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Multivariate models have been widely used in analytical problems involving quantitative and qualitative
analyzes. However, there are cases in which a model is not applicable to spectra of samples obtained
under new experimental conditions or in an instrument not involved in the modeling step. A solution to
this problem is the transfer of multivariate models, usually performed using standardization of the
spectral responses or enhancement of the robustness of the model. This present paper proposes two new
criteria for selection of robust variables for classification transfer employing the successive projections
algorithm (SPA). These variables are then used to build models based on linear discriminant analysis
(LDA) with low sensitivity with respect to the differences between the responses of the instruments
involved. For this purpose, transfer samples are included in the calculation of the cost for each subset of
variables under consideration. The proposed methods are evaluated for two case studies involving
identification of adulteration of extra virgin olive oil (EVOO) and hydrated ethyl alcohol fuel (HEAF) using
UVeVis and NIR spectroscopy, respectively. In both cases, similar or better classification transfer results
(obtained for a test set measured on the secondary instrument) employing the two criteria were ob-
tained in comparison with direct standardization (DS) and piecewise direct standardization (PDS). For
the UVeVis data, both proposed criteria achieved the correct classification rate (CCR) of 85%, while the
best CCR obtained for the standardization methods was 81% for DS. For the NIR data, 92.5% of CCR was
obtained by both criteria as well as DS. The results demonstrated the possibility of using either of the
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criteria proposed for building robust models as an alternative to the standardization of spectral re-
sponses for transfer of classification.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Multivariate models have been widely used in analytical prob-
lems involving quantitative and qualitative analyzes of a variety of
matrices [1e10]. Besides the well established multivariate methods
in the literature, new chemometric tools are constantly being
proposed in order to improve information acquisition and provide
increasingly robust multivariate models.

The efficiency of the multivariate models is associated with the
quantity of samples analyzed (as well as their chemical/physical
composition and representativeness), instrumental used and lab-
oratory conditions [11]. In addition, the actual construction and
validation steps of the model are also fundamental for achieving a
good performance [12]. However, even though these parameters
are carefully controlled, there are cases in which a model is not
applicable to spectra of samples obtained under new experimental
conditions or in an instrument not involved in the modeling step.
The differences between the spectral responses may be related to
changes in the chemical and/or physical composition of the sam-
ples or changes in the instrumental response, normally caused by
maintenance irregularities, repairs, changes in the environment of
the instrument or even natural wear [13].

A solution to this problem is the transfer of multivariate models,
usually performed using the following strategies: standardization
of the spectral responses or enhancement of the robustness of the
model [14].

In the standardization methods, the response of a secondary
instrument is adapted to correspond to the response from a pri-
mary instrument, for which the model was developed [13]. The
standardization methods include Direct Standardization (DS) and
Piecewise Direct Standardization (PDS) [15]. In both cases, spectra
of a representative set of samples, known as transfer samples, are
recorded in the instruments involved and used to built the stan-
dardized models [13]. In DS, the mathematical manipulations are
carried out along the entire spectral range, while in the PDS, the
manipulations are performed in windows of variables within the
spectrum [12].

Robustness is one of the parameters most used to evaluate the
performance of multivariate models. In both quantitative and
qualitative analyzes, robustness is associated with the ability of a
model to provide reliable results against variations not included in
the modeling [16]. The robustness of multivariate models can be
achieved by incorporating all the important sources of variation
still in the modeling step, which can be obtained by analyzing the
samples in different instruments or under different experimental
conditions [17]. Besides this, pre-processing the data (which
eliminates unrelated variations of the properties of interest) and
the selection of variables less sensitive to experimental conditions
or instrumental variations can also be used to increase the
robustness of a model, eliminating the need for standardization
when the differences between the response functions are relatively
small [17,18].

Several studies have been reported in the literature using
transfer of calibration models [11,19e25]. However, few studies
have been directed towards classification transfer problems. Myles
et al. [26] investigated different strategies of transfer of classifica-
tion models developed for discrimination of coffee beans analyzed
Milanez, et al., Selection of
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by NIR spectroscopy. Di Anibal et al. [27] applied piecewise direct
standardization (PDS) to UVeVis spectra to discriminate different
culinary spices adulterated. Silva et al. [28] used direct standardi-
zation (DS) method to transfer MIR spectra of gasoline samples
recorded on three different instruments. Milanez et al. [29] used DS
and PDS standardization methods for NIR spectra employed in the
identification of adulteration of fuel ethanol samples. In that work,
linear discriminant analysis (LDA) [30] models, with previous se-
lection of variables by the SPA [31] algorithm, and partial least
squares - discriminant analysis (PLS-DA) [32] were developed and
the classification results were evaluated in terms of the correct
classification rate before and after standardization, where a sub-
stantial increase in model performance was observed.

In this context, this paper proposes two new criteria for the
selection of robust variables for transfer classification employing
the successive projections algorithm (SPA). SPA have been suc-
cessfully employed, coupled to linear discriminant analysis (LDA),
in problems of classification involving instrumental techniques
[33e37], mainly to minimize collinearity problems of the LDA
model. Recently Soares et al. [38] proposed a new validation cri-
terion for SPA based on the cost function adaptation, for situations
in which the quantity of sample is limited. In cases involving clas-
sification transfer, the selection of robust variables may be of value
for the construction of LDA models with low sensitivity with
respect to the differences between the instruments under consid-
eration. In this paper, the increase of the robustness of the model is
achieved with the inclusion of transfer samples in the calculation of
the cost for each subset of variables under consideration.

Two data sets involving simulated adulteration are employed to
evaluate the proposed criteria. The first data set consists of extra
virgin olive oil (EVOO) samples (unadulterated and adulterated)
analyzed in Brazil (primary instrument) and Argentina (secondary
instrument) using UVeVis spectroscopy. The second data set con-
sists of hydrated ethyl alcohol fuel samples (unadulterated and
adulterated). The NIR spectra were recorded under the same
experimental conditions in two different spectrometers. In both
case studies, the results obtained with the two criteria were
compared with the strategies of direct standardization (DS) and
piecewise direct standardization (PDS) of the test set measured on
the secondary instrument.
2. Background and theory

The Successive Projections Algorithm (SPA) was originally pro-
posed in Ref. [39] in the context of multivariate calibration
employing multiple linear regression (SPA-MLR). For this purpose,
the instrumental response data were arranged in a matrix X, with
rows and columns corresponding to the objects and variables,
respectively. The choice of suitable variables was then addressed as
a selection procedure involving the columns of X. Each columnwas
employed to initiate a sequence of projection operations that
resulted in the formation of candidate subsets of variables with
increasing cardinality (i.e. number of elements). At each iteration of
this procedure, the subset was augmented by choosing the column
displaying the least collinearity with respect to those selected in
the previous iterations. For this purpose, each column was pro-
jected onto the subspace spanned by the columns already selected.
robust variables for transfer of classification models employing the
x.doi.org/10.1016/j.aca.2017.07.037



Table 1
Number of training and test samples in each class for the two data sets. N indicates
the number of samples in each class.

Class EVOO data set HEAF data set

N Training Test N Training Test

Unadulterated 49 34 15 52 32 20
Adulterated 40 28 12 50 30 20
Total 89 62 27 102 62 40
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The projected column with largest norm was then selected. By
restarting this procedure from each column of X, different subsets
of variables were obtained, with cardinality varying from one up to
the number of rows (if the columns were not mean-centered) or up
to the number of rows minus one (if the columns were mean-
centered). The best subset was selected on the basis of the result-
ing root-mean-square error of prediction in a separate validation
data set (RMSEV). This cost metric was calculated as

RMSEV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Kval

XKval

k¼1

�
yval;k � byval;k

�2vuut (1)

where yval;k and byval;k denote the reference and predicted values of
the parameter under consideration in the kth validation object and
Kval is the overall number of validation objects. An in-depth
description of this algorithm, with a review of applications in the
analytical chemistry literature, can be found in Ref. [40]. Additional
details, including the mathematical expressions employed in the
projection operations and the associated computational code, can
be found in Ref. [41].

In a subsequent paper [31] SPA was adapted for the selection of
variables in classification problems using linear discriminant
analysis (SPA-LDA). In this case, the problem consists of assigning
each given object to one of C possible classes. The basic difference
with respect to the SPA-MLR formulation consists of the criterion
Fig. 1. UVeVis spectra of the EVOO samples acquired in the (a) primary and (b)
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employed in the selection of the best candidate subset of variables.
In SPA-LDA, it is assumed that each object belongs to a known class
with index Ik (k¼ 1, 2,…, C). The samplemeanmIk of each class and
a pooled covariance matrix S are calculated, for each candidate
subset of variables, by using the available training data set, as in the
standard LDA procedure [42]. The risk of misclassification of the kth
validation object can then measured by using the following
expression:

gval;k ¼
r2
�
xval;k;mIk

�
minIjsIkr2

�
xval;k;mIj

� (2)

where r2ðxval;k;mIkÞ ¼ ðxval;k �mIkÞS�1ðxval;k �mIkÞT is the squared
Mahalanobis distance between the kth validation object xval,k and
the sample mean of its true class mIk (both row vectors). The de-
nominator in (2) corresponds to the squared Mahalanobis distance
between xval,k and the center of the nearest wrong class. Ideally the
objects should be close to the center of their corresponding classes
and distant from the centers of the other classes. Therefore, the
criterion employed in SPA-LDA consists of selecting the candidate
subset of variables corresponding to the smallest average value of
(2), which is calculated as

Gval ¼
1

Kval

XKval

k¼1

gval;k (3)

This metric can be regarded as a cost function to be minimized
in the variable selection process.

A alternative that dispenses with the requirement of a separate
validation set was proposed in Ref. [38]. The idea consists of eval-
uating the risk of misclassification (2) by using the same training
objects that were employed to calculate the class means mIk and
the covariance matrix S. In order to avoid possible overfitting issues
resulting from this repeated use of the training set, the expression
(3) is modified as
secondary instruments. Unadulterated ( ) and adulterated ( ) samples.

robust variables for transfer of classification models employing the
x.doi.org/10.1016/j.aca.2017.07.037



Fig. 2. Results in terms of number of errors obtained by the SPA-LDA models applied to
the test samples measured on both instruments. The SPA-LDA model in usual form
corresponds to Ntransf ¼ 0. The blue line on the bar corresponding to Ntransf ¼ 0 rep-
resents the test (P) errors while the bars represent the test (S) errors. The bars under
the braces correspond to the results obtained by using SPA-LDA with the proposed
criteria. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Gtrain ¼ 1
Ktrain � L� C

XKtrain

k¼1

gtrain;k (4)

where L denotes the number of variables in the candidate subset
under evaluation, while C and Ktrain correspond to the number of
classes in the data set and the total number of training objects,
respectively. By doing so, a subset with a large number of variables
Lwill only be selected if the corresponding values of gtrain,k (k¼ 1, 2,
…, Ktrain) are sufficiently small to compensate for the increase in the
complexity of the LDA model.

Remark: If the training objects are centered in the mean of the
respective classes prior to the projection operations, the candidate
subsets of variables generated by SPA-LDA will have one up to
(Ktrain � C) elements [38]. By using the Gtrain index in (4), candidate
subsets with a number L of variables close to this limit will not be
favoured, as the denominator in (4) will be close to zero. The un-
derlying rationale consists of avoiding the use of too many vari-
ables, which may lead to poor conditioning in the construction of
the linear discriminant model. In particular the use of the
Please cite this article in press as: K.D.T.M. Milanez, et al., Selection of
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maximum number of variables that can be selected by SPA-LDA
(L ¼ Ktrain � C) will be avoided altogether, as the value of Gtrain

will be infinitely large.
It is worth noting that both SPA-MLR and SPA-LDAwere initially

developedwithout explicit mechanisms for transfer of the resulting
models. In Ref. [11], a modified version of SPA-MLRwas proposed to
enable the selection of variables that were robust with respect to
the differences between two instruments. The modification con-
sisted of including a set of Ktransf transfer samples in the selection of
the best candidate subset of variables. The proposed cost metric
was defined as

E ¼ 1
2
ðRMSEV þ RMSETÞ (5)

with RMSEV calculated by using validation objects measured in the
primary instrument, as in (1) and RMSET (root-mean-square error
of prediction in the transfer set) defined as

RMSET ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ktransf

XKtransf

k¼1

�
ytransf ;k � bytransf ;k

�2
vuut (6)

where ytransf ;k is the reference value of the parameter under
consideration in the kth transfer sample and bytransf ;k denotes the
corresponding predicted value obtained by applying the MLR
model to the measurements recorded in the secondary instrument.
By choosing the candidate subset of variables that leads to the
smallest value of (5), both the predictive ability (evaluated by
RMSEV) and the robustness (evaluated by RMSET) of the model are
taken into account.

Remark: As pointed out in Ref. [11], the transfer samples
employed in the evaluation of the RMSETmetric (6) only need to be
measured at the secondary instrument. This is an important
advantage over standardization methods such as DS and PDS,
especially if the primary and secondary instruments are not located
in the same laboratory, or if the primary instrument is no longer
available.

2.1. Proposed modification of SPA-LDA

The modification of SPA-LDA proposed in the present work
follows the lines of the SPA-MLR formulation for calibration
transfer described above. More specifically, given a set of Ktransf

transfer objects with known class indexes, an average risk of
misclassification is calculated as

Gtransf ¼
1

Ktransf

XKtransf

k¼1

gtransf ;k (7)

where gtransf,k is defined as in (2) by using the kth transfer object
xtransf,k recorded in the secondary instrument, instead of the kth
validation object xval,k. After calculating the values of Gtrain and
Gtransf as in (4) and (7), respectively, for each candidate subset of
variables, two possible criteria will be considered here in:

� Criterion C1: Select the candidate subset of variables corre-
sponding to the smallest value of the cost G ¼ (Gtrain þ Gtransf)/2.

� Criterion C2: Select the candidate subset of variables corre-
sponding to the smallest value of the cost Gtransf.

Criterion C1 is a direct extension of (5) in a classification
framework. By using this criterion, the goal consists of obtaining a
model with good classification performance on both the primary
and secondary instruments. The use of criterion C2 will be
robust variables for transfer of classification models employing the
x.doi.org/10.1016/j.aca.2017.07.037



Fig. 3. Average spectrum of the data set with indication of the variables selected by the SPA-LDA algorithm in classification models involving different number of transfer samples.
Variables selected by C1: C and C2: criteria.

Fig. 4. Results in terms of number of errors obtained by SPA-LDA with the C1 and C2
criteria and SPA-LDA in usual form after performing the standardization procedures,
applied to the test samples measured by the secondary instrument. The width of the
window employed in the PDS standardization method is indicated in parenthesis.
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investigated as an alternative that places larger emphasis in the
classification accuracy of the transfer samples, in the understand-
ing that the resulting model is to be used only in the secondary
instrument.

As in the case of SPA-MLR for calibration transfer [11], the
transfer samples employed in the evaluation of the Gtransf metric (7)
only need to be measured at the secondary instrument, which is an
advantage over standardization methods such as DS and PDS.
3. Experimental

3.1. Extra virgin olive oil data set

The first data set consists of 89 extra virgin olive oil (EVOO)
samples (49 unadulterated samples and 40 adulterated samples).
The unadulterated samples were acquired in local commerce with
different lots. The manufacturer was chosen based on an investi-
gation performed by a Brazilian Association of Consumer Protection
[43], which evaluates the quality of commercially available prod-
ucts (more details regarding this investigation can be found in
http://www.proteste.org.br/azeite).

In order to evaluate the authenticity of the unadulterated EVOO
samples used in this study, the determination of specific extinction
robust variables for transfer of classification models employing the
x.doi.org/10.1016/j.aca.2017.07.037
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Fig. 5. NIR spectra of the EVOO samples acquired in the (a) primary and (b) secondary instruments. Unadulterated ( ) and adulterated ( ) samples.
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(K) by absorption in the ultraviolet region (AOCS Official Method Ch
5e91) was performed using cyclohexane of spectrophotometric
grade as solvent, as described in Ref. [44].

The results demonstrated that all unadulterated EVOO samples
presented values of specific extinction at the wavelengths of 232
and 270 nm (K232 and K270) and specific extinction variation (DK)
equal or lower than the limits established by International Olive
Council [45], reinforcing the results obtained by Ref. [43].

The adulterations were prepared by addition of soybean oil at
different levels: 1.0%, 5.0%, 10.0%, 15.0%, 20.0%, 25.0% and 30.0% (w/
w). All samples were stored in amber glass bottles, protected from
light and kept at a temperature of approximately 23 ± 2 �C until
time of analysis. No sample pretreatment was performed.

The EVOO samples were analyzed in Brazil (primary instru-
ment) and Argentina (secondary instrument) using a Hewlett-
Packard model HP 8453 UVeVIS spectrophotometer. In both
cases, the spectrometer was equipped with a quartz cell (10 mm
optical path) and the spectra were recorded in the range
190e1100 nm, with 1 nm resolution. The adjustment of the trans-
mittance signal was performed using isooctane as blank. The
spectra measured in both instruments presented a systematic
variation of baseline that was correctedwith application of baseline
offset.
3.2. Ethanol fuel data set

The second data set consists of 102 hydrated ethyl alcohol fuel
(HEAF) samples (52 unadulterated samples and 50 adulterated
samples). The adulterations were prepared with methanol in the
range 1.86e13% (w/w) as described in Ref. [30].

The NIR spectra were recorded in the range 12004e4000 cm�1

under the same experimental conditions by using a Spectrum GX
Please cite this article in press as: K.D.T.M. Milanez, et al., Selection of
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FTIR spectrometer (Perkin Elmer), which was considered as the
primary instrument, and a dispersive NIR spectrometer (Foss
AnalyticalXDS), used as secondary instrument. In order to circum-
vent the problem of systematic variations in the baseline, first-
derivative spectra were calculated using a SavitzkyeGolay filter
[46] with second-order polynomial and 21-point window.
3.3. Chemometric procedures

The samples analyzed in the primary instrument were divided
into training (EVOO data: 70%; HEAF data: 60%) and test (EVOO
data: 30%; HEAF data: 40%) sets by using the classic Kennard e

Stone (KS) algorithm [47]. Table 1 presents the number of training
and test samples in each class for both data sets.

The training sets were employed in the modeling procedures,
including SPA variable selection for LDA, whereas the test sets
(measured on both instruments) were only used in the final eval-
uation of the classification models. The LDA models were devel-
oped based on the variables selected by the successive projections
algorithm (SPA) adapted for internal validation.

The KS algorithm was also used to select subsets of transfer
samples from the training set measured on both instruments.
Different numbers of transfer samples (4, 6, 8 and 10) were
investigated.

The classification models were developed from the SPA-LDA
described by Ref. [38] with the introduction of the two criteria
proposed herein. As mentioned in section 2.1, these criteria involve
the inclusion of the transfer samples in the calculation of the cost
for each subset of variables under consideration. The results ob-
tained for the three models (without the use of transfer samples
and with each of the two criteria for using the transfer samples)
were compared in terms of the number of errors for the test sets
robust variables for transfer of classification models employing the
x.doi.org/10.1016/j.aca.2017.07.037



Fig. 6. Results in terms of number of errors obtained by the SPA-LDA models applied to
the test samples measured on both instruments. The SPA-LDA model in usual form
corresponds to Ntransf ¼ 0. The blue line on the bar corresponding to Ntransf ¼ 0 rep-
resents the test (P) errors while the bars represent the test (S) errors. The bars under
the braces correspond to the results obtained by using SPA-LDA with the proposed
criteria. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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and correct classification rate (CCR) for test and training sets.
For the purpose of comparison, two strategies of standardization

were employed: direct standardization (DS) and piecewise direct
standardization (PDS) of the test set measured on the secondary
instrument. The PDS algorithm was run with different window
sizes (3, 5, 7 and 11). DS and PDS algorithms were performed using
the PLS Toolbox (version 3.5) for Matlab.

In the discussions of the results, the notation “test (P) errors”
will be used to represent the test errors obtained by applying the
classification model to the primary instrument data, while “test (S)
errors” will refer to the test errors obtained by applying the clas-
sification model to the secondary instrument data. The proposed
criteria will be represented by symbol C1 (when referring to the
cost function involving training and transfer samples) and C2
(when the cost function considers only the transfer samples).

All calculations were carried out by using the MATLAB® 2010a
software.
Please cite this article in press as: K.D.T.M. Milanez, et al., Selection of
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4. Results and discussion

4.1. Extra virgin olive oil data set

Fig. 1 presents the corrected UVeVis spectra of EVOO samples
acquired in each of the two instruments. As can be seen, the spectra
(Fig. 1a and b) present similar profiles. In both cases, it is possible to
observe three clearly defined peaks (at approximately 410, 450 and
480 nm) corresponding to carotenoid absorption in the blue range
[48]. Those absorptions are associated to electronic transitions from
the ground state S0 to the S2 state, with energy of the S2 state
depending on the extent of p-electron conjugation of the carot-
enoids [49]. The peak at approximately 670 nm, near the red range,
corresponds to chlorophyll's absorption and involves the electronic
transitions between the states S0 and S1 [48].

Fig. 2 presents the classification results in terms of the number
of test errors obtained by the three classification models (SPA-LDA
in usual form, C1 and C2), for different values of Ntransf (number of
transfer samples). The SPA-LDAmodel in usual form corresponds to
Ntransf ¼ 0. The bars indicate the test (S) errors, whereas the blue
line on the first bar indicates the test (P) errors. By using the SPA-
LDA model in the usual form (Ntransf ¼ 0), the number of test (S)
errors is much larger than the number of test (P) errors, which
indicates the need for a classification transfer procedure.

As can be seen in Fig. 2, when the models obtained with the C1
and C2 criteria were applied to the secondary instrument data,
there was a substantial decrease of the test (S) errors. Indeed, if six
or more transfer samples are employed, both criteria lead to test (S)
errors compatible with the test (P) errors. These findings are in
agreement with the expected outcome, in that the use of transfer
samples enables the selection of variables that are more robust
against differences between the primary and secondary in-
struments. As a result, the resulting classification performance in
the secondary instrument is improved.

Fig. 3 shows the subsets of selected variables by the SPA algo-
rithm in the classification models. As can be seen, variables were
selected near the absorption bands of carotenoids and chlorophyll
in all models. The exceptionwas obtained for the C2 criterionwith 4
transfer samples, where only one variable was selected in a region
where the spectra of the two class are overlapping, which can be
seen in Fig. 1. As a consequence, the resulting number of test (S)
errors was even worse compared with the SPA-LDA model in usual
form, as can be seen in Fig. 2. In this particular case, the poor
outcome may be ascribed to the use of an insufficient number of
samples to guide the variable selection process. Indeed, the C2
criterion uses only the transfer samples in the evaluation of the
candidate subsets of variables, whereas the C1 criterion uses both
the transfer and the training samples.

Fig. 4 compares the results, in terms of the number of errors,
obtained by using SPA-LDAwith the C1 and C2 criteria and SPA-LDA
in usual form after performing the standardization procedures (DS
or PDS). In all cases, the models were applied to the test set
measured by the secondary instrument. As can be seen, except for
criterion C2withNtransf¼ 4, the results yielded by SPA-LDAwith the
proposed criteria were similar to or better than those obtained by
using the standardization methods.

4.2. Ethanol fuel data set

Fig. 5 presents the derivative NIR spectra of HEAF samples
recorded in the range of 12.004e4.000 cm�1 for each instrument.
As can be seen, the difference between the spectra of the two in-
struments is small, beingmore easily observed in the region around
5.854 cm�1. NIR spectra show bands assigned to first overtones
(5.000e6.000 cm�1) and combination regions (4.600e4.000 cm�1)
robust variables for transfer of classification models employing the
x.doi.org/10.1016/j.aca.2017.07.037



Fig. 7. Average spectrum of the data set with indication of the variables selected by the SPA-LDA algorithm in classification models involving different number of transfer samples.
Variables selected by C1: C and C2: criteria.

Fig. 8. Results in terms of number of errors obtained by SPA-LDA with the C1 and C2
criteria and SPA-LDA in usual form after performing the standardization procedures,
applied to the test samples measured by the secondary instrument. The width of the
window employed in the PDS standardization method is indicated in parenthesis.
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of C-H stretching [50]. Additionally, at 5.128 cm�1 occurs combi-
nation bands of stretching and angular bending of the O-H in the
alcohol samples [51].

Fig. 6 presents the classification results in terms of the number
of test errors obtained by the three classification models (SPA-LDA
in usual form, C1 and C2), for different values of Ntransf (number of
Please cite this article in press as: K.D.T.M. Milanez, et al., Selection of
successive projections algorithm, Analytica Chimica Acta (2017), http://d
transfer samples). As can be seen, no test (P) errors were obtained
by SPA-LDA model in usual form. However, once again the number
of test (S) errors is much larger than the number of test (P) errors.

The classification transfer carried out in the HEAF data set
showed similar results to those found for the EVOO data set. By
using the proposed criteria, a substantial decrease in the test (S)
errors was observed. In particular, when the C2 criterion was
applied with Ntransf ¼ 10, the number of test (P) errors was reduced
to zero, i.e. all the test samples were correctly classified.

As can be seen in Fig. 7, the variable selection process always
resulted in a single variable. However, the use of transfer samples,
either with criterion C1 or criterion C2, affected the position of the
selected variable.

Fig. 8 compares the results, in terms of the number of test (S)
errors, obtained by using SPA-LDA with the C1 and C2 criteria and
SPA-LDA in usual form after performing the standardization pro-
cedures (DS or PDS). In this case, the SPA-LDA model adapted with
the C1 and C2 criteria provided results that were generally similar
to those obtained by standardization methods. The highlight,
however, is the correct classification of all test samples when the C2
criterion was employed with Ntransf ¼ 10.

Table 2 summarizes the results obtained for the two data sets in
terms of correct classification rate (CCR) obtained for test (S) set.
Comparing the CCR values obtained for the test (S) errors set before
and after the classification transfer procedures (withNtransf¼ 6) it is
possible to observe a substantial increase in these values.
robust variables for transfer of classification models employing the
x.doi.org/10.1016/j.aca.2017.07.037



Table 2
Results obtained by the models in terms of the CCR (%) for the test (S) set before and
after classification transfer procedures (Ntransf ¼ 6).

Set Correct classification rate (%)

EVOO data set HEAF data set

Original C1 C2 DS Original C1 C2 DS

Test (S) 56 85 85 81 50 92.5 92.5 92.5
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5. Conclusion

This paper proposed two new criteria for selection of robust
variables using the successive projections algorithm coupled to
linear discriminant analysis for transfer of classification models.
The proposed criteria are based on the inclusion of transfer samples
in the cost calculation for each subset of variables under consid-
eration, in order to minimize the number of errors obtained in the
classification of samples measured on the secondary instrument.

Two case studies involving data sets obtained from different
analytical techniques were presented. In both cases, the proposed
criteria substantially reduced the number of errors obtained in the
classification of the samples measured on the secondary instru-
ment. It was also observed that, the variables selected and the
number of errors varied according to number of transfer samples.
When compared to direct standardization (DS) and piecewise
direct standardization (PDS) methods, the criteria showed equal or
better results.

These results suggest that the proposed approach, using either
of the developed criteria, is a promising alternative to full model
recalibration or standardization of spectral responses. An addi-
tional advantage is the need for a lownumber of transfer samples to
reduce the rate of misclassification.
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