed in the range of
pH 3.5–8.3 (Fig. 3A). Sucrase activity was similar at pH 3.5–5.2. At
pH 6.0 sucrase activity decreased, being about 44% lower than the
activity at pH 5.2. At pH 6.4 and 6.8 the activity was similar to that
found at pH 5.2. At pH 8.3, the activity was about 47% of the activity at
pH 5.2 (F = 3.26, p = 0.022). Sucrase activity was maintained over a
wide range of temperature (4–45 °C) (F = 0.18, p = 0.94) (Fig. 3B).
The effect of sucrose concentrations on sucrase activity of hepatopan-
creas of C. angulatus is shown in Fig. 3C. Sucrase activity showed

Michaelis-Menten kinetics (Km= 14.26 ± 5.81 mM).

3.2. Hemolymph osmolality

Crabs exposed to low salinity (6 and 10 psu), exhibited values of
hemolymph osmolality higher (around four and twofold) compared to
the osmolality of the external medium (T = 57 p = 0.002; T = 21
p < 0.001), respectively. In 35 psu, hemolymph osmolality was not
different from external medium while it was about 12% lower in 40 psu
(t = 4, 19 p = 0.0021) (Fig. 4A). In 6 psu the difference between he-
molymph and external medium osmolality values was higher compared
to that in 10 psu (T = 62, p = 0.029) (Fig. 4B).

3.3. Carbohydrases activity in the hepatopancreas, plasma glucose and
glycogen and free glucose content in storage tissues at different salinities

No significant differences between carbohydrases activity of in-
dividuals of C. angulatus acclimated to different environmental sali-
nities (6, 10, 35 and 40 psu, p > 0.05) were found (Fig. 5A, C and D).

The zymogram analysis of amylolytic activity in hepatopancreas of
crabs acclimated to 6, 10 and 40 psu showed a similar pattern to that
found for individuals acclimated to 35 psu (Fig. 5B).

The concentration of glucose (mg l−1) in the hemolymph of crabs
maintained at 6, 10 and 40 psu was similar to 35 psu (6 psu:
55.95 ± 7.65; 10 psu: 54.63 ± 8.61, 35 psu: 77.04 ± 19.25, 40 psu:
69.98 ± 20.36) (p > 0.05). The glycogen content in hepatopancreas,
muscle and posterior gills of crabs maintained at low and high salinity
was similar to the corresponding values in 35 psu (p > 0.05).

The glycogen content in anterior gills in crabs acclimated in 6 psu
and 40 psu was lower (55 and 70%, respectively) than in 35 psu
(F = 7.98, p = 0.001). There were no significant differences between
10 and 35 psu in the glycogen concentration in anterior gills
(p > 0.05) (Fig. 6A). Free glucose concentration in chela muscle was
higher in both 6 psu and 40 psu (about three and two fold, respectively)
than in 35 psu (H = 8.45, p = 0.037). Free glucose concentration in
hepatopancreas, anterior and posterior gills was similar in all salinities
tested (p > 0.05) (Fig. 6B).

4. Discussion

Our results show the occurrence of amylase, maltase and sucrase in
hepatopancreas of the intertidal crab C. angulatus (Dana, 1852) which
suggest the ability to perform complete starch degradation and the
potential utilization of diverse types of carbohydrates (i.e. starch, gly-
cogen, disaccharides) as glucose sources. Previous work of our lab
showed the presence of proteases and lipase activities in

Fig. 2. Effect of pH, temperature and maltose concentration on maltase activity in hepatopancreas of C. angulatus submitted to 35 psu. (A) Effect of pH (3.5–8.3). The activity was
measured at 30 °C and in the presence of 28 mM maltose. (B) Effect of temperature (4–45 °C). The activity was measured at pH 5.2 and in the presence of 28 mM maltose. (C) Effect of
maltose concentrations (0.56–42 mM). The activity was measured at 30 °C and at pH 5.2. The curves are the ones which best fit the experimental data (GraphPad Prism 5.01). Data are the
mean ± S.E. for five individuals. Different letters indicate significant differences (One-way ANOVA, p < 0.05).
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hepatopancreas of C. angulatus pointing out its ability to also perform
lipid and protein degradation and potentially use them as an energy
sources (Michiels et al., 2013, 2017). The occurrence of various specific
digestive enzyme activities in the hepatopancreas is in agreement with
the predator-omnivorous-carrion behavior of this crab in Mar Chiquita
coastal lagoon (Spivak, 1997; Botto et al., 2005). The maintenance of
amylase activity over a wide range of pH is similar to that we described
in the euryhaline crab Neohelice granulata (Asaro et al., 2011) and to
that found in Scylla serrata (Pavasovic et al., 2004) but quite different
from amylase activity of other decapod crustaceans (Johnston, 2003;
Perera et al., 2008a; Figueiredo and Anderson, 2009; Coccia et al.,
2011; Castro et al., 2012). The hepatopancreas of decapod crustaceans
is the main site of digestive enzyme synthesis and where intracellular
digestion is started and carried out (Zeng et al., 2010; Ribeiro et al.,
2014; Wang et al., 2014). When the internal reserves of a cell have to be
mobilized, digestive enzymes would be intracellularly activated
(Sánchez-Paz et al., 2006). Previous work of our lab supports the idea of
a modulation of intracellular digestive enzymes activity in hepatopan-
creas of C. angulatus and N. granulata (Michiels et al., 2015a, 2015b,
2017). The conservation of amylase activity over a broad values of pH
could support a high hydrolytic capacity intracellularly and/or after
secretion from the hepatopancreas. The maintenance of activity at
various temperatures is similar to that found in various decapod crus-
taceans (Pavasovic et al., 2004; Perera et al., 2008a; Coccia et al., 2011;
Castro et al., 2012). Strikingly, amylase activity appeared to be high at
low and high temperature. In Mar Chiquita coastal lagoon, C. angulatus
is often exposed to a wide range of temperatures. Further experimental
work is needed to establish whether an extreme tolerant temperature
amylase in the hepatopancreas could be related to thermal acclimati-
zation (i.e. maintenance of carbohydrate degradation to sustain energy
supply) as we suggested for lipase activity (Michiels et al., 2013). The
Michaelis–Menten behavior of amylase activity is similar to that de-
scribed in the crayfish Procambarus clarki (Hammer et al., 2003) and the
euryhaline crab N. granulata (Asaro et al., 2011). Zymogram analysis is
a tool commonly used for the identification of active amylase forms in
hepatopancreas of decapod crustaceans. A great interspecific variability
occurs since up to 10 active amylase bands has been reported for some
species while others appear to exhibit one form (Van Wormhoudt et al.,
1995; Le Moullac et al., 1997; Van Wormhoudt and Sellos, 2003; Dutta
et al., 2006; Perera et al., 2008a, 2008b; Castro et al., 2012; Rodríguez-
Viera et al., 2016). The presence of two forms of amylase in the he-
patopancreas of C. angulatus (with the band of 31 kDa with the highest
activity) is similar to that found in C. maenas (Van Wormhoudt et al.,
1995) but it is quite different from that we have recently found in the
hepatopancreas of N. granulata in which at least five bands with amy-
lolytic activity were detected (Asaro, 2016; Asaro et al., 2017).

Fig. 3. Effect of pH, temperature and sucrose concentration on sacarase activity in hepatopancreas of C. angulatus submitted to 35 psu. (A) Effect of pH (3.5–8.3). The activity was
measured at 30 °C and in the presence of 28 mM sucrose. (B) Effect of temperature (4–45 °C). The activity was measured at pH 5.2 and in the presence of 28 mM sucorse. (C) Effect of
sucrose concentrations (0.56–42 mM). The activity was measured at 30 °C and at pH 5.2. The curves are the ones which best fit the experimental data (GraphPad Prism 5.01). Data are the
mean ± S.E. for five individuals. Different letters indicate significant differences (One-way ANOVA, p < 0.05).

Fig. 4. (A) Hemolymph osmolality of individuals of C. angulatus acclimated to 6
(609 mOsm kg−1), 10 (644 mOsm kg−1), 35 (895 mOsm kg−1) and 40
(981 mOsm kg−1) psu. Dashed line: isosmotic line. Isosmotic point: 850 mOsm kg−1

(GraphPad Prism 5.01). ⁎ Significantly different from the medium osmolality (Mann
Whitney test, p < 0.05). (B) Osmoregulatory capacity (difference between hemolymph
and medium osmolality); +significantly different (t-test, p < 0.05). Data are the
mean ± S.E. for six-eight individuals.
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Similarly to amylase, maltase activity in hepatopancreas of C. angulatus
was maintained over a broad range of pH and temperature and ex-
hibited Michaelis-Menten kinetics. These biochemical characteristics of
maltase activity detected in hepatopancreas of C. angulatus are in
agreement with that we found in N. granulata (Asaro et al., 2011).
Unlike C. angulatus, maltase activity in other decapod crustaceans is
optimal within a narrow pH range (Figueiredo et al., 2001; Figueiredo
and Anderson, 2009). The response of maltase activity to temperature
further supports the maintenance of capability for digestion of key
glycogenic substrates under low and high temperatures as we pointed
out above for amylase activity. Concerning sucrase activity, to our
knowledge, our work in N. granulata is the only report available about
the existence and biochemical features of this activity in a euryhaline
crab (Asaro et al., 2011). In fact, reports on sucrase activity in other
crustaceans are also scarce (Saxena and Murthy, 1982). Similarly to N.
granulata, sucrase activity in C. angulatus was maintained over a wide
range of pHs and temperature and also exhibit Michaelis–Menten ki-
netics (Asaro et al., 2011).

C. angulatus exhibited hyper/hypo-regulatory ability since hemo-
lymph osmolality values were higher and lower than those of the cor-
responding external medium when exposed to low salinities (6–10 psu)
and high salinity (40 psu), respectively, while behave as osmo-
conformer in 35 psu (Michiels et al., 2013; this work). The comparison
of osmoregulatory capacity of individuals exposed to various salinities
allows to examine the existence of distinct performance in response to
different degree and/or type of osmotic challenge. The higher osmor-
egulatory capacity value of C. angulatus in 6 psu compared to 10 psu
indicates a greater hypo-osmoregulatory performance in relation to the

degree of hypo-osmotic challenge. Compensation in response to dif-
ferent environmental salinities is usually, an energy-demanding pro-
cess. Changes at molecular and biochemical levels such as those in
enzymes and system transports components of the branchial osmor-
egulatory machine during biochemical adaptation to salinity often re-
quires the mobilization of energy substrates to metabolically deal with
salinity challenge (Pinoni et al., 2013; Larsen et al., 2014). This could
lead to changes in carbohydrate, lipids, and/or protein metabolism and
then to a differential utilization of energy reserves in various storage
organs (Pinoni et al., 2013, 2017). The maintenance of glycemia in C.
angulatus suggest that availability of glucose from the hemolymph
would not be a constraint upon acclimation to different environmental
salinities in this crab. As we pointed out above, a major part of he-
molymphatic glucose comes from the digestion of glycogenic substrates
and the absorption of glucose in the hepatopancreas (Obi et al., 2011;
Wang et al., 2016). The maintenance of carbohydrases activity in the
hepatopancreas suggests the conservation of the capacity for hydrolysis
of glycogenic substrates in low and high salinities. Previously, we found
that amylase activity was increased in low salinity in N. granulata
(Asaro et al., 2011), therefore suggesting interspecific differences in
digestive adjustments at the biochemical level in hepatopancreas.
Whether this is due to the existence of different biochemical and/or
regulatory pathways in both species is unknown. Since unlike to that we
found for lipase and proteolytic activities (Michiels et al., 2013, 2017),
amylase and disaccharidases activities in hepatopancreas of C. angulatus
were not affected, differential and specific mechanisms of modulation
of digestive enzymes appear to occur upon acclimation to different
environmental salinities. Results of our lab illustrate that this is also the

Fig. 5. (A) Amylase activity (B) Zymogram of amylolytic activity. The right arrows indicate the bands of 31 and 38 kDa. (C) Maltase and (D) Sucrase activities in hepatopancreas of
individuals of C. angulatus acclimated to different salinities (6–40 psu). Data are the mean ± S.E. for four-seven crabs.
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case for N. granulata (Pinoni et al., 2013, 2015; Michiels et al., 2015a).
The differences in the number of amylase forms in the hepatopancreas
of various crustaceans were associated with changes in external and/or
internal factors, although these responses exhibit great interspecific
variability (Borowsky, 1984; Le Moullac et al., 1997; Perera et al.,
2008b; Castro et al., 2012). The maintenance of the number and/or
pattern of amylase forms in the hepatopancreas of C. angulatus is in
accordance to that found for total amylase activity detected by bio-
chemical analysis. This points out that amylase in the hepatopancreas
would not be neither modulated at the molecular level under low or
high salinity. Recent studies in our lab show that under exposure to
10 psu N. granulata exhibits an extra amylase form which further sup-
ports the occurrence of interspecific variability in amylase responses in
hepatopancreas to low salinity in intertidal euryhaline crabs (Asaro,
2016; Asaro et al., 2017). Besides to be transported to the hemolymph,
glucose resulting from the digestion of polysaccharides in the hepato-
pancreas of decapod crustaceans can also be stored as glycogen in this
organ (Obi et al., 2011; Wang et al., 2016). The hepatopancreas of C.
angulatus exhibited low glycogen content while free glucose levels were
high. This suggests a role of this organ in carbohydrates metabolism
such as keeping a suitable and constant glucose supply. Glucose could
also be synthesized by gluconeogenic pathways since various decapod
crustaceans appear to have key enzymes of this biochemical route in the

hepatopancreas (Wang et al., 2016). Anterior gills have an important
role in the metabolism of carbohydrates in various euryhaline crabs in
which are sites of glycogen storage and/or utilization (Martins et al.,
2011; Pinoni et al., 2013, 2017). The minor glycogen content in ante-
rior gills of C. angulatus acclimated to 6 and 40 psu suggests the use of
carbohydrate reserves in relation to both hypo- and hyper-regulation.
Since no changes occurred in 10 psu, utilization of glycogen reserves in
anterior gills of C. angulatus under hyper-regulatory conditions would
depend on the degree of hypo-osmotic challenge. As we discussed
above, C. angulatus exhibited higher osmoregulatory capacity in 6 psu
when compared to 10 psu. We previously showed that anterior gills are
involved in biochemical adaptation to low salinity in this crab. Different
adjustments at the biochemical occur in anterior gills depending on the
degree of hypo-osmotic stress (López Mañanes et al., 2002; Elhalem,
2003; Elhalem and López Mañanes, 2003, 2004). Further experimental
work is needed to establish whether the lower glycogen content in
anterior gills in 6 and 40 psu (while free glucose was maintained) is
related to an immediate intracellular utilization of glucose product of
glycogen hydrolysis to sustain energy-demanding osmoregulatory me-
chanisms. The chela muscle is a major site of glycogen storage in C.
angulatus but since no changes in glycogen content occurred, mobili-
zation of this reserve appeared not to occur upon acclimation to low or
high salinity. This is in agreement to that we previously showed for N.
granulata (Pinoni et al., 2013). However, the enhanced free glucose
content in chela muscle in 6 and 40 psu suggests the occurrence of
adjustments in carbohydrate pathways in chela muscle (i.e. up regula-
tion of gluconeogenic pathways and/or of the uptake of glucose) un-
derlying hyper- and hypo-osmoregulation. Similarly to anterior gills,
the fact that free glucose content in chela muscle was affected in 6 psu
but not in 10 psu further supports the idea of the occurrence of dif-
ferential responses at the biochemical level depending on the extent of
hypo-osmotic stress.

5. Conclusions

The existence and biochemical features of amylase, maltase and
sucrase activities in the hepatopancreas of C. angulatus suggests the
ability to perform complete hydrolysis of key glycogenic substrates of
this crab. The maintenance of carbohydrase activities in the hepato-
pancreas and glycemia, the high free content of glucose in hepato-
pancreas and the differential adjustments in glycogen and free glucose
content in anterior gills and chela muscle supports the idea of the
ability to sustain glucose homeostasis in response to exposure to low
and high salinity. Our results increase the knowledge on the differential
and specific role of various digestive enzymes and energy storages in
different organs in biochemical adaptation to low and high salinity of
intertidal euryhaline hyper-hyporegulators crabs. Since biochemical
routes of carbohydrate metabolism of C. angulatus are unknown, future
studies focused in regulation pathways of the various components in-
volved, will provide a better understanding of the mechanisms under-
lying the maintenance of glucose homeostasis upon different chal-
lenges.
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