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1 Introduction

An inflationary phase can solve some of the issues present in the standard cosmological model
(such as the horizon and flatness problems). However it is not clear to what extent this asser-
tion depends on assuming that the pre-inflationary universe is described by a homogeneous
and isotropic spacetime. In particular, the onset of inflation in the presence of inhomogeneities
produced by a pre-inflationary era, possibly driven by quantum gravity, has been discussed by
several authors. A pioneer work on the analysis of de Sitter space-time as a late-time attractor
for universes with generic initial conditions was presented in [1], where it was shown that a
non-zero effective cosmological constant can smooth-down all types of inhomogeneities, even
in anisotropic geometries. The attractor property of power-law inflation for inhomogeneous
cosmological models was also discussed in [2]. Numerical studies were presented in [3–9],
among others, where it was claimed that highly homogeneous and isotropic initial conditions
on a patch several times larger than the horizon are necessary for inflation to start. How-
ever other authors [10–13] asseverate that inflation is also viable with inhomogeneous initial
conditions. For recent studies on this subject see [14, 15], where numerical evolution of the
full non-linear Einstein’s equations for an inflaton field coupled to gravity was computed for
different types of inhomogeneities.

Once inflation has started in a certain region, it remains to see whether the ambient
inhomogeneities affect its development and, in particular, if inflation will effectively smooth
out large initial inhomogeneities. These inquiries are relevant not only in the context of
traditional early-universe models of inflation, but also in the more speculative scenario of
eternal inflation and the string landscape, in which regions filled with new vacuum nucleate
into an ambient region, leading to inflationary patches in different environments.1 Since
the nucleation does not necessarily occur in vacuum-dominated regions, it is interesting to
study the time development of such patches in less symmetric ambients with different matter
contents. For instance, dust inhomogeneous environments should be considered to study cases

1Initial conditions must be handled with care in this case, see discussion in Sect. 5.
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of eternal inflation, where the bubble would eventually meet an inhomogeneity in a matter-
dominated universe. Radiation inhomogeneous environments, however, are more appropriate
to describe the ultra-relativistic matter present in the early universe.

One possibility to address this issue is to consider the so-called thin-shell approximation,
which provides a simple treatment to described the evolution of two spacetime regions sep-
arated by a spherically-symmetric shell. This formalism, firstly developed by Israel [16], is
based on the assumption of the continuity of the metric functions across the whole spacetime
by taking into account appropriated junction conditions [17], and was widely used to describe
the evolution of nucleated bubbles of new vacuum patches in different scenarios regarding
to vacuum-energy or dust bubbles immersed in de Sitter, Schwarzschild and FLRW [18–23].
Concerning the evolution of shells in less symmetric scenarios, the growth of true vacuum
bubbles embedded in an inhomogeneous spherically-symmetric background described by the
Lemaître-Tolman-Bondi (LTB) solution of the Einstein’s equations (see for instance [24]) has
been analysed in [25–27].2 In this case the geometry is sourced by a pressureless fluid, which
models inhomogeneities generated by a previous inflationary era.

In this work we generalise the analysis in [25], by replacing the spherically-symmetric
dust distribution in the ambient spacetime by radiation with the same symmetries, the geom-
etry being characterised by the FLRW and Lemaître’s geometries [30], for homogeneous and
inhomogeneous cases, respectively. This setting is appropriate to describe inhomogeneities
in the early universe which formed during a pre-inflationary era, as in [4, 6, 14], and are
described by ultra-relativistic matter. The evolution of the bubble is computed numerically,
together with the evolution of the external metric, using the thin-shell formalism. Our results
show that the evolution in a radiation background is markedly different from that of a dust
background. The differences are appreciable in the homogeneous and isotropic case, as well
as in the inhomogeneous case, and lead to noticeable differences in the evolution of the proper
radius of the bubble.

The paper is organised as follows. In Section 2 the thin-shell formalism is described,
including a detailed characterisation of Lemaître’s solution. In order to analyse the different
effects of the matter content on the growth of the bubble, we start by comparing in Section 3
the evolution of vacuum regions in dust and radiation homogeneous backgrounds. The inho-
mogeneous cases are studied in Section 4. We close with some remarks about the results in
Section 5.

2 The thin-shell formalism

We shall assume that an inflating vacuum patch is embedded in a generic environment.
The two spacetime regions, denoted here by M− and M+, are separated by a time-like
hypersurface Σ, which has negligible thickness and its matter content is described by a given
equation of state. The metric tensor is required to be continuous across the whole spacetime,
and the total energy-momentum tensor is allowed to be discontinuous at the thin-shell, but
it is continuous elsewhere. The junction conditions of the thin-shell formalism are devised
to glue the two spacetimes in such a way that both geometries, as well as the shell that
separates them, are a solution of Einstein’s equations. Although it is assumed that the metric

2The problem regarding to aspherical perturbations and their consequences on the stability of vacuum bub-
bles was studied in [28]. More recently, the study of spherically-symmetric embeddings of FLRW cosmological
bubbles into various background spacetimes using the Raychaudhuri equation for null rays was presented in
[29].
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is continuous across the whole spacetime, jump discontinuities in the extrinsic curvature Kab

are possible. This implies that the Einstein tensor (which involves second derivatives of the
metric), and so the energy-momentum tensor Tab, can have a jump discontinuity and/or
a δ-function singularity. We consider the field equations with non-vanishing cosmological
constant, written as

Gµν = Tµν + Λgµν , (2.1)

where the units are chosen as c = 8πG = 1. In order to study the evolution of the shell,
we need to solve these equations requiring the continuity condition for the metric through
the surface layer. The matching is such that both geometries evolve independently and the
properties of the shell vary with time to adjust for local changes of the spacetime. We
shall restrict our analysis to spherically-symmetric cases in which the inner vacuum region
is described by the de Sitter metric, while the matter content of the outer region (composed
by dust or radiation) may have an homogeneous or inhomogeneous distribution. The set
of general equations that solve Einstein’s equations for an arbitrary hypersurface layer is
carefully reviewed in [20].

The most general inhomogeneous spherically-symmetric solution of Einstein’s equations
with non-zero matter content is described by Lemaître’s geometry, along with an equation of
state of the form p(t, r) = λǫ(t, r). The homogeneous FLRW solution and the inhomogeneous
dust solution can be recovered, respectively, in the limits ǫ(t, r) = ǫ(t) and λ = 0. Following
the notation used in [25], the problem is then characterised as follows:3

• The inner vacuum region, M−, with non-zero cosmological constant Λ−, is described
by an isotropic and homogeneous metric. Using the coordinates (T, z, θ, φ), the line
element is

ds2|M− = dT 2 − b2(T )

(

dz2

1 + z2
+ z2dΩ2

)

, (2.2)

where the evolution of the scale factor b(T ) is given by
(

db

dT

)2

=

(

Λ−

3

)

b2(T ) + 1 . (2.3)

• The spherically-symmetric time-like shell is characterised by the hypersurface Σ with
normal unit vector nµ directed from M− to M+ (nµnµ = −1) and metric hµν =
gµν − nµnν . The line element expressed in coordinates (τ, θ, φ) on the bubble is

ds2|Σ = dτ2 − ρ(τ)2dΩ2 . (2.4)

We assume that the matter content on the shell can be described by a perfect fluid with
energy-momentum tensor given by

Sµν = [σ(τ) + Π(τ)]vµvν −Π(τ)hµν , (2.5)

where σ and Π denote, respectively, the energy density and the pressure of the fluid
on the bubble, and vµ is the four-velocity of an observer on Σ. Strictly, this tensor is
defined in the thin-shell approximation as the integral of the effective energy-momentum
tensor over the thickness of the hypersurface Σ as the thickness goes to zero, that is,

Sµν ≡ lim
y→0

∫ y

−y
(Tµν + Λgµν)dn = lim

y→0

∫ y

−y
Gµνdn , (2.6)

3Hereafter, the subscripts “-” and “+” indicate, respectively, inner and outer quantities.
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where n is the proper distance through Σ in the normal direction given by the orthogonal
coordinate y, so that y = 0 at Σ [31].

• The outer region, M+, is modelled by the Lemaître’s solution [30], with line element in
external coordinates (t, r, θ, φ) given by

ds2|M+ = eA(t,r)dt2 − eB(t,r)dr2 −R2(t, r)dΩ2 , (2.7)

and energy-momentum tensor

Tµν = [ǫ(t, r) + p(t, r)]u+µ u
+
ν − p(t, r)g+µν . (2.8)

The Einstein’s field equations (2.1) for the outer metric are

R2(t, r)R′(t, r)ǫ(t, r) = 2M ′(t, r) , (2.9)

R2(t, r)Ṙ(t, r)p(t, r) = −2Ṁ (t, r) , (2.10)

where the symbols ˙ and ′ indicate, respectively, derivatives with respect to t and r.
The function M(t, r) satisfies the equation

2M(t, r) = R(t, r)+e−A(t,r)Ṙ2(t, r)R(t, r)−e−B(t,r)R′2(t, r)R(t, r)−Λ+R3(t, r)

3
, (2.11)

and the conservation of Tµν yields the following relations:

A′(t, r) = − 2p′(t, r)

ǫ(t, r) + p(t, r)
, (2.12)

eB(t,r) =
R′2(t, r)

1 + 2E(r)
exp

(

∫ t

t0

2Ṙp′

[ǫ+ p]R′
dt̃

)

, (2.13)

where E(r) is an arbitrary function related to the local curvature and t0 is the time
corresponding to the initial conditions [32].

It is important to note that although the metrics are expressed in different coordinate systems,
their angular coordinates coincide due to the spherical symmetry of the problem.

Adopting the usual notation [A] ≡ A+ − A−, the continuity condition for the metric
through the hypersurface layer can be stated as [gab] = 0. This condition imposes the following
restrictions for the metric functions:

[zb(T )]Σ = ρ(τ) = [R(t, r)]Σ , (2.14)
[

dT 2 −
(

b2

1 + z2

)

dz2
]

Σ

= dτ2 =
[

eA(t,r)dt2 − eB(t,r)dr2
]

Σ
, (2.15)

where the subscript Σ indicates that the metric functions of the inner and outer regions are
evaluated on the shell. The above equations have the physical interpretation that observers
in M+ and M− must measure the same value for the physical radius of the bubble. The
inner and outer radial coordinates of the bubble are denoted by ζ(T ) ≡ z|Σ and x(t) ≡ r|Σ,
respectively. Then, from Eqs. (2.14) and (2.15) we can express (T, ζ(T )) and (t, x(t)) as
functions of τ . However, since Lemaître’s solution is known only numerically, it is convenient
to describe the evolution of the shell in terms of the outer coordinates (t, r, θ, φ). Hence, the
evolution of Σ will be parametrised by t, instead of τ .
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The restrictions (2.14) and (2.15), together with an appropriate jump analysis of Ein-
stein’s equations in the vicinity of the hypersurface of discontinuity Σ, lead to the Israel’s
junction conditions, given by [16, 17, 31, 33]:

−σ

2
=
[

Kθ
θ

]

, (2.16)

Π = [Kτ
τ ] +

[

Kθ
θ

]

, (2.17)

dσ

dτ
+

2

ρ

dρ

dτ
(σ +Π) = −[T n

τ ] , (2.18)

where all quantities are functions of the proper time on the shell, τ , and T n
τ ≡ e

α
τT

β
α nβ

is the projection of the energy-momentum tensor of the inner/outer region in the direction

normal to the shell surface. The extrinsic curvature tensor is defined as Kab ≡ nα;βe
α
ae

β
b,

and the projectors over the hypersurface Σ are

e
α
τ =

(

dt

dτ
,
dx

dτ
, 0, 0

)

, (2.19)

e
α
θ = (0, 0, 1, 0) , (2.20)

e
α
φ = (0, 0, 0, 1) , (2.21)

where uα = e
α
τ is the velocity of the bubble, and the normal vector oriented to the outer

region is defined by the conditions uαnα = 0 and nαnα = −1. Equation (2.17) can be
substituted by an equation of state for the matter content on the shell, which is assumed of
the form Π = wσ.

Equation (2.18) shows the energy-momentum balance in the bubble’s wall, and com-
pletely determines the evolution of the shell. Note also that it is independent of the value of
the inner/outer cosmological constants, since the contribution [Λgµνn

µuν ] vanishes. Conse-
quently, as the bubble expands there is not vacuum energy transferred from M± regions to
the surface energy of the bubble, and the liberated vacuum energy is completely transformed
into kinetic energy of the shell. The effect of the stress-energy tensor Sµν of the bubble on
the spacetime geometry can be analysed integrating Eqs. (2.1) across Σ, which yields

Sµνn
µnν = Sανn

νhαµ = 0 , (2.22)

Sµν = Sαβh
α
µh

β
ν = [Kµν ]− hµν [K] . (2.23)

The last set of equations (2.23) (namely Lanczos equations) links the discontinuity in the
extrinsic curvature across the shell to its energy-momentum content, while equations (2.22)
have the physical meaning that no momentum associated with the surface layer flows out of
Σ (so that Sµν lives on the hypersurface of the shell and is well defined by Eq. (2.6)) [20].

The history of the shell is then completely determined by Eqs. (2.16) and (2.18), which
we need to rewrite in terms of the external coordinates t and r for the numerical computation.
We will follow [25] to get the appropriate evolution equations.

Let us start calculating the angular components of the extrinsic curvature tensor for
each region, Kθ

θ = hθθnθ;θ, which become

(Kθ
θ )

− = − γ−

ρ
√

1 + ζ2

(

ζb
db

dT

dζ

dτ
+ (1 + ζ2)

dT

dτ

)

, (2.24)

(Kθ
θ )

+ = − γ+
ρeA/2eB/2

(

eAR′ dt

dτ
+ eBṘ

dx

dτ

)

, (2.25)
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where all the metric functions are evaluated at Σ, and γ± = 1 (γ± = −1) if the shell is
expanding (collapsing). The explicit form of Kθ

θ allows us to express the first derivative of
restriction (2.14) as

(

dρ

dτ

)2

= ∆± + [ρ(Kθ
θ )

±]2 , (2.26)

with

∆+ = −1 +

(

2M

R3
+

Λ+

3

)

ρ2 , (2.27)

∆− = −1 +
Λ−

3
ρ2 . (2.28)

Equation (2.16) can be now rewritten as

− γ+

√

(

dρ

dτ

)2

−∆+ + γ−

√

(

dρ

dτ

)2

−∆− = −σρ

2
, (2.29)

where the arguments of the square roots are always positive due to (2.26). After some algebra,
and replacing expressions (2.27) and (2.28), we get

(

dρ

dτ

)2

= ρ2V 2 − 1 , (2.30)

where

V 2 ≡ Λ−

3
+

[

σ

4
+

1

σ

(

Λ+ − Λ−

3
+

2M

R3

)]2

. (2.31)

Since (dρ/dτ) = [Ṙ + R′(dx/dt)](dt/dτ) on the shell, Eq. (2.30) yields a quadratic equation
for (dx/dt), which solutions are given by

dx

dt
=

−ṘR′ ±
√

(R2V 2 − 1)[R′2eA − Ṙ2eB + eAeB(R2V 2 − 1)]

R′2 + eB(R2V 2 − 1)
. (2.32)

Since we are interested in solutions x(t) such that (dx/dt) is initially positive (expanding
bubbles for the initial conditions given in Section 2.1), we choose the positive sign for the
numerical integration. A restriction on the function x(t) for the motion of the bubble follows
from imposing that effectively the r.h.s of Eq. (2.30) be positive on the shell, which leads to

1 < R2V 2 . (2.33)

Note that if the evolution reaches values of x(t) such that 1 = V 2R2, then the proper velocity
of the bubble vanishes.

It only remains to rewrite Eq. (2.18) in the outer coordinates. The outer projection of
the energy-momentum tensor normal to Σ is

(T n
τ )

+ = −γ+
dt

dτ

dx

dτ

eA(t,x)/2eB(t,x)/2[ǫ(t, x) + p(t, x)]
√

eA(t,x) − eB(t,x)
(

dx
dt

)2
, (2.34)
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and, since the bubble encloses a vacuum region, we have (T n
τ )

− = 0. Hence Eq. (2.18) takes
the form

dσ

dt
= −2(1 + w)σ

Ṙ

R
+ γ+(ǫ+ p)

dx

dt

eA/2eB/2

√

eA − eB
(

dx
dt

)2
. (2.35)

We will assume that the matter on Σ satisfies the weak energy condition during all the
evolution, that is, σ > 0. This condition is equivalent to impose the following restrictions4

∆+ −∆− >
ρ2σ2

4
, if γ = +1 , (2.36)

∆+ −∆− <
ρ2σ2

4
, if γ = −1 . (2.37)

The outer geometry and the coupled system given by Eqs. (2.32) and (2.35) determine the
evolution of the shell in terms of the external coordinates (t, x(t)), which must be calculated
through numerical integration.

2.1 Numerical evolution

We have developed a numerical code to compute the evolution of the bubble, given by the
solution of equations (2.32) and (2.35). These equations are coupled to those determining the
evolution of the external geometry, which can be written as follows [34]

Ṙ = eA/2

[

2M

R
+

Λ+

3
R2 − 1 +R′2e−B

]1/2

, (2.38)

Ṁ = −p

2
R2Ṙ , (2.39)

ǫ̇ = −p′
Ṙ

R′
− [ǫ+ p]

[

Ṙ′

R′
+ 2

Ṙ

R

]

, (2.40)

Ḃ = 2

[

Ṙ′

R′
+

Ṙp′

[ǫ+ p]R′

]

, (2.41)

with

M ′ =
ǫ

2
R2R′ , (2.42)

A = −2

∫ r

0

p′

ǫ+ p
dr . (2.43)

The external pressure p is determined from the corresponding equation of state for the outer
matter content.

The integration of the above system of partial differential equations was implemented
using the method of lines with a fourth order differentiation scheme [35]. We choose for our
problem the following initial profiles:

R(t0, r) = a0r , (2.44)

E(r) = −1

2
kr2 , (2.45)

ǫ(t0, r) = ǫ0

[

1− δǫexp

(

−(r − r0)
2

s20

)]

, (2.46)

4In a general spherically-symmetric case, described by the line element (2.7), the auxiliary quantity ∆ is
defined as ∆ ≡ (Ṙ2/eA)− (R′2/eB).
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which are sufficient to completely determine the evolution of the outer geometry.5 In partic-
ular, we consider a0 = 1 in order to initially set the radial coordinate of the bubble equal
to its proper radius. The curvature is characterised by the constant k = (Λ−/3)/10, which
is low enough to ensure that the evolution given by equation (2.38) is initially dominated
by its two first terms.6 The quantities δǫ, r0 and s0 determine the inhomogeneous initial
distribution of the background matter, and the constant ǫ0 represents the asymptotic value
of the background density away from the inhomogeneous region.

The parameter Λ− represents the vacuum energy of the region inside the bubble, and is
intrinsically related to the energy scale imposed by the inflationary models for the nucleation
process [36]. We choose Λ− ≃ 5 × 10−5 to characterise the inner region, which corresponds
to an energy of order 1014 GeV in Planck units. Since there are not a priori restrictions on
the parameters Λ+ and ǫ0, we shall work with values Λ+ < ǫ0 = 10Λ−, which ensure that at
t = t0 the dynamics of the external region is dominated by the term (2M/R) in Eq. (2.38).
Consequently, the potential effects on the dynamics due to the background dust or radiation
distributions become more pronounced. In the opposite case, the Λ+ dominated expansion
would rapidly dilute the background density, thus becoming a de Sitter-de Sitter scenario. The
parameter Λ+ is allowed to take four representative values: Λ+ = 0,Λ−/2,Λ−, 2Λ−. Each
of these leads to a different dynamical behaviour, which will be analysed in the following
sections.

Finally, the initial conditions for the thin-shell are x0 = 15 and σ0 = 1 × 10−3. The
election of x0 is such that the nucleation of the bubble takes place at a point where the
gradient of ǫ is non-negligible. For the most general case, in which the bubble expands in an
inhomogeneous background with non-zero pressure (described by Lemaître’s solution), this
choice implies also a non-zero initial pressure gradient, whose influence on the background
evolution is briefly analysed in Appendix A. On the other hand, the initial value for σ0 is
chosen to satisfy the constraint given by Eq. (2.36). We consider the values w = 0, 1/3 for
the equation of state parameter for the matter on the bubble.

The results for the numerical evolution of the vacuum bubble embedded in different
backgrounds are shown in the next sections. We will start with the discussion of the simplest
case (namely, homogeneous outer regions), with the aim of studying first the effects of the
radiation pressure over the bubble evolution. Afterwards, we will focus the analysis on the
features due to inhomogeneous distributions.

3 Evolution in homogeneous backgrounds: dust vs. radiation

We shall study in this section the effects of two different homogeneous backgrounds on the
dynamics of the bubble, corresponding to contents of dust or radiation. In both cases, the
outer region is characterised by the isotropic and homogeneous FLRW metric, with line
element given by

ds2 = dt2 − a2(t)

(

1

1− kr2
dr2 − r2dΩ2

)

. (3.1)

5The functions M(t0, r) and A(t0, r) are then computed from Eqs. (2.42) and (2.43), respectively, and
eB(t0,r) = R′2(t0, r)/(1 + 2E(r)). It is also possible to introduce the inhomogeneous profile through the
curvature function E(r), as discussed in [25, 32].

6 This condition is a first attempt to analyse the evolution of the shell in inhomogeneous radiation back-
grounds and can be relaxed in an extended analysis of the present work.
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This metric can be recovered from the expression (2.7) when E(r) = −1
2kr

2, R(t, r) = a(t)r

and ǫ(t, r) = ǫ(t). In this case we have that p′ = 0, and hence A(t, r) = 0 and eB(t,r) =
R′2(t, r)/(1 + 2E(r)) = a2(t)/(1 − kr2). Eqs. (2.38)-(2.41), which determine the evolution of
the FLRW geometry, are simplified to the following:

ȧ2 =
2M

ar3
+

a2Λ+

3
− k , (3.2)

Ṁ = −ȧa2r3
p

2
, (3.3)

ǫ̇ = −3(ǫ+ p)
ȧ

a
, (3.4)

along with the equations of state p = 0 (dust) or p = ǫ/3 (radiation). In the case of a
dust background, we also have Ṁ(t, r) ≡ 0. Equations (2.32) and (2.35), which respectively
determine the evolution of the radial coordinate and the energy density of the bubble, become

dx

dt
=

−(1− kx2)ȧ+
√

(x2a2V 2 − 1)(1− kx2)(a2V 2 − ȧ2 − k)

xa(a2V 2 − k)
, (3.5)

dσ

dt
= −2(σ +Π)

ȧ

a
+ γ+

dx

dt

a(ǫ+ p)√
1− kx2

1
√

1− a2

1−kx2

(

dx
dt

)2
, (3.6)

with

V 2 =
Λ−

3
+

[

σ

4
+

1

σ

(

Λ+ − Λ−

3
+

2M

a3x3

)]2

. (3.7)

We shall compare next the evolution of x(t) and σ(t) in figures 1 and 2 for different
homogeneous cases, and for times such that Λ+ does not dominate the evolution. The curves
in figure 1 show that the evolution of the radial coordinate of the bubble in the radiation
background is slower than that in the corresponding dust case. In other words, for all the
examples considered with the same initial conditions, the radiation background slows down
the evolution of the shell. The plots also indicate that the value w = 0 yields a slower
evolution than the case with w = 1/3. This feature can be understood as a consequence of
the pressure generated by the matter content of the bubble. Note however that the evolution
is qualitatively the same in both cases.

Noticeable differences exist between evolutions with different values of the parameter
Λ+: whereas the radial coordinate of the shell indefinitely grows if Λ− < Λ+, it eventually
decreases in those cases for which Λ+ < Λ− until reaching the lower limit imposed by the
constraint (2.33), that is x > 1/(aV ). Those cases with Λ− < Λ+, and for times large enough
such that the matter density of the background is diluted, evolve asymptotically to that of de
Sitter, which can be obtained in a closed form [23, 25] and constitute a test for our numerical
computation. The corresponding evolution of the energy density of the thin-shell is shown
in figure 2. In both w = 0 and w = 1/3 cases, σ(t) displays lower values for the evolution
in the radiation background, in agreement with the above-mentioned differences found in the
evolution of the radial coordinate x(t).

4 Evolution of vacuum bubbles in inhomogeneous backgrounds

With the aim of analysing the effects of inhomogeneous distribution of the outer matter on
the evolution of the shell, we will focus in this section on the evolution of vacuum bubbles

– 9 –



 14

 16

 18

 20

 22

 24

 0  10  20  30  40  50  60  70  80

x(
t)

t

ω=0

dust (FLRW)

rad (FLRW)

Λ+=0
Λ+=Λ−/2

Λ+=Λ−
Λ+=2Λ−

 14

 16

 18

 20

 22

 24

 0  10  20  30  40  50  60  70  80

x(
t)

t

ω=1/3

dust (FLRW)

rad (FLRW)

Λ+=0
Λ+=Λ−/2

Λ+=Λ−
Λ+=2Λ−

Figure 1. Evolution of the external radial coordinate of the bubble for different values of the pa-
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 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 10  20  30  40  50  60  70  80

σ(
τ)

t

ω= 0

dust (FLRW)

rad (FLRW)

Λ+=0
Λ+=Λ−/2

Λ+=Λ−
Λ+=2Λ−

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 10  20  30  40  50  60  70  80

σ(
τ)

t

ω= 1/3

dust (FLRW)

rad (FLRW)

Λ+=0
Λ+=Λ−/2

Λ+=Λ−
Λ+=2Λ−

Figure 2. Evolution of the energy density of the thin-shell with w = 0 (left) and w = 1/3 (right).
For all values of Λ+, the evolution in radiation backgrounds reaches lower energy densities than the
corresponding dust cases.

embedded in backgrounds characterised by inhomogeneous dust or radiation distributions.
The evolution of vacuum bubbles in inhomogeneous pressureless backgrounds, described by
the spherically-symmetric LTB solution, has been previously studied in [25–27]. We start
by presenting these cases, but using different initial conditions and inhomogeneous profiles.
Afterwards we will study the evolution of vacuum bubbles in inhomogeneous radiation back-
grounds, described by Lemaître’s solution. This problem has not been previously studied and
represents the most important contribution of the present work.

4.1 Inhomogeneous dust backgrounds described by LTB geometry

An inhomogeneous spherically-symmetric dust background is described by the LTB metric
with line element

ds2 = dt2 − R′2(t, r)

1 + 2E(r)
dr2 −R2(t, r)dΩ2 , (4.1)
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which is a special case of Eq. (2.7) with p(t, r) ≡ 0. The equations that determine the
evolution of the outer geometry then become

Ṙ2 =
2M

R
+

Λ+

3
R2 + 2E(r) , (4.2)

ǫ̇ = −ǫ

(

Ṙ′

R′
+ 2

Ṙ

R

)

, (4.3)

and M is a function of r only. The radial coordinate and the energy density of the bubble
evolve following

dx

dt
=

−(1 + 2E)Ṙ +
√

(R2V 2 − 1)(1 + 2E)(2E − Ṙ2 +R2V 2)

R′(2E +R2V 2)
, (4.4)

dσ

dt
= −2(σ +Π)Ṙ

R
+ γ+

dx

dt

R′

√
1 + 2E

(ǫ+ p)
√

1− R′2

(1+2E)

(

dx
dt

)2
, (4.5)

with

V 2 =
Λ−

3
+

[

σ

4
+

1

σ

(

Λ+ − Λ−

3
+

2M

R3

)]2

. (4.6)

The evolution of the external radial coordinate of the bubble in an inhomogeneous
dust background, considering w = 0, 1/3 and different values of the parameter Λ+, is shown
in figure 3. In order to analyse the effects produced by the outer inhomogeneities on the
evolution of the bubble, we compare the curves with those obtained for homogeneous dust
backgrounds with initial homogeneous density equal to the asymptotic value ǫ0. We can
observe that the growth of the radial coordinate in inhomogeneous backgrounds is slower than
the corresponding homogeneous evolutions when the bubble is initially located in a sub-density
region. Although the expansion of the background will dilute the inhomogeneous external
region, and then the radial coordinate will eventually follow an homogeneous evolution, it is
important to highlight that inhomogeneous profiles yield evolutions that are quantitatively
different of those in the homogeneous case.

4.2 Inhomogeneous radiation backgrounds described by Lemâítre’s geometry

We have studied in the previous sections possible effects on the evolution of vacuum bubbles
due to (i) the pressure of homogeneous radiation backgrounds (Sect. 3), and (ii) the nucleation
of bubbles in sub-density regions of inhomogeneous dust environments (Sect. 4.1). Motivated
by these analysis, we will focus in this section on exploring the problem which combines both
effects, that is, the evolution of vacuum bubbles in inhomogeneous radiation backgrounds. The
external geometry is described in this case by Lemaître’s solution, while the radial coordinate
and the energy density of the bubble obey Eqs. (2.32) and (2.35).

Figures 4 and 5 show the growth of the external radial coordinate of the bubble con-
sidering w = 0 and w = 1/3. In figure 4 each curve is compared with the evolution in the
corresponding homogeneous radiation background, while in figure 5 the evolution in LTB and
Lemaître’s backgrounds are shown together. The curves in Fig. 4 show that the bubble grows
slower in the inhomogeneous radiation case (when compared to the case with homogeneous
radiation), while those in Fig. 5 show that the evolution of the bubble is slower in the case of
inhomogeneous radiation (compared to that of inhomogeneous dust). In both figures, the only
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Figure 3. Evolution of the radial coordinate of the bubble immersed in an inhomogeneous background
described by the LTB solution. We choose for our examples r0 = 20, s0 = 5 and δǫ = 0.5 (δǫ = 0 in the
homogeneous case). The curves are compared with those obtained for homogeneous dust backgrounds
with density initially equal to ǫ0.
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Figure 4. Evolution of the radius of the bubble in the case of inhomogeneous radiation backgrounds
described by the Lemaître’s solution. We choose for our examples r0 = 20, s0 = 5 and δǫ = 0.5 (δǫ = 0
in the homogeneous case). The FLRW curves represent the evolution in homogeneous radiation
backgrounds with density initially equal to ǫ0.

exception is the case Λ+ = 2Λ−, due to the more rapid dilution of the background density
for radiation.

The dependence with the parameter Λ+ can be also analysed by considering the evolution
of the proper radius of the bubble, as displayed in figure 6. We observe that the evolution
of the bubble is noticeably affected by the background in the following aspects: (i) in those
cases in which the bubble is in a radiation ambient, the growth of the proper radius is slower
than in the corresponding dust case, and (ii) the evolution depends on the radial distribution
of the outer radiation, as well as on the value of the outer cosmological constant.

5 General Discussion

We presented a study of the evolution of vacuum bubbles in backgrounds with inhomogeneous
dust or radiation matter content, and compared it with the corresponding homogeneous
cases. This analysis is important in the context of inflationary models, as a first step in the
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description of the growth of vacuum regions in the presence of inhomogeneities generated
during a pre-inflationary era, and the influence of these in such a growth.

We have developed a numerical code to compute the evolution of vacuum bubbles using
the thin-shell formalism. The problem involves the integration of a system of partial differ-
ential equations to determine the evolution of the radial coordinate and the energy density of
the bubble, together with the evolution of the geometry of the background. This geometry is
described by the FLRW metric in homogeneous cases, and the LTB and Lemaître’s metrics
for inhomogeneous dust and radiation cases, respectively. Our code reproduces those results
for cases with dust backgrounds previously obtained by other authors [25, 26], and also gen-
eralises the problem to those evolutions in radiation backgrounds (with both homogeneous
and inhomogeneous distributions).

We have computed the evolution for different values of the parameters Λ+ and w, which
characterise the external geometry and the matter content of the bubble, respectively. The
comparison between cases with homogeneous backgrounds of dust or radiation, described by
the FLRW metric, shows that the radiation content in the external region slows down the
evolution of the bubble, as long as it is not governed by Λ+. The analysis of the inhomogeneous
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cases shows that the evolution is initially delayed, when compared with the corresponding
homogeneous cases, if the bubble nucleates in a sub-density region. Regarding to the matter
content of the bubble, although evolutions for the values w = 0 and w = 1/3 are qualitatively
similar, a bubble with a radiation content expands faster than a bubble with a dust content.
Notice also that the evolution is monotonic only in the case Λ+ = 2Λ− in the presence of
radiation.

It is important to emphasise that x(t) represents the radial external coordinate of the
bubble and indicates the growth of the bubble with respect to the non-comoving expanding
background, so the slowing down of x(t) must not be interpreted as a collapse scenario. The
evolution of the proper radius of the bubble (shown in figure 6) is affected by the background
features in the following aspects: (i) the growth of the proper radius is slower in a radiation
ambient than in the corresponding dust case, and (ii) the evolution depends on the both the
radial distribution of the outer radiation and the value of the outer cosmological constant.

There are several possibilities for extensions of our work. Among them we shall mention
three. First, the setting used here can be applied to the eternal inflation scenario, with
the appropriate initial conditions, namely those that are not contaminated by unrealistic
decaying modes which diverge as t → 0.7 This could be done along the lines of refs. [37, 38].
Second, it would be interesting to develop a more detailed study of the dependence of the
evolution of the bubble with the initial profiles, to assess the issue of genericity of inflation
in inhomogeneous backgrounds. Third, the evolution in different backgrounds may leave
signatures in the inflating region. Since the bubble plays the role of a moving boundary
of this region and, as we have shown, the presence of inhomogeneities outside the bubble
modifies its motion, quantum fields inside the bubble will be indirectly influenced by the
external inhomogeneities. We hope to return to these issues in future publications.

A Lemaître’s geometry

The features present in the evolution of Lemaître’s solution can be qualitatively understood
following the discussion in ref. [39]. Let’s consider the evolution Eq. (2.11), which can be
rewritten as

e−AṘ2 =
2M

R
+

1

3
Λ+R2 − 1 + (1 + 2E)exp

(

−2

∫

dt
p′

(ǫ+ p)

Ṙ

R′

)

. (A.1)

The l.h.s. is associated to the expansion rate of the external space-time. In regions in which
the initial profiles are such that the pressure gradient is large, the exponential will decrease
and the expansion rate of shells with r = constant will be reduced. Relative to these, shells
with larger values of r will expand faster, leading to a drop in the gradient of p, and eventually
to a change of sign in p′. Negative values of p′ cause the increment of the expansion rate,
hence leading to acoustic oscillations, which were previously analysed in ref. [39], and are
noticeable in figure 7. If the oscillations grow enough to change the sign of Ṙ, then a collapse
of the geometry could take place at different radial coordinates.

Unlike the LTB solution, the inhomogeneous regions are not confined to a fixed initial
radial coordinate. This behaviour of the evolution of the geometry is a direct consequence
of the not-zero pressure gradient which characterises Lemaître’s solution (note that in the
particular case with p′ = 0, the metric functions in Eqs. (2.7) reduce to the form A(t, r) = 0

and eB(t,r) = R′(t,r)
(1+2E(r)) , that is, the LTB limit is recovered).

7We thank an anonymous referee for this remark.
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Figure 7. Evolution of the functions which characterise Lemaître’s geometry, namely the density,
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