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Abstract The temperature dependence of the Tomlinson/

Prandtl model for nanoscale sliding friction is analyzed by

considering the properties of the initial and final states

between which the tip can move, as well as the energy

barrier between them, for various sliding regimes defined

by the value of the corrugation factor c. When c\ 1, the

friction force tends to zero, defining a so-called superlu-

bricious regime. The most commonly observed behavior is

found for c[ 4.603, where the friction force increases

monotonically with increasing sliding velocity up to a

critical value equal to the value of F* (lateral force at

T = 0) and monotonically decreases with temperature from

F* at T = 0. However, completely different behavior is

found when 1 \ c\ 4.603. The temperature dependence

of the lateral force in this regime is investigated using

Monte Carlo simulations. The friction force still tends to F*

as T approaches 0 K, but in contrast to the behavior found

when c[ 4.603, the friction force increases with increas-

ing temperature from F*, reaches a maximum value, and

then decreases monotonically as the temperature rises

further. Such behavior has been observed in atomic force

microscopy friction measurements.

Keywords Tomlinson/Prandtl model � Monte Carlo

simulations � Periodic sliding potentials � Temperature

dependence

1 Introduction

The atomistic Tomlinson/Prandtl model [1, 2] has been

successfully used to describe the velocity and temperature

dependences of friction forces in nanoscale sliding, mea-

sured by means of atomic force microscopy (AFM) [3–5].

The Tomlinson/Prandtl model makes use of a simple sinu-

soidal sliding potential to mimic the tip-surface energy

corrugation and a superimposed, moving harmonic potential

to represent the elastic cantilever. The effect of the motion

of the cantilever on the shape of the potential is illustrated

in Fig. 1a, which results in a time-dependent evolution of

the combined harmonic ? sinusoidal surface potential.

Here, the height of the sinusoidal surface potential is

E0 = 0.317 eV, the lattice periodicity a = 0.29 nm, and the

cantilever force constant kL is 0.6 N/m, values that are

typical of AFM friction measurements. The tip is initially

trapped in a potential minimum as illustrated by the vertical

dotted lines on Fig. 1a, b. At temperature T = 0 K, spon-

taneous sliding occurs when an inflection point appears in

the combined harmonic ? sinusoidal potential, resulting in

a transition to the next minimum in the potential, as illus-

trated in the top curves of Fig. 1a, b. This results in stick–slip

motion. At a finite temperature T [ 0, velocity and tem-

perature dependences are incorporated into the model by

assuming that thermally activated transitions of the tip can

occur before the energy barrier DE has decreased to zero

(when the height of the combined harmonic ? sinusoidal

potential is *kBT, where kB is the Boltzmann constant [6]).

Thus, spontaneous sliding occurs when the inflection point

appears (DE = 0), at a lateral force defined as F*, and

thermally activated sliding at higher temperatures generally

leads to values of friction lower than F*.

The thermally activated Tomlinson/Prandtl model

cannot be solved analytically; however, semi-analytical
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solutions [7] have been obtained for the velocity and

temperature dependences of the friction force, by approx-

imating the variation in DE with the lateral force FL as

DE F� � FLð Þ3=2 [8]. In addition, it is assumed that all of

the energy is dissipated as the tip moves (slips) from one

stable position to the next. The semi-analytical solution

predicts a monotonic increase in friction force with

increasing velocity up to a maximum value equal to the

value of F*; and a monotonic decrease with increasing

temperature, from an initial value of F* at T = 0. The

solution, in particular of the velocity dependence, has been

confirmed experimentally [6, 7, 9, 10]. However, recent

nanoscale friction experiments have revealed temperature

dependences that do not agree with the predictions of this

commonly used, semi-analytical solution. Specifically, a

plateau or a maximum in the friction force is found at low

temperatures [11–14], after which the friction force

decreases with increasing temperature.

In view of the failure of the semi-analytical solutions of

the Tomlinson/Prandtl model to predict this behavior, other

effects, such as athermal instabilities induced by instrument

noise [15], or the existence of two competing activated

processes involving the formation and rupture of an

ensemble of atomic contacts [14], have been invoked. The

following demonstrates that such temperature dependences

can still be successfully modeled within the context of the

classical Tomlinson/Prandtl model, by properly consider-

ing the dynamics of all the critical points involved in the

transition: the stable point at which the tip is trapped before

the transition, the energy barrier that the tip needs to

overcome, and the final stable position to which the tip

moves. These effects are generally not completely included

in the semi-analytical solution, which considers only the

initial state of the transition, and implicitly assumes that

there is always a final stable state to which the tip can

move.

2 Results

Figure 1a shows the evolution of the Tomlinson/Prandtl

potentials as a function of the support positions X, plotted

in increments of 0.1 nm, starting from X = 0. Here,

E0 = 0.317 eV, the lattice periodicity a = 0.29 nm, and

the cantilever force constant kL is 0.6 N/m. The potentials

clearly show the presence of an initial minimum (stable tip

position), an activation energy barrier for the transition of

height DE, and a final state into which the tip can move

(neighboring stable position), for all possible support

positions. The effect of increasing the cantilever force

constant kL to 6 N/m while keeping the other parameters

constant is shown in Fig. 1b for different support positions

X, displayed in increments of 0.02 nm starting from X = 0.

Now, the much sharper parabola arising from larger kL

values initially results in the absence of a neighboring

minimum in the potential energy curve, resulting in the

absence of a stable position to accommodate the tip after

sliding. However, additional motion of the cantilever

Fig. 1 Schematic illustration of the evolution of the shapes of the

combined sinusoidal ? harmonic surface potential in the Tomlinson/

Prandtl model as the cantilever moves across the surface, as a

function of the cantilever position using E0 = 0.317 eV and

a = 0.29 nm. Plot a shows the shapes of the potentials for a

cantilever force constant kL = 0.6 N/m yielding c = 19.868, with

each curve corresponding to changes in the support position X of

0.1 nm starting from zero. Plot b shows the evolution of the shapes of

the potentials for a cantilever force constant kL = 6.0 N/m yielding

c = 1.987, with each curve corresponding to a change in X of

0.02 nm starting from zero. Marked also as vertical dotted lines are

the positions of the initial minima in the potential, which are shown

plotted as function of cantilever position in the insets
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eventually induces the appearance of a neighboring mini-

mum, in this case for a cantilever displacement of

*0.114 nm. Further increasing the cantilever force con-

stant eventually results in harmonic ? sinusoidal potential

energy curves in which a neighboring minimum never

appears regardless of the support position, so that no

energy can be dissipated during sliding, resulting in so-

called superlubricity [16]. This suggests that there are three

distinct friction regimes for different values of E0, kL, and

a. It has been shown that different friction regimes can be

defined based on the so-called corrugation factor c [17, 18],

which is the ratio between the strength of the tip-sample

interaction and the elastic energy of the system, and can be

expressed as:

c ¼ 2p2E0

kLa2
: ð1Þ

It is well known that for c B 1, the model predicts the

superlubricious or ultra-low friction regime, where friction

tends to zero since the instabilities that, under stick–slip

conditions give rise to the dominant energy dissipation

mechanism, disappear [16].

In order to determine the limiting values of c that define

the other regimes, it is necessary to define the conditions

for the appearance of all critical points (minima, maxima,

and inflection points) in the Tomlinson–Prandtl potential

V(x,t):

V x; tð Þ ¼ �E0

2
cos

2px

a

� �
þ kL

2
vt � xð Þ2; ð2Þ

where v is the scanning velocity, so that vt becomes the

time-dependent position of the tip support, X (Fig. 1).

Critical points are given by qV/qx = 0. Thus, at a tip

support position X = 0, the positions of the critical points

xC can be expressed as:

kLxC ¼ �
pE0

a
sin

2pxC

a

� �
: ð3Þ

Similar analyses have been performed previously to

account for the energy dissipation during tip transitions

[19]. The right-hand side of Eq. 3 is represented in Fig. 2

by the solid (sinusoidal) curve, while the solid straight lines

plot kLx for different values of kL, where typical experi-

mental parameters, E0 = 0.317 eV, a = 0.29 nm, and

kL = 0.6, 2.59 and 6.0 N/m, have been chosen [10]. When

Eq. (3) is satisfied, stable critical points occur when

the straight lines (representing kLx) intercept the sinusoid.

For large c values, for example when kL = 0.6 N/m

(c = 19.87, solid line with square), there are multiple

solutions, and both forward and backward transitions are

allowed, and multiple jumps [17] may occur, even when

the tip is fully relaxed (x = 0, X = 0; therefore, FL = 0).

In such cases, there is always a final state to which the tip

can move, and the semi-analytical solutions to the Toml-

inson/Prandtl model apply at relatively low temperatures

and/or relatively high speeds, where the occurrence of

backward jumps can be neglected.

At the other extreme, for c\ 1, for example when

kL = 12.0 N/m (c = 0.993, solid line with diamond), no

transitions are allowed since there is never a neighboring

stable position into which the tip can move regardless of

the value of FL. In other words, there are no solutions for

which q2V/qx2 \ 0; no energy is dissipated during sliding,

giving rise to so-called superlubricity [16].

In the intermediate regime, for example, when

kL = 6.0 N/m (c = 1.987, solid line with circle), there are

no stable positions into which to move from x = 0 when

FL = 0. However, in this case, a stable final state is created

as sliding occurs. This is illustrated in Fig. 2 where the

support has to be displaced a minimum distance

Xmin * 0.114 nm (indicated by the arrow, corresponding

to FLmin ¼ kL Xmin � xð Þ ¼ 0:433 nN, to allow the straight

line (solid line with circle) to intercept the sinusoid and

create a neighboring stable position in the displacement

direction (dashed straight line, Fig. 2). Also shown in

Fig. 2 (for kL = 6.0 N/m) is the maximum support dis-

placement (Xmax = 0.176 nm, dotted line, Fig. 2) for

which the energy barrier decreases to zero (DE = 0 and

FL = F*), and the tip jumps regardless of the values of

temperature. The condition for the transition to this regime

is illustrated by the line for kL = 2.59 N/m (solid line with

triangle), where only one possible solution remains for

Fig. 2 Graphic representation of Eq. (3). The right-hand side of

Eq. (3) is represented by the solid (sinusoidal) curve, while the solid

dotted straight lines represent kLx for different values of kL, using

E0 = 0.317 eV and a = 0.29 nm. The y intercept of the dashed

straight line represents the minimum support displacement required

to induce the appearance of a neighboring stable position, and the

y intercept of the dotted straight line indicates the support displace-

ment at which DE becomes zero
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each direction at X = 0, such that transitions to neighbor-

ing stable points only occur for kL C 2.59 N/m, for which

the usual semi-analytical solution can be considered. The

value of c for the transition between these regimes can be

determined by equating the first derivative of both sides of

Eq. (3), since it is the only solution for which the slopes of

the two terms in this equation have the same values with

respect to the coordinate x in the potential (Fig. 2). This

defines the position f for the appearance of a point of

inflection in the potential for X = 0 and is given by

2pf
a
¼ tan

2pf
a

� �
¼ 4:4934. . . ð4Þ

Using a = 0.29 nm, f = 0.2074 nm, corresponding to

the displacement shown as a vertical line in Fig. 2. Equa-

tion (3) is valid for all critical points. Substituting f for xC

with E0 = 0.317 eV gives a value of kL = 2.59 N/m (solid

line with triangle); substituting these values into Eq. (1)

yields a limiting value of c = 4.603, in agreement with the

previous results [18].

Thus, three distinct friction regimes can be defined

depending on the value of c. For c B 1, no final states exist

to which the tip can move, regardless of the support dis-

placement; the friction force tends to zero, producing so-

called superlubricity [16]. A second regime is defined for

1 \ c\ 4.603, where a final stable state is induced by

sliding; while in the third regime, for c C 4.603, there are

always stable final states into which the tip can jump.

Because of the need to consider the creation of final states

in the intermediate regime (1 \ c\ 4.603), it is not gener-

ally possible to develop semi-analytical models as could be

done for c[ 4.603, although recently analytical models that

include final state effects have been developed for the lim-

iting cases of c ? 1 and c � 1 [18]. However, no direct

relations to the temperature dependences of the lateral force

were made. In order to obtain general solutions, Monte Carlo

simulations of the one-dimensional classical Tomlinson

model were performed for this intermediate regime. This

strategy has previously been used to explore velocity effects

on sliding friction, and it has been demonstrated that it

precisely reproduces the solution of the sinusoidal Tomlin-

son/Prandtl model [20, 21]. The Monte Carlo simulations

use a thermally activated transition rate w over the time-

dependent energy barrier DE(t) described by

wðtÞ ¼ f0 exp �DEðtÞ
kBT

� �
; ð5Þ

where f0 is the attempt frequency of a transition. For each

Monte Carlo trial, the value of w is calculated at some time

t and compared to a random number n uniformly distributed

in the interval (0,1). If n\ w, the transition occurs, where

both backward and forward motions are allowed. The

resulting transition lateral force is recorded as a function of

time. The process is repeated a sufficient number of times to

yield an average friction force (FL) with negligible statistical

error. The conversion between Monte Carlo and real time is

made by defining an elementary transition probability per

unit time [22]. Prior to the simulations, the position and

energy of the critical points (maxima and minima) of the

combined sinusoidal ? harmonic potential are calculated as

a function of the cantilever displacement and stored in a

position matrix. This is then used as an input file to avoid

having to define them for each trial.

Figure 3 displays the simulated results of lateral force

versus temperature at different velocities in the interme-

diate regime (c = 1.987) with kL = 6.0 N/m using

f0 = 500 kHz, typical of AFM experiments [4, 7], with the

remainder of the parameters being identical to those used in

Fig. 2. The lateral force at T = 0 K corresponds to F*,

where according to the semi-analytical model, a monotonic

decrease to zero with increasing temperature should be

observed [7]. However, for c = 1.987, the simulation

shows an initial increase in lateral force with temperature

from F* up to a maximum value, from which it then

decreases monotonically with temperature. Similar exper-

imental variations in friction force with temperature have

been found, showing an increase to a maximum value or a

friction plateau, and a subsequent decrease with tempera-

ture [11–14].

3 Discussion

Three distinct friction regimes have been defined: a su-

perlubricious regime for c B 1; an intermediate regime for

Fig. 3 Simulated results of lateral force (FL) with temperature, T, for

different values of velocity (ln(m)), using f0 = 500 kHz,

E0 = 0.317 eV, a = 0.29 nm, and kL = 6.0 N/m. Indicated on the

y-axis is the corresponding value of F*
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1 \ c\ 4.603, producing unusual temperature depen-

dences; and a third regime for c C 4.603 for which the

semi-analytical model can be applied.

The anomalous temperature dependence of the friction

force identified in the intermediate regime depends on two

effects. The first is the absence of a neighboring minimum

into which the tip can move, which only appears after the

cantilever has been displaced a certain distance. This

contrasts the behavior for c[ 4.603, where a neighboring

minimum is always present (Fig. 1a). This behavior is

illustrated in Fig. 4a. When the cantilever is at X = 0

(lateral force = 0), the barrier height is at its maximum. As

the cantilever moves, the barrier height decreases, reaching

a value of zero (to produce and inflection point) at a lateral

force equal to F*. The shape of this curve can be reason-

ably approximated by DE ðF� � FLÞ3=2 as used for the

semi-analytical solutions [8], giving rise to the monotonic

decrease in friction force with increasing temperature,

shown as an inset in Fig. 4a. In addition, the tip positions in

the initial potential minima vary only slightly compared to

the displacement of the cantilever, as emphasized by the

inset to Fig. 1a. Note that, in this regime, the maximum

lateral force is equal to the value of F*.

This behavior is compared with that for the change in

energy barrier as a function of lateral force for the inter-

mediate regime (kL = 6.0 N/m, c = 1.987) in Fig. 4b. In

this case, since no stable final state appears until a mini-

mum lateral force (of 0.44 nN) has been applied, only

values of the energy barrier for lateral forces above this

value have any physical meaning. The shape of the curve

for larger values of lateral displacement is now completely

different from that shown in Fig. 4a. The value of

DE decreases monotonically as the cantilever moves, up to

a maximum value of the lateral force greater than F*. After

this point, as DE approaches zero, lower values of the

lateral force are found down to F* at DE = 0. Thus, while

F* represents the maximum lateral force than can be

obtained in the regime where c[ 4.603, larger lateral

forces than this value can be obtained in the intermediate

regime. Thus, in addition to some additional lateral force

being required for an adjacent minimum to appear in the

sliding potential, there is a second effect that is responsible

for the behavior of DE versus lateral force seen in Fig. 4b.

The origin of this effect can be observed in Fig. 1b. Here,

the initial position of the tip moves more slowly compared

to the support prior to the appearance of an adjacent stable

state. However, once the final state appears, there is a

larger change in the initial position of the tip compared to

the support displacement, due to the influence of the

sharper harmonic potential as a consequence of the larger

cantilever force constant. This results in the tip moving

more rapidly than the cantilever as DE tends to zero,

decreasing (X - x), thereby causing the lateral force to

decrease to F* when the inflection point appears, producing

the behavior illustrated in Fig. 4b. The temperature

dependence observed in the simulations (Fig. 3) arises

since higher temperatures lead to transitions occurring for

values of DE larger than zero (of the order of kBT). Thus, at

T = 0, sliding can only occur when an inflection point

appears (at F*). As the temperature increases, states with

larger values of DE can be probed, causing an initial

increase in the lateral force (Fig. 4b). However, as

kBT exceeds the energy at which the maximum force

appears (Fig. 4b), the behavior becomes analogous to that

found in Fig. 4a, where DE decreases monotonically with

Fig. 4 Plots of the height of the barrier DE versus lateral force FL

using E0 = 0.317 eV and a = 0.29 nm. Plot a shows the behavior for

a cantilever force constant kL = 0.6 N/m yielding c = 19.868, and

plot b shows the behavior for a cantilever force constant kL = 6.0 N/m

yielding c = 1.987. Shown as insets are the resulting variations in

sliding force with temperature
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lateral force, so that the friction force then decreases with

increasing temperature. The resulting temperature depen-

dence is that shown in Fig. 3 and the inset in Fig. 4b.

It is important to note that these regimes (based on the

parameter c) have been analyzed using a classical sinu-

soidal surface potential. However, it has been shown that

the surface potentials are more realistically represented by

non-sinusoidal surface potentials [21]. Thus, by definition,

the expression for c, and consequently the range of c values

that determine the different frictional regimes, will clearly

depend on the shape of the surface potentials. Thus, while

the simple sinusoidal potential used in this work qualita-

tively reproduces the unusual temperatures dependences

found experimentally [11–14] without having to invoke

noise effects [15] or multiple activation steps [13], quan-

titatively reproducing the experimental data will require the

use of more realistic potentials.

4 Conclusions

By properly applying the classical one-dimensional

Tomlinson/Prandtl model, and only considering a single

thermally activated transition, it is possible to qualitatively

reproduce all experimentally observed temperature de-

pendences of the friction force in AFM experiments. By a

detailed consideration of the existence or creation of final

states during sliding, three friction regimes are defined

depending on the value of the corrugation factor c, in

agreement with the previous results [18]. Here, the tem-

perature dependence of the lateral force within these

regimes is explained. First, it is the previously identified

superlubricious regime, which occurs for c B 1. In the

second regime, for 1 \ c\ 4.603, a final stable state is

induced by sliding where a rapid variation in tip position as

DE approaches zero leads to maxima in the plot of friction

force versus temperature. The third regime, with

c C 4.603, yields a friction force that varies monotonically

with temperature for which the semi-analytical solutions

can be applied. In addition, the limitations of applying the

commonly used semi-analytical solution to interpret

experimental data are highlighted, since the semi-analytical

solution assumes that DE / F� � FLð Þ3=2: However, as c
approaches the limiting value of 4.603, this approximation

becomes less valid.

While zero friction is obtained in the superlubricious

regime, it is demonstrated that Monte Carlo methods can

provide solutions to the Tomlinson/Prandtl model in the

second regime (where 1 \ c\ 4.603), without having to

invoke any other effects or assumptions external to the

model.
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