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Chiral heat transport in driven quantum Hall and quantum spin Hall edge states
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We consider a model for an edge state of electronic systems in the quantum Hall regime with filling ν = 1 and
in the quantum spin Hall regime. In both cases, the system is in contact with two reservoirs by tunneling at point
contacts. Both systems are locally driven by applying an ac voltage in one of the contacts. By weakly coupling
them to a third reservoir, the transport of the generated heat is studied in two different ways: (i) when the third
reservoir acts as a thermometer, the local temperature is sensed and (ii) when the third reservoir acts as a voltage
probe, the time-dependent local voltage is sensed. Our results indicate a chiral propagation of the heat along the
edge in the quantum Hall and in the quantum spin Hall cases (if the injected electrons are spin polarized). We
also show that a analogous picture is obtained if instead of heating by ac driving the system is put in contact to a
stationary reservoir at a higher temperature. In both cases, the temperature profile shows that the electrons along
the edge thermalize with the closest “upstream” reservoir.
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I. INTRODUCTION

A key and almost defining property of quantum Hall states,
integer1 and fractional,2 is the existence of a structure of
gapless states at the boundary of these incompressible quantum
fluids, which propagate only along a direction dictated by
the external perpendicular magnetic field, chiral edge states.
The experimental detection of the chiral nature of these states
is thus crucial to the understanding of these fluids and has
been the focus of intense research, in experiment and theory
alike.3 The recently discovered two-dimensional topological
insulators, strong spin-orbit coupled semiconductors that
exhibit a quantized anomalous Hall effect (if spin polarized) or
the quantum spin Hall effect (if unpolarized), are also predicted
to have a universal edge structure.4 In the anomalous quantum
Hall state, the edge states are chiral whereas in the quantum
spin Hall effect the edge states with opposite polarization
propagate in opposite directions.

In a recent very interesting experiment, evidence of chiral
propagation of the heat along an edge state in a GaAs/AlAs
heterostructure with a two-dimensional electron gas in the
integer quantum Hall regime has been presented.5 The ex-
periment was performed in the quantum Hall regime with
filling ν = 1 locally heated by an ac field. Heat transport in ac
driven systems have been recently the focus of experimental
and theoretical interest in several electronic,6–9 phononic,10

and photonic11 systems. So far experiments of this type have
not been done in graphene-based devices, which have the
advantage that the integer quantum Hall effect is seen at room
temperature12 or in two-dimensional topological insulators.
The goal of the present work is the theoretical analysis
of a setup close to the experimental work for the integer
quantum Hall case.5 Our model and results should also apply
to graphene, and we also generalize it to quantum spin Hall
systems. As we will see below, our results verify the empirical
conclusions of Ref. 5 regarding the chiral propagation of the
heat along the edge. Another conclusion of that work is the
electronic cooling in the propagation along the edge. Our
results indicate that the propagation is coherent along the edge,

the electrons preserving some “memory” of the temperature
of the last reservoir they have visited.

We base our study in a microscopic model for the edge,
consistent in a ring of free chiral fermions connected to two
fermionic reservoirs through tunneling couplings, as indicated
in the sketch of Fig. 1. In the case of the spin Hall case,
sketched in Fig. 1(b), we consider two states in the edge,
corresponding to electrons moving with opposite chirality and
helicity. We also consider the possibility of spin-polarized
reservoirs in the latter case. In one of the reservoirs, an ac
voltage is applied, acting as a local heater. We consider a weak
coupling to a third reservoir, which will be used to define
a voltage probe or a thermometer. Both kinds of probes are
used to sense the local temperature along the edge. In the
case of the voltage probe, the signal of the time-dependent
voltage is experimentally used to get an estimate of the local
temperature from thermoelectric effects.5,13 A thermometer
is defined in a gedanken setup, where the temperature of
a weakly coupled reservoir is fixed form the condition of a
vanishing heat flow through the contact to the system under
investigation. That definition of temperature was originally
proposed in Ref. 14 in the context of stationary electronic
transport. It has been adopted to analyze stationary transport15

in nanodevices and generalized to the context of systems under
ac driving.9 This definition of the local temperature is correct if
the system is weakly driven, and agrees with other definitions
of the temperature from fluctuation-dissipation relations in
nonequilibrium systems.8,9,16

This work is organized as follows. In Sec. II, we present
a simple model that mimics the setup of Granger et al.5 and
we generalize it for the case of spin-Hall effect. In Sec. III,
we derive expressions for the heat current in terms of Green
functions of chiral fermions in this nonequilibrium situation.
In Secs. IV and V, we present a theory of sensing with
voltage probes and thermometers along the edge, respectively.
In Sec. VI, we present results for the heat propagation in the
cases of the quantum Hall as well as in the quantum spin Hall
effect. Section VII is devoted to the conclusions.
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FIG. 1. (Color online) Sketch of the considered setup. (a) The
quantum Hall edge state is represented by a circle. Two reservoirs
are connected at the positions x1 (source) and x2 (drain). An ac
voltage is applied at the source reservoir. A third reservoir is weakly
connected at x0 in order to sense the local voltage V0(t) or the local
temperature T0. (b) Quantum spin Hall effect. The system contains
a pair of edge states where electrons with spin up (down) move
clockwise (counterclockwise). The source and drain reservoirs are
spin polarized.

II. MODEL

The full system is described by the following Hamiltonian:

H = Hedge +
2∑

j=0

[Hj + Hc,j ] + Hac(t), (1)

where the edge is represented by a ring of circumference
L along which chiral fermions circulate with velocity vF .
In the case of topological insulators (the spin quantum Hall
state), there are two edge states (Kramers pairs) with opposite
chiralities and helicities (which we will refer to as “spin”). The
Hamiltonian for the edge states in the latter case is

Hedge =
∑
σ=±

∫ L

0
dx�†

σ (x)Dx∂x�σ (x)

=
∑
p,σ

vF,σ

(
p − �

L

)
�†

p,σ �p,σ , (2)

where Dx = −ivF,σ ∂x − �/L, with � the magnetic flux
threading the ring in units of the flux quantum eh/c. We assume
that the electrons moving clockwise have spin ↑, while those
moving counterclockwise have spin ↓. Thus vF,σ = σvF with
p = 2nπ/L, where n is an integer and |p| � K , while

Hj = −i
∑
σ=±

v
j

F,σ

∫ ∞

0
drj�

†
σ (rj )∂rj

�σ (rj ), (3)

are the Hamiltonians of infinite systems of chiral fermions,
which play the role of reservoirs. The source (j = 1) and drain
(j = 2) reservoirs are at temperatures T1 and T2, respectively,
and have the same chemical potential μ. We consider the
possibility for the reservoirs j = 1,2 to being spin polarized,
which is equivalent to assuming v

j

F,+ �= v
j

F,−, j = 1,2. The
system is driven by applying an ac voltage V1(t) = VS cos(�0t)
at the reservoir j = 1. The reservoir j = 0 corresponds to a
probe that may act as a thermometer or a voltage probe. In
the first case, it has the same chemical potential μ as the other

reservoirs, while its temperature T0 is adjusted in order to
satisfy the condition of vanishing heat flow along its contact
to the ring. In the second case, it has the same temperature
as the other reservoirs, while it has an ac voltage V0(t) =
μ0 + ∑

k �=0 e−i(k�0t+ϕk )V
(k)

0 /2. The different harmonics V
(k)

0
are adjusted to satisfy the condition of a vanishing charge flow
along the contact.

The time-dependent voltages can be described in terms of
the Hamiltonian

Hac(t) =
∑

j=0,1,σ

Vj (t)
∫

dpj

2π
�†

pj ,σ
�pj ,σ . (4)

The contacts are described by the Hamiltonians

Hc,j = wj

∑
σ

[
�†

σ (xj )�σ

(
r0
j

) + H.c.
]
, (5)

where xj and r0
j are the positions of the ring and the reservoir,

respectively, at which the contact is established. We assume
that the tunneling parameter w0 between the ring and the probe
reservoir is so weak that it introduces negligible dephasing in
the particle propagation along the ring.

In the case of the usual quantum Hall effect, there is just one
edge state and the spin label becomes irrelevant. Thus, in order
to model that case, we should consider the above Hamiltonian
with just one of the helicities σ .

In the following sections, we will compute the local
temperature by sensing with a thermometer, and voltage by
sensing with a voltage probe, along the edges for each of these
systems.

III. CHARGE AND HEAT CURRENTS THROUGH
THE CONTACT TO THE PROBE

The expression for the charge and heat currents flowing
through the contact between the edge and the probe reservoir
are obtained from the general laws of the conservation of the
charge and energy, respectively,

d〈N0〉
dt

= J c
0 (t) = 2w0

∑
p0,σ

Re
[
e−ip0r

0
0 G<

x0,p0,σ
(t,t)

]
,

d〈H0 − μN0〉
dt

= J
Q
0 (t)

= 2w0

∑
p0,σ

Re
[
e−ip0r

0
0 (εp0,σ − μ)G<

x0,p0,σ
(t,t)

]
,

where N0 = ∑
p0,σ

�
†
p0,σ�p0,σ , εp0,σ = σv0

F p0, while we
have introduced the lesser Green function G<

x0,p0,σ
(t,t ′) =

i〈�†
p0,σ (t ′)�σ (x0,t)〉. Since both currents are generated by an

ac voltage of frequency �0 they can be in general expressed
as

J
c,Q
0 (t) =

∑
k

e−ik�0t J
c,Q
0 (k). (6)

The lesser Green function satisfies the following Dyson
equation

G<
x0,p0,σ

(t,t ′) = w0

∫ +∞

−∞
dt1

[
G<

x0,x0,σ
(t,t1)gA

k0,σ
(t1,t

′)

+GR
x0,x0,σ

(t,t1)g<
p0,σ

(t1,t
′)
]
, (7)
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where we have introduced the retarded Green function
GR

x,x ′,σ (t,t ′) = −i�(t − t ′)〈{�σ (x,t),�†
σ (x ′,t ′)}〉 as well as

gR(<)
p0,σ

(t,t ′) = g0,R(0,<)
p0,σ

(t − t ′)φ0(t,t ′), (8)

where

gA
p0,σ

(t,t ′) = [
gR

p0,σ
(t ′,t)

]∗
,

g0,R
p0,σ

(t − t ′) = −i�(t − t ′) exp[−iεp0,σ (t − t ′)], (9)

g0,<
p0,σ

(t − t ′) = i2πf (εp0,σ − μ0) exp[−iεp0,σ (t − t ′)].

Here, f (εp0,σ − μ0) is the Fermi function with a chemical
potential μ0 and temperature T0. The function φ0(t,t ′) contains
information on the ac-potentials applied at the probe

φ0(t,t ′) = exp

[
−i

2∑
k=1

V
(k)

0

∫ t

t ′
dt1 cos(k�0t1 + ϕk)

]


 1 − i

2∑
k=1

V
(k)

0

∫ t

t ′
dt1 cos(k�0t1 + ϕk) + · · · ,

(10)

where in the second line, we have assumed that the amplitudes
V

(k)
0 are low enough. For the probe acting as a thermometer,

V
(k)

0 = 0 and μ0 = μ1 = μ2 ≡ μ. Thus φ0(t,t ′) = 1, while T0

defines the sensed local temperature, which is determined from
the condition J

Q
0 (0) = 0.9 For the probe acting as a voltage

probe, we consider T0 = T1 = T2 ≡ T , while μ0,V
(k)

0 , and ϕk

are determined by demanding the conditions J c
0 (k) = 0, k =

−2, . . . ,2.17

Following the procedure of Ref. 18, it is convenient to
take explicitly into account the harmonic time dependence of

the problem, considering the following representation for the
Green functions:

G
R,<
x,x ′,σ (t,t ′) =

∑
k

e−ik�0t

∫
dω

2π
GR,<

x,x ′,σ (k,ω)e−iω(t−t ′).

(11)

In the evaluation of the Green functions for coordinates
within the ring, it is also convenient to integrate out the degrees
of freedom of the reservoirs by defining the following “self-
energies:”

�
R,<
j,σ (t,t ′) = iφj (t,t ′)

∫
dω

2π
λ

R,<
j (t − t ′,ω)�j,σ (ω)e−iω(t−t ′),

(12)

where λR
j (t − t ′,ω) = −i�(t − t ′) and λ<

j (t − t ′,ω) =
ifj (ω)�(t − t ′) with fj (ω) the Fermi function, which
depends on the temperature and the chemical potential of the
reservoir while the functions φj (t,t ′) take into account the
applied ac voltages. For our configuration, φ2(t,t ′) = 1, while

φ1(t,t ′) = exp

{
−iVS

∫ t

t ′
dt1 cos(�0t1)

}
∼ 1 − iVS

×
∫ t

t ′
dt1 cos(�0t1) − V 2

S

2

[∫ t

t ′
dt1 cos(�0t1)

]2

,

(13)

where we have assumed in the second step that the amplitude
VS is small.

IV. SENSING WITH A VOLTAGE PROBE

Substituting Eq. (7) and the representation Eq. (11) in the
expression of Eq. (6) for the charge current results in

J c
0 (t) = 2Re

{∑
k,σ

e−ik�0t

∫
dω

2π

[
G<

x0,x0,σ
(k,ω)�A

0 (ω) + Gx0,x0,σ (k,ω)�<
0 (ω)

] +
∑
s=±1

2∑
n=1

s
V

(n)
0

2�0
e−isϕn

×{[
G<

x0,x0,σ
(k − sn,ωsn) − G<

x0,x0,σ
(k − sn,ω)

]
�A

0 (ω) + [
Gx0,x0,σ (k − sn,ωsn) − Gx0,x0,σ (k − sn,ω)

]
�<

0 (ω)
}}

, (14)

where

�A
0 (ω) = w2

0

∑
k0

[
g0

k0
(ω)

]∗ ∼ i�0/2,

(15)
�<

0 (ω) = if0(ω)w2
0

∑
k0

δ
(
ω − εk0

) ∼ if0(ω)�0,

with f0(ω) = f (ω − V0) and �0,± = �0.
Since we consider a weak coupling w0, we shall neglect

terms ∝w0 in the evaluation of the functions Gx0,x0,σ (k,ω)
and G<

x0,x0,σ
(k,ω). This corresponds to evaluating these Green

functions considering just the coupling to the source reservoir
and neglecting the coupling to the probe and the result-
ing current J c

0 (t) is exact up to O(w2
0). For the source

reservoir, we can define �A
j,σ (ω) ∼ i�j,σ /2, j = 1,2, and

�<
j,σ (ω) = ifj (ω)�j,σ , where fj (ω) = 1/[1 + eβj (ω−μ)], with

βj = T −1
j , j = 1,2.

After some algebra, for low driving frequency �0,20 the
solution of the set of conditions J c

0 (k) = 0, k = −2, . . . ,2
yields the results for the chemical potential and voltage profiles
[to order O(V 2

S )]:

μ0 = μ −
(

VS

2

)2
α′(μ)

ρx0 (μ)
,

V
(1)

0 = VS

α(μ)

ρx0 (μ)
, (16)

V
(2)

0 = 1

2

(
VS

2

)2
α′(μ)

ρx0 (μ)
,
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where ρx0 (ω) = −2
∑

σ Im[G0
x0,x0,σ

(ω)] and α(ω) =∑
σ |G0

x0,x1,σ
(ω)|2�, where G0

x,x ′,σ (ω) is the equilibrium
retarded Green function of the edge connected to the
reservoirs j = 1,2. Notice that the behavior of these
three harmonics is not independent one another, since
μ0 − μ = −2V

(2)
0 , where these quantities are determined by

the value of the function α(ω) evaluated at μ, while V
(1)

0 is
determined by the derivative of this function.

V. SENSING WITH A THERMOMETER

The dc component of the heat current defined in Sec. III
can be written as follows:

J
Q
0 (0) = �0

∫
dω

2π
(ω − μ)

{
iG<

x0,x0,σ
(0,ω)

− 2f0(ω)Im
[
Gx0,x0,σ (0,ω)

]}
. (17)

Calculating the Green functions G<
x0,x0,σ

(0,ω), while keeping
terms up to O(V 2

S ) and expanding in �0 and T0, the condition
JQ(0) = 0 now leads to the result

T 2
0 =

[
T 2

1 + 3V 2
S /(2π2)

]
α′

1(μ) + T 2
2 α′

2(μ)

α′
0(μ)

, (18)

where Tj are the temperatures of the reservoirs j = 1,2,
respectively, while

α0(ω) = (ω − μ)ρx0 (ω),
(19)

αj (ω) = (ω − μ)
∑

σ

∣∣G0
x0,xj ,σ

(ω)
∣∣2

�j,σ , j = 1,2.

It is interesting to mention that in the limit where VS → 0,
the temperature T0 defined in Eq. (18) reduces to the local
temperature sensed by a thermometer when the heat transport
is induced in purely stationary conditions by connecting the
ring to reservoirs with different temperatures T1 �= T2. Thus
the ac driving renormalizes the temperature of the reservoir at
which it is applied by a factor ∝VS . In particular, for reservoirs
at equal temperature T1 = T2 = 0, the effect of the ac driving
is equivalent to having the source reservoir at a temperature
T1 = √

3/2VS/π .
Another interesting feature is the fact that we can approx-

imate the functions α′
0(μ) ≈ ρx0 (μ) and α′

1(μ) ≈ α(μ). For a
source reservoir at T2 = 0, we then find

T0 = T1√
ρx0

+ 3VS
√

ρx0

4π2
V

(1)
0 , (20)

which suggests a rather straightforward relation between the
local temperature and the first harmonic of the local voltage.
This is somehow in contrast with the assumption, done in the
experimental work, that the second harmonic is more sensitive
to the heat transport that the first one. We will show in the next
section, however, that the three harmonics analyzed in the
present work contain the relevant signatures of the behavior of
the heat propagation along the edge.

Finally, we would like to mention that it is possible to
simultaneously define the local voltage as well as the tem-
perature from the conditions J c

0 (t) = J
Q
0 (0) = 0. It has been,

however, shown in Ref. 9 that, within the weak driving regime
(small amplitudes and low frequency of the ac potentials), such

definitions coincide with the ones we consider in the present
and the preceding sections.

VI. RESULTS

A. Quantum Hall edge

We begin analyzing the usual quantum Hall case, which
corresponds to the Hamiltonian of Eq. (1) with a single
chirality, which we assume to be σ = +. The unperturbed
retarded Green function G0

x,x ′,σ (ω) is evaluated in Appendix.
The expression for the harmonics of the sensed local voltage,
Eq. (16), involves the local density of states ρx0 (ω) = �(� −
|ω|)π/� (where � is a high-energy cutoff), and the functions
α(ω) and γ (ω), which in this case are given by

α(ω) =
{

γ (ω) if x < x1, x � x2,

γ (ω)(1 + �2,+) if x1 � x < x2.

and

γ (ω) = π�1,+
4�|�+(ω)|2 sin2

(
ωL
2vF

+ �
2

) . (21)

Thus, for fixed values for the length of the edge L, the Fermi
velocity of the electrons along the edge, vF and the chemical
potential μ, the different harmonics of the local voltage have
piecewise constant profiles as functions of the position of the
voltage probe, the amplitude being a factor (1 + �2,+) larger
upstream than downstream, while they display discontinuities
at the positions x1 and x2 at which the source and drain
reservoirs are coupled. The same behavior is found for the
local temperature (18) sensed by the thermometer. In fact,
assuming T2 = 0, α′

1(ω) ∼ α(ω) and α′
0(ω) = ρx0 (ω). Thus the

local temperature is a factor
√

1 + �2,+ higher upstream than
downstream. Typical profiles are shown in Fig. 2. In the case of
considering a finite cutoff in the energy spectrum of the edge,
the three harmonics of the local voltage as well as the local
temperature display oscillations as functions of x0, which are
mounted in the stepwise profile. The frequency and amplitude
of these oscillations go to zero in the limit of infinite cutoff
considered in Fig. 2. The behavior observed in this figure is
exactly the opposite when the movements of the electrons is
inverted. This behavior is consistent with electrons heated by
the ac voltage and the ensuing current injected through the
contact to the source reservoir. The heated electrons propagate
chirally until they reach the drain electrode, where they tend
to thermalize to the temperature of this reservoir, by means
of inelastic scattering processes, with particles and energy
exchanged at the corresponding contact. The net flow into the
edge keeps propagating chirally at an effective temperature
that is close to the one of the drain reservoir until they reach
again the source reservoir.

We also notice that the local voltage and temperature dis-
play a nontrivial behavior as functions of the magnetic field B.
The magnetic field enters in the function |�+(ω)|2 sin2( ωL

2vF
+

�
2 ) of the denominator of γ (ω), through the magnetic flux � as
well in the field-dependence of the Fermi velocity, vF = E/�,
with E = EL2c/(4πeh), being E the electric field. In Fig. 3,
we show the different harmonics of the time-dependent local
voltage as well as the local temperature as functions of B.
We consider fixed μ, L, and positions x1 and x2 for the
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FIG. 2. (Color online) Sensed harmonics of the local time-
dependent potential μ0 − μ (dotted line), V

(1)
0 (dashed line), and

V
(2)

0 (solid line), and local temperature T0 (dashed-dotted line) as
functions of the position of the voltage probe x0 along a ring
of L = 50 with electrons moving clockwise with Fermi velocity
vF = 1. The source and drain reservoirs are connected at x1 = 0
and x2 = 0.35L, respectively. The chemical potential is μ = 0.05,
the coupling parameters are �1,+ = �2,+ = π , the temperatures of
the reservoirs are T1 = T2 = 0 and the amplitude of the ac voltage
applied at the source is VS = 0.05.

source and drain connections. The upper panel corresponds to
sensing at a position x1 < x0 < x2 (upstream), while the lower
panel corresponds to a downstream position of the probes.
The behavior of the harmonics V

(1)
0 and V

(2)
0 of the local

voltage qualitatively resembles that observed in Fig. 3 of the
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0(2
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FIG. 3. (Color online) Sensed dc component of the local voltage
μ0 − μ (dotted line), first harmonic V

(1)
0 (dashed line), second

harmonic V
(2)

0 (solid line), and local temperature T0 (dashed-dotted
line) as functions of the applied magnetic flux � for E = 1. The
remaining parameters are the same as in Fig. 2. The upper panel
corresponds to sensing upstream (x1 < x0 < x2), while the lower
panel corresponds to sensing downstream (x0 > x2).

experimental work.5 Our results show that the “amplification
factor” in the upstream signals relative to the downstream
ones is fully determined by the degree of coupling of the drain
reservoir, represented by �2,+. As stressed in the previous
section, such amplification, which is the signature of the chiral
propagation of the charge and heat currents along the edge,
are observed in all the harmonics of the local voltage and the
local temperature alike. In fact, the amplification is observed
in the experimental work in two harmonics V

(1)
0 and V

(2)
0 there

analyzed, although it is stressed that the second one is a more
reliable indication of the behavior of the heat propagation. In
the integer quantum Hall effect, there is no fractionalization
of the charge and the same electrons that transport the charge
current also transport the energy along the edge. It is, thus,
rather natural that the local voltage, which senses the electronic
propagation, is correlated to the local temperature, which
senses the energy propagation.

B. Quantum spin Hall systems

We now turn to analyze the case of a topological insulator,
where there are a couple of edge states with electrons moving
with different chiralities and spin polarizations. In this case,
we have

α(ω) =
{

γ+(ω) + γ−(1 + �2,−) if x < x1, x � x2,

γ+(ω)(1 + �2,+) + γ−(ω) if x1 � x < x2.

with

γσ (ω) = π�1,σ

4�|�σ (ω)|2 sin2
(

ωL
2vF

+ �
2

) . (22)

Thus the sensed voltage and temperature will change along the
edge, provided that the drain and/or source reservoirs are spin
polarized, in which case �j,+ �= �j,−. For reservoirs without
a net spin polarization, each branch of the edge contains
an identical flow of electrons thermalized with the source
reservoir propagating clockwise and electrons thermalized
with the drain propagating with the opposite chirality. The
result is a uniform voltage and temperature along the edge,
while the voltage and temperature drop in relation to the
voltages and temperature of the reservoirs takes place at the
contacts.

VII. SUMMARY AND CONCLUSIONS

In this paper, we presented a simple model of a macroscopic
droplet of a two-dimensional electron gas in the integer
quantum Hall regime driven by an external ac source that
acts as a heater. We used nonequilibrium methods to show that
the heat current flows downstream (as expected) and derived
expressions for the local voltage and temperature along the
chiral edge of free fermions. Our results verify the arguments
given by Granger and coworkers5 as an interpretation of
their experiments. We found, also in agreement with these
experiments, that the electrons along the edge thermalize
with the closest “upstream” reservoir. We also found that
the amplification factor of the upstream signals relative to the
downstream ones are determined by the degree of coupling
between the edge state and the drain reservoir.
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Several comments are in order. In this model, the edge
electrons are treated as free fermions, while a more realistic
description of the edge states of the integer quantum Hall
systems should include the effects of electron-electron inter-
action. Interaction effects should not change the results in
an essential way since the edges are chiral and interactions
only affect the forward propagation of the fermions and no
backscattering processes can occur at the contacts. Thus, in the
thermodynamic limit, the temperature along the edges should
remain constant (with only oscillations due to finite-size effects
such as the ones we find here). However, it is possible that
Coulomb interactions may lead to oscillations along the edge
that may not vanish in the thermodynamic limit (as in the case
of a quantum wire studied by Schulz21).

It would be very interesting to have experiments of this
type done in graphene devices since in graphene the integer
quantum Hall effect is seen even at room temperature. Thus
graphene could prove to be an ideal system for testing these
type of questions. Experiments of this type could also be
used to test the basic physics behind the quantum spin Hall
effect. Indeed, if the reservoirs are not polarized, no chiral
heat current would be observable. In contrast, chiral spin
currents should be detectable if the reservoirs are polarized
(magnetized).

While in this paper we have focused on the exactly solvable
(and experimentally relevant) case of chiral heat transport in
driven integer quantum Hall states, it is important to extend
these results to the more nontrivial case of the edge states of
the fractional quantum Hall fluids. It has long been known
that fractional quantum Hall fluids also exhibit quantization of
the thermal transport.22 In generic Abelian and non-Abelian
fractional quantum Hall states, the edge states have both
charged and neutral modes, which display distinct charge and
thermal transport properties.3,22,23 It has long been predicted
that the chiral heat transport in the fractional quantum Hall
state at ν = 2/3 has a thermal conductivity with opposite to the
charge (Hall) conductivity in this state. This effect is due to the
existence of counterpropagating neutral edge modes, and has
recently been observed in experiments of noise in the current.24

In the case of the intriguing non-Abelian quantum Hall state
at ν = 5/2 the neutral modes are predicted to be Majorana
fermions, which have distinct heat transport signatures. More
generally, the presence of neutral modes in fractional quantum
Hall states is expected to lead to nontrivial thermoelectric

effects, with a net flow of charge without a net flow of heat
(such as in the case of normal-superconductor junctions with
Andreev reflection processes7). These important problems will
be discussed in a future publication.

ACKNOWLEDGMENTS

We thank G. Lozano and C. Naón for discussions. We
acknowledge support from CONICET, ANCyT, UBACYT
(Argentina), and the J. S. Guggenheim Memorial Foundation
(L.A.). L.A. thanks the ICMT of the University of Illinois
for hospitality, and E.F. thanks Programa Raı́ces (MINCYT,
Argentina) for support and the Department of Physics, FCEyN
UBA (Argentina) for hospitality. This work was supported in
part by the National Science Foundation, under grants DMR
0758462 and DMR-1064319 (EF).

APPENDIX: RETARDED UNPERTURBED
GREEN FUNCTIONS

In this Appendix, we evaluate the equilibrium Green
functions G0

x,x ′,σ (ω), corresponding to the edge in contact to
the source and drain reservoirs but free from the effect of the
ac-driving voltage. This Green function can be evaluated from
the solution of the following Dyson equation:

G0
x,x ′,σ (ω) = gx,x ′,σ (ω) +

2∑
j=1

G0
x,xj ,σ

(ω)�j,σ (ω)gxj ,x ′,σ (ω)

(A1)

with

gx,x ′,σ (ω) = 1

N
∑

p

1

ω − σvF

(
p − �

L

) , (A2)

the Green function of the free edge of chiral electrons,
where gx,x ′,+(ω) = gx ′,x,−(ω), with p = 2nπ/L, −K � n �
K , and N = 2K + 1. In the limit K → ∞, this function reads

gx,x ′,+(ω) = πe
i ω

vF
(x−x ′)

2� sin
(

ωL
2vF

+ �
2

) [
�(x − x ′)e−i( ωL

2vF
+ �

2 )

+�(x ′ − x)ei( ωL
2vF

+ �
2 )]

, (A3)

where � is a high-energy cutoff.19 Assuming x1 < x2, the
solution of Eq. (A1) is

G0
x,x1,+(ω) =

⎧⎪⎪⎨
⎪⎪⎩

πe
i ω
vF

(x−x1)
e
−i( ωL

2vF
+ �

2 )

2� sin
(

ωL
2vF

+ �
2

)
�+(ω)

if x < x1, x � x2,

πe
i ω
vF

(x−x1)
e
i( ωL

2vF
+ �

2 )

2� sin
(

ωL
2vF

+ �
2

)
�+(ω)

(1 + �2,+) if x1 � x < x2.

and

G0
x,x2,+(ω) =

⎧⎪⎪⎨
⎪⎪⎩

πe
i σω
vF

(x−x2)
e
−i( ωL

2vF
+ �

2 )

2� sin
(

ωL
2vF

+ �
2

)
�+(ω)

(1 + �1,+) if x < x1, x � x2,

πe
i ω
vF

(x−x2)
e
i( ωL

2vF
+ �

2 )

2� sin
(

ωL
2vF

+ �
2

)
�+(ω)

if x1 � x < x2.
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where G0
x,x ′,+(ω) = G0

x ′,x,−(ω), with �j,σ = π�j,σ /� and

�σ (ω) = [
1 − �1,σ gx1,x1,σ (ω)

][
1 − �2,σ gx2,x2,σ (ω)

] − �1,σ gx1,x2,σ (ω)�2,σ gx2,x1,σ (ω). (A4)
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