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Modified gravity theories are supposed to incorporate low-energy quantum-gravity effects and, at the
same time, they could shed light into the dark matter and dark energy problems. Here we study a particular
modification of general relativity where local Lorentz invariance is spontaneously broken and whose
physical effects, despite a decade-long effort, were unknown. We show that, during inflation, this
modification produces anisotropies that would generate measurable effects on the cosmic microwave
background. Then, by using empirical constraints on the B-mode polarization spectrum, we can estimate
that the “coefficient” components absolute value have to be smaller than 10−43. This is a remarkably strong
limit; in fact, it is 29 orders of magnitude better than the best constraints on similar coefficients. Thus, we
propose that inflation could stringently test other modified gravity theories.
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The quest for a gravity theory that is compatible with
quantum mechanics and that, at the same time, can explain
the nature of dark matter and dark energy, has lead us to
consider modified theories of gravity [1]. These modifica-
tions come in very different forms; the common feature is
that they are supposed to provide a better description of
nature and to produce small effects in regimes where the
current theories have been tested. In particular, these
modified theories should describe the Universe evolution
from the onset of inflation since this epoch is usually
assumed to be correctly described by general relativity.
Amongst the majority of cosmologists, inflation, an early

era in which the Universe underwent an accelerated
expansion, is held as an essential part of the standard Λ
cold dark matter cosmological model. Historically, it was
conceived to solve the flatness and horizon problems of the
standard big bang model. However, its current success is
based on the power to explain the primordial inhomo-
geneities generation that represent the seeds of cosmic
structure [2–6]. Furthermore, the latest Planck satellite data
release indicates that inflation correctly characterizes the
early universe [7–9]. In particular, this data suggests that
the primordial perturbations spectrum is essentially scale
invariant, favoring the simplest inflationary models [9,10].
In this work, we study, during the inflationary regime,

a modified gravity theory that violates local Lorentz
invariance. Recall that local Lorentz invariance is one

of the basic tenets of general relativity and it states that
there are no preferred spacetime directions. Moreover,
our main motivation for considering Lorentz violation
relies on studies, within prominent quantum-gravity
candidates, that argue that Lorentz violation may occur
at the quantum-gravity regime (see, e.g., Refs. [11,12]). It
is worth mentioning that there are Lorentz violating
models where the quantum fluctuations of a free scalar
field produce a scale invariant spectrum without an early
inflationary epoch [13]. Nevertheless, more work is
needed in these models to account for all the observed
properties of the primordial density perturbations that are
usually attributed to inflation.
A systematic program to look for Lorentz viola-

tion revolves around the general parametrization known
as the Standard Model Extension (SME) [14–16].
Remarkably, this program has led to significant bounds
on many parameters [17]. The SME is constructed in the
effective field theory framework, and thus, it includes all
Lorentz violating extensions to conventional physics. In
particular, the SME contains a gravitational sector
whose dominant correction is described by the action
term [16]

SLV ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ð−uRþ sabRðTÞab þ tabcdWabcdÞ; ð1Þ

where u, sab, and tabcd are the corresponding “coeffi-
cients” that parametrize the deviation from conventional
physics, and R, RðTÞab, and Wabcd are, respectively, the

*bonder@nucleares.unam.mx
†gleon@fcaglp.unlp.edu.ar

PHYSICAL REVIEW D 96, 044036 (2017)

2470-0010=2017=96(4)=044036(6) 044036-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.044036
https://doi.org/10.1103/PhysRevD.96.044036
https://doi.org/10.1103/PhysRevD.96.044036
https://doi.org/10.1103/PhysRevD.96.044036


curvature scalar, the traceless Ricci tensor, and the Weyl
tensor. Also, g is the determinant of the components of the
metric gab. Note that we follow the notation and con-
ventions of Ref. [18] and we work in natural units. The
coefficient tabcd has the index symmetries of the Weyl
tensor; thus, it is completely traceless and, in four
spacetime dimensions, it has 10 independent components.
Remarkably, before this work, the physical effects of

tabcd were unknown [19–25] as all terms containing tabcd
cancel out when the phenomenological approximations are
applied; this is known as the t puzzle [26]. One of the
approximations that has been repeatedly used when looking
for the effects of tabcd is to incorporate gravity as pertur-
bations on top of a flat spacetime. In contrast, here we work
in the cosmological context (cf. Ref. [27]) and we show
that, in this setting, tabcd produces physical effects. In
addition, we find that inflation magnifies the effects of such
a term allowing us to set remarkably strong bounds on it.
We believe that this result suggests that inflation can
magnify the effects of other modified theories of gravity,
and thus, it could be used to stringently test such theories.
It turns out that, when spacetime is dynamical, severe

restrictions on the coefficients arise from the Bianchi
identity [16]. Therefore, it is customary to assume that
any Lorentz violation arises spontaneously. Now, in pre-
vious attempts to study the effects of tabcd, its action terms
were not explicitly chosen and, instead, consistency con-
ditions fix its form perturbatively [19]. Here, we specify
such an action to be

St ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
∇atbcde∇atbcde − Vt

�
; ð2Þ

with Vt ¼ ðκ=2Þðt2 − b2Þ2. In addition, t2 ¼ tabcdtabcd and
the free nonnegative parameters of the model are κ and b.
The former action has a conventional kinetic energy term
and a Mexican hat potential for t2 that produces the
spontaneous Lorentz violation. Also, κ is assumed to be
large to dominate over the kinetic energy term. We would
like to stress that we have not studied if the action (2) is
ghostfree; this analysis is nontrivial and it is thus left for the
future. Furthermore, we set u ¼ sab ¼ 0 because these
coefficients can be moved to the matter SME sectors
by metric redefinitions [25]. Thus, the total action of the
model is

S ¼ SEH þ SLV þ 16πðSM þ StÞ; ð3Þ

where SEH is the Einstein-Hilbert action and SM is the
matter fields action. The equation of motion associated with
the metric and tabcd variations are, respectively,

Gab ¼
1

2
gabtcdefWcdef − 6tcdeðaWbÞcde þ 3tcabdRcd

þ 2∇c∇dtcðabÞd þ 8πTðMÞ
ab þ 8πTðtÞ

ab; ð4Þ

Wabcd ¼ 16π½gef∇e∇ftabcd þ 2κðt2 − b2Þtabcd�; ð5Þ

where the energy-momentum tensors of the matter and

tabcd, T
ðMÞ
ab , and TðtÞ

ab, are defined in the standard way. In
addition, there are matter fields equations of motion.
We assume that inflation can be described as a de Sitter

background and that it is driven by a scalar field ϕ known
as the inflaton. This is the only matter field we consider. We
analyze two perturbations over this background: the inho-
mogeneous and anisotropic perturbations of standard cos-
mology, generated by the inhomogeneities of the inflaton,
and the effects due to tabcd. The fact that tabcd can be treated
as a perturbation can be naively justified by the lack of
empirical evidence of Lorentz violation and it becomes
evident by the limits set on its values at the end of the paper.
We should stress that the perturbation analysis on tabcd,
to make sense, must be considered as a perturbative
expansion on b since, otherwise, it is inconsistent to
assume that tabcd lies at the bottom of the potential while
it is simultaneously small. Importantly, to first order in the
perturbative analysis, these two perturbations can be treated
independently. Also, for simplicity, we only study the case
where the effects introduced by tabcd are homogeneous (but
anisotropic).
We use the standard notation where quantities with a bar

refer to the background and the perturbations, except tabcd,
are preceded by a δ. For example, gab ¼ ḡab þ δgab, where
the background metric, in conformal time η, has compo-
nents ḡμν ¼ a2ðηÞημν, where ημν are the components of the
Minkowski metric in standard coordinates and aðηÞ is
the scale factor and it is given by aðηÞ ¼ −1=ðHηÞð1þϵÞ.
The parameter ϵ is the slow roll parameter, which, during
inflation, satisfies ϵ ≪ 1. Note that, if ϵ ¼ 0, then the
background is an exact de Sitter spacetime. HereH denotes
the Hubble factor that is essentially constant and it relates to
the inflaton potential, V, through H2 ¼ ð8π=3ÞV. The
conformal time η is strictly negative and it runs from a
largely negative quantity to zero; the value η ¼ 0 does not
correspond to the inflationary period but it belongs to the
radiation-dominated epoch.
At leading order in our perturbative scheme we get the

Einstein equations for ḡab and, since ḡab is conformally
flat, Eq. (5) is identically satisfied. To first order in the
perturbations we get

δGab ¼ ḡceḡdfð3tcabdR̄ef þ 2∇̄e∇̄ftcðabÞdÞ þ 8πδTðMÞ
ab ;

ð6aÞ

δWabcd ¼ 16πḡef∇̄e∇̄ftabcd: ð6bÞ
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Note that, even though κ is large, we neglect κðt2 − b2Þ
since we focus on initial conditions where this term
vanishes and the energetic cost of making this term nonzero
is controlled by κ.
We follow the convention where the index 0 represents

the conformal time and the latin indices i, j, k, and l
stand for the spatial directions. We also use the standard
scalar-vector-tensor decomposition of the metric perturba-
tions [28]. In particular,

δgij ¼ a2ðηÞðAδij þ ∂i∂jBþ ∂jCi þ ∂iCj þDijÞ; ð7Þ

where A, B, Ci, and Dij are the corresponding scalar,
vector, and tensor perturbations. Note that Dij is traceless,
symmetric and, in addition, it is gauge invariant.
Furthermore, under the assumption that tabcd is homo-
geneous, only Dij is sensitive to the presence of tabcd.
Therefore, Dij has two contributions: a part caused by the

inflaton, DðϕÞ
ij ðx⃗; ηÞ, and a homogeneous part DijðηÞ due to

tabcd. Since there are no scalar perturbations associated to
tabcd, the inflaton equations of motion, for both the back-
ground and the scalar inhomogeneous perturbations,
coincide with those of standard cosmology.
Moreover, mimicking the Weyl tensor decomposition

[29], the ten independent components of tabcd can be split
into two 3 × 3 traceless and symmetric matrices, t0i0j and
ϵi

klt0jkl, where ϵikl are the components of the volume three-
form. In the limit under consideration, Eqs. (6) take the
simple form

a5D00
ij þ 2a4a0D0

ij ¼ −4at000i0j þ 16a0t00i0j

þ
�
16a00 −

40a02

a

�
t0i0j; ð8aÞ

a6D00
ij ¼ 64π½a2t000i0j − 6aa0t00i0j þ ð6a02 − 4aa00Þt0i0j�;

ð8bÞ
where the prime denotes the conformal-time derivative.
Note that the equations decouple in the sense that, for given
values of i and j, only Dij and t0i0j depend on each other.
Also, there are no conditions on t0ijk, making our analysis
insensitive those components.
Surprisingly, Eqs. (8) can be solved analytically by

decoupling t0i0j from Dij after taking an additional η
derivative. We present its solutions for concrete initial
conditions given at η ¼ η0 and corresponding to the onset
of inflation. We take tabcdðη0Þ such that t2ðη0Þ ¼ b2, i.e., it
lies at the bottom of the potential Vt. Furthermore, tabcdðη0Þ
selects a preferred spatial direction along the coordinate x1,
while maintaining isotropy in the x2 − x3 plane. Observe that
no generality is lost by choosing the spatial coordinates this
way; however, there are more general situations where no
isotropic subspaces are left. Also, t00i0jðη0Þ ¼ Dijðη0Þ ¼
D0

ijðη0Þ ¼ 0. Note that these initial conditions on Dij are

such that the Bunch-Davies vacuum, which is associated

with the inhomogeneous tensor modes DðϕÞ
ij , is unperturbed.

Then, the solutions of Eqs. (8) are of the form

t0i0jðηÞ ¼ Cð1Þ
ij jηjr− þ Cð2Þ

ij jηj−1 þ Cð3Þ
ij jηjrþ ; ð9Þ

DijðηÞ ¼ Kð1Þ
ij jηjs− þ Kð2Þ

ij jηj3 þ Kð3Þ
ij jηjsþ ; ð10Þ

where CðnÞ
ij and KðmÞ

ij are constants fixed by the initial
conditions and r�, s� are known numerical factors, in fact
rþ; sþ > 0 and r−; s− < 0. It should be mentioned that it is
possible find initial data for which Dij does not grow
substantially; however, these solutions require us to fine-
tune the initial data and are incompatible with the Bunch-
Davies vacuum.
In Fig. 1 we plot jt0i0jj=b, jDijj=b, and a as functions of η

in the case where the only nonvanishing component is
i ¼ 1, j ¼ 1. Observe that, due to numerical limitations, the
plot begins seven e-folds after the beginning of inflation,
which in conformal time corresponds to η ∼ e−7η0. As it
can be seen in the plot, during inflation, jt0101j and jD11j
grow by many orders of magnitude. Furthermore, under the
approximations we use, there are only two independent
components; the other component has i ¼ 1 and j ¼ 2.
However, the fields behavior in this last case is analogous to
that shown in Fig. 1; the difference is a Oð1Þ proportion-
ality factor that arises when setting t2ðη0Þ ¼ b2.
The main conclusion thus far is that tabcd produces

physical effects that are encoded inDij. In what follows we
describe how cosmic microwave background (CMB)
observations allow us to set bounds on its components.
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FIG. 1. Log-log plot of the scale factor a (red line), the
amplitude of the components jt0101j (green dashed line), and
jD11j (blue dot-dashed line), the last two quantities normalized by
b, as functions of jηj. Inflation evolves from right to left, as
indicated by the arrows.
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First, recall that the CMB is originated at the decoupling
epoch, which occurs after the end of inflation. Thus, to
estimate the effects of tabcd on the CMB, we should
calculate the evolution of t0i0j and Dij until that epoch.
However, from the end of inflation and until the time when
the CMB is created, the Universe continues to expand,
albeit at a much slower rate, and jDijj would continue to
grow. Therefore, including this stage of the Universe
evolution will only make our bounds stronger and we
can omit this analysis without compromising our results.
It is well known that ϵ is related with r, the so-called

tensor-to-scalar ratio, by r ¼ 16ϵ [28] and that the latest
observational bound is r < 0.12 (95% C.L.) [9]. On the
other hand, when a particular value of ϵ is assumed, the
inflation energy scale is automatically fixed [30]. Here we
use ϵ ¼ 10−3 to fit the experimental value of the scalar
spectrum amplitude at V=M4

Pϵ≃ 10−9, with MP ¼ 1=
ffiffiffiffiffiffi
8π

p
the reduced Planck mass. In turn, ϵ sets the characteristic
inflation energy scale at V1=4 ≃ 10−3MP and the Hubble
factor turns to be, approximately, 10−6MP. This implies
that r≃ 10−2. We also consider conventional numerical
values for the beginning and end of inflation, namely,
jη0j≃ 106 Mpc ¼ 1062M−1

P and assume that the inflation-
ary regime ends after 65 e-folds, namely, at the conformal
time ηf ¼ e−65η0. All those assumptions imply that, at the
end of inflation, jD11j≃ 1037b and jt0101j≃ 10−81b.
On the other hand, the primary contribution to the

B-mode CMB polarization, at large angular scales, occurs
due to primordial tensor perturbations, i.e., by gravitational
waves produced during inflation [31]. A detailed analysis
of the primordial tensor perturbations modifications due to
tabcd is presented in the Appendix. The upshot of this
appendix is that the contribution of tabcd on the B-mode
angular power spectrum is a constant extra term that goes
like 1074b2. Now, the B-mode polarization has not been
detected [32], and the only observational limit on its
amplitude comes from the bound on r [9,33], which also
sets the amplitude of the tensor power spectrum of the
inflaton. Thus, to prevent the tabcd effects from dominating
over the effects of the well-established inflaton quantum
theory, we need to set b < 10−43. Furthermore, if the B-
mode CMB polarization is ever detected, the value of the
first term in the right-hand side of Eq. (A16) will be fixed
and we will be able to put a more precise bound on b.
Note that this bound on b can be considered as a limit on

the initial values of the coefficient components, namely,
jt0i0jðη0Þj < 10−43. To appreciate the power of inflation to
test this modified theory one should compare our bounds
with the best available limits on the other SME coefficients
in the gravitational sector. It turns out that, in this sector,
some sab components, in a well-defined frame centered at
the Sun, need to be smaller than 10−14 to avoid producing
gravitational Cherenkov radiation to a point where it would
have been observed with cosmic rays detectors [34].

Observe that the bounds obtained here are 29 orders of
magnitude more stringent. Other competitive bounds on sab
are placed with atomic gravimetry, lunar laser ranging,
Gravity Probe B, and binary pulsars observations (for a
review see Ref. [35]).
To conclude, we want to stress that before this work, and

for more than a decade, it was unknown whether tabcd
produced physical effects. Here we show that it is actually
physical and, by studying the effects of this coefficient in
the inflationary regime, we are able to set remarkably
strong bounds on its components. Perhaps, through similar
analyses, other modified theories of gravity can find that
unconventional physics effects get amplified, converting
this type of study into a benchmark test for such modified
theories.
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APPENDIX: CALCULATION OF THE tabcd
EFFECTS ON THE CMB

To relate the amplitude jDijj due to tabcd with the
observational data, we note that the complete tensor
perturbation is composed by

Dijðx⃗; ηÞ ¼ DðϕÞ
ij ðx⃗; ηÞ þDijðηÞ: ðA1Þ

Therefore, we can expand the complete tensor perturbation
in Fourier modes, bearing in mind that the zero mode
Dijð0; ηÞ is caused by tabcd, i.e., Dijð0; ηÞ is the solution in
Eq. (10), and therefore

Dijðx⃗; ηÞ ¼
1

L3

X
k⃗

eik⃗·x⃗Dijðk⃗; ηÞ: ðA2Þ

Observe that we use a Fourier series instead of a Fourier
integral since it is more convenient for singling out the zero
mode. Formally, this corresponds to considering a cubic
region of the Universe, with comoving volume L3, and
assuming periodic boundary conditions. At the end of the
calculation we take the continuum limit L → ∞. The full
tensor perturbation is then

Dijðx⃗; ηÞ ¼
Dijð0; ηÞ

L3
þ 1

L3

X
k⃗≠0

eik⃗·x⃗DðϕÞ
ij ðk⃗; ηÞ: ðA3Þ

Furthermore, the Fourier mode DðϕÞ
ij ðk⃗; ηÞ can be

expressed as
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DðϕÞ
ij ðk⃗; ηÞ ¼

X
λ¼�2

Eijðk̂; λÞDðϕÞðk⃗; λ; ηÞ; ðA4Þ

where Eij represents a time independent polarization

tensor, λ is the helicity, and DðϕÞðk⃗; λ; ηÞ are scalar
functions associated with the amplitude of the tensor
power spectrum corresponding to the inflaton. From now
on, we neglect the helicity since it only contributes
by a factor of 2 to the tensor power spectrum of the
inflaton.
Now, the B-mode polarization can be decomposed in

spherical harmonics [31,36]; the expansion coefficients aBlm
are given by

aBlm ¼ 4πð−iÞl
L3

X
k⃗

ΔB;lðkÞDðk⃗; ηfÞYlmðk̂Þ�: ðA5Þ

The latter expression includes the zero mode Dð0; ηfÞ,
which we specify later. The transfer functions ΔB;lðkÞ
encode all the physics from the end of the inflationary
era to the time of decoupling. Given that we are neglecting
the effects of postinflationary physics, and we are only
interested in the amplitude rather than the shape of the
spectrum, we take ΔB;lðkÞ≃ jlðkRDÞ, with jl the spherical
Bessel functions and RD the comoving radius of the last
scattering surface. Note that, for the zero mode, jlð0Þ
vanishes for all l except for l ¼ 0, where j0ð0Þ ¼ 1, and Y00

is real and independent of k̂.
Moreover, the B-mode polarization data are presen-

ted in terms of the B-mode angular power spectrum
defined as

CBB
l ¼ 1

2lþ 1

X
m

haBlmaB�lmi; ðA6Þ

where h·i denotes ensemble average. From Eq. (A5), we
have

haBlmaB�lmi ¼
16π2

L6

X
k⃗;k⃗0

ΔB;lðkÞΔB;lðk0Þ

× hDðk⃗; ηfÞDðk⃗0; ηfÞ�iYlmðk̂Þ�Ylmðk̂0Þ: ðA7Þ

The nature of the zero mode Dð0; ηfÞ and the rest of the

modes DðϕÞðk⃗; ηfÞ is different; the former is a classical
scalar field associated with the SME while the latter is a
classical stochastic field coming from the quantum
inflaton fluctuations. Henceforth, the ensemble average
hDðk⃗; ηfÞDðk⃗0; ηfÞ�i can be decomposed in four terms:

hDð0; ηfÞDð0; ηfÞ�i, hDðϕÞðk⃗; ηfÞDðϕÞðk⃗0; ηfÞ�i, Dð0; ηfÞ
hDðϕÞðk⃗0; ηfÞ�i, and hDðϕÞðk⃗; ηfÞiDð0; ηfÞ�. The last two

terms vanish since hDðϕÞðk⃗; ηfÞi ¼ 0, while the first term

is simply jDð0; ηfÞj2. The remaining term is associated
with the dimensionless tensor power spectrum of the
tensor metric perturbations corresponding to the inflaton,
namely,

hDðϕÞðk⃗; ηfÞDðϕÞðk⃗0; ηfÞ�i ¼
2π2

k3
PTðk; ηfÞL3δk⃗;k⃗0 : ðA8Þ

In the continuum limit

jDð0; ηfÞj2
2π2L3

→ jDijðηfÞDijðηfÞj ðA9Þ

with Dij the solution given in Eq. (10). Hence, the
expression for the ensemble average is

hDðk⃗; ηfÞDðk⃗0; ηfÞ�i ¼ jDðk; ηfÞj2
L3

ð2πÞ3 δk⃗;k⃗0 : ðA10Þ

If k ¼ 0, then jDðk; ηfÞj2 is given by Eq. (A9); if k ≠ 0,
then jDðk; ηfÞj2 ¼ ð2π2=k3ÞPTðk; ηfÞ. Inserting the expres-
sion for the ensemble average, Eq. (A10), into Eq. (A7),
and summing over k⃗0 yields

haBlmaB�lmi ¼
2

πL3

X
k⃗

jlðkRDÞ2jYlmðk̂Þj2jDðk; ηfÞj2: ðA11Þ

Consequently, using the definition (A6), the B-mode
angular spectrum is given by

CBB
l ¼ 1

2π2L3

X
k⃗

jlðkRDÞ2jDðk; ηfÞj2; ðA12Þ

where we used the identity
P

mjYlmðk̂Þj2 ¼ ð2lþ 1Þ=4π.
Moreover, separating the zero mode from the rest of the
modes results in

CBB
l ¼ jDð0; ηfÞj2

2π2L3
þ 1

L3

X
k⃗≠0

jlðkRDÞ2
k3

PTðk; ηfÞ: ðA13Þ

Taking now the continuum limit L → ∞, the latter expres-
sion becomes

CBB
l ¼ jDijðηfÞDijðηfÞj þ 4π

Z
∞

0þ
dk

jlðkRDÞ2
k

PTðk; ηfÞ:

ðA14Þ

Finally, using the known expression for the (dimension-
less) tensor power spectrum PTðk; ηfÞ≃H2=M2

P and
our result jDijðηfÞDijðηfÞj≃ 1074b2 the B-mode angular
spectrum is
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CBB
l ≃ 1074b2 þ H2

M2
P

1

lðlþ 1Þ ; ðA15Þ

with l ¼ 1; 2;…. In addition, the numerical values that lead
to jDijðηfÞDijðηfÞj≃1074b2 also imply that H2=M2

P ≃
10−12. Also, the effect of the primordial tensor perturba-
tions on the tensor power spectrum is dominant at large

angular scales, i.e., at the lowest multipoles l≲ 10.
Therefore, an estimated value for the B-mode angular
spectrum is

lðlþ 1ÞCBB
l ≃ 10−12 þ 1074b2: ðA16Þ

This is the expression we use to set limits on b.
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