
Softw Syst Model
DOI 10.1007/s10270-017-0586-9

REGULAR PAPER

DataMock: An Agile Approach for Building Data Models from
User Interface Mockups

José Matías Rivero1,2 · Julián Grigera1 · Damiano Distante3 ·
Francisco Montero4 · Gustavo Rossi1,2

Received: 13 December 2015 / Revised: 17 January 2017 / Accepted: 20 January 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract In modern software development, much time is
devoted and much attention is paid to the activity of data
modeling and the translation of data models into databases.
This has motivated the proposal of different approaches
and tools to support this activity, such as semiautomatic
approaches that generate data models from requirements
artifacts using text analysis and sets of heuristics, among
other techniques. However, these approaches still suffer
from important limitations, including the lack of support
for requirements traceability, the poor support for detect-
ing and solving conflicts in domain-specific requirements,
and the considerable effort required for manually checking
the generated models. This paper introduces DataMock, an
Agile approach that enables the iterative building of data
models from requirements specifications, while supporting
traceability and allowing inconsistencies detection in data
requirements and specifications. The paper also describes

Communicated by Dr. Benoit Baudry.

B Damiano Distante
damiano.distante@unitelma.it

José Matías Rivero
mrivero@lifia.info.unlp.edu.ar

Julián Grigera
julian.grigera@lifia.info.unlp.edu.ar

Francisco Montero
fmontero@dsi.uclm.es

Gustavo Rossi
gustavo@lifia.info.unlp.edu.ar

1 LIFIA, Facultad de Informática, Universidad de La Plata,
La Plata, Argentina

2 Conicet, La Plata, Argentina

3 Unitelma Sapienza University, Rome, Italy

4 Universidad de Castilla-La Mancha, Albacete, Spain

how the approach effectively allows improving traceabil-
ity and reducing errors and effort to build data models in
comparison with traditional, state-of-the-art, data modeling
approaches.

Keywords Data modeling · Agile methods · Mockups ·
Annotations · Requirements engineering · Requirements
traceability · Model-driven development

1 Introduction

Data modeling, i.e., the process of defining and analyz-
ing data requirements and creating data models that satisfy
them, is an essential and unavoidable task in the develop-
ment of software systems [1]. This activity is critical when
developing all kind of interactive software, e.g., Web and
mobile applications, which have sophisticated User Inter-
face behaviors and where the presented content is retrieved
from databases or services reflecting the underlying domain
model. Even in applications not involving very complex or
huge amounts of data, the modeling process implies the
understanding of aspects related to the representation of
data in an appropriate way (e.g., through an UML class
model).

Building correct data/class models is not easy, as it
involves complex and critical activities such as: (i) collecting
correct and complete data requirements from stakeholders,
(ii) understanding the details of the application’s underly-
ing domain, (iii) properly analyzing requirements to define
data models, and (iv) mastering the formalism chosen
to define data models. To make things worse, stakehold-
ers usually express requirements using a business-related
jargon, often unknown to developers or analysts before-
hand.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0586-9&domain=pdf

J. M. Rivero et al.

While stakeholders, particularly end-users, closely par-
ticipate in the requirements gathering stage, analysts usually
end up with semistructured text-based requirements spec-
ifications, like UML Use Cases or User Stories. Such
specifications are then manually or semiautomatically trans-
formed into data models represented using one of the most
adopted formalisms for data modeling, such as Entity-
Relationship diagrams, Relational models, or UML Class
Diagrams [1,2].

Manually building data models from requirements spec-
ifications does not enable requirements traceability. This
means that the relationships between the derived data model
and the requirements from which they originated will not be
kept over time, as the requirements or the generated models
and software artifacts evolve [3,4]. A traceability loss can
lead to incorrect or inconsistent data models, with missing
or unnecessary elements in them.

To help developers through the data modeling process,
different techniques and supporting tools have been pro-
posed in the literature for generating data models from
requirements specification provided in the form of free or
structured text and expressed in natural language [5–7].
However, these techniques have some limitations like, for
instance, difficulty in preserving traceability between those
specification, limitations due to the lack of rigid struc-
ture in free text or to low understandability for end-users
of formal structures. The lack of support for require-
ments traceability and conflicts detection usually requires
a high effort for manually checking the generated models
[7–9].

To overcome the aforementioned limitations of state-of-
the-art data modeling techniques, we propose DataMock, an
Agile approach for generating data models from require-
ments specification that supports requirements traceability
and data model inconsistencies detection and resolution.

With DataMock, data models are derived from data
requirements with an iterative process that transforms data
requirements specified in the form of User Interface mock-
ups (UI mockups) and mockup annotations into data models
represented in the form of UML Class Diagrams [10]. Tool
support is provided for the different steps of the process and
data models are generated in a semiautomatic way thanks to
the use of model-driven engineering techniques.

Mockups are low-fidelity graphical prototypes commonly
used, particularly in Agile software development method-
ologies, as a “quick and dirty” way of gathering and
specifying requirements for a software to be developed
[11–13]. They can be used to specify different types of
requirements, including those related to the appearance
(User Interface layout, presentation and interaction wid-
gets), the behavior (user interaction, workflows, business
rules, etc.), and the data (domain model, content naviga-
tion structure, etc.) of a software product from an end-user

perspective [14]. One of the features that motivate the adop-
tion of mockups in the software development process is the
clear understandability of their concepts, for both devel-
opers and end-users, which makes them a natural shared
language and a mean to overcome the business jargon
problem [15]. This is made possible by the use of visual
metaphors (e.g., windows, buttons, links, text boxes, pop-
ups) that are familiar to end-users, and at the same time
clearly understandable by developers, along with their tech-
nical implications. In addition, recently conducted empirical
studies support the presumption that mockups improve the
software development process in general [11,16], espe-
cially when used as a foundation for application modeling
[17]. Moreover, mockups are the most used requirements
artifact in Agile methodologies [11], which are in turn
the most adopted in the industry, according to recent sur-
veys.1

DataMock represents a novel approach to data modeling
in which the datamodel is built iteratively by deriving atomic
data elements frommockups, thus providing an explicit trace-
ability and validation against them. In addition, this iterative,
mockup-binding modeling approach also allows detecting
errors in data requirements specifications. The approach
described in this paper is not a fully fledged Model-Driven
Engineering approach, but it introduces a Domain-Specific
Language based on formal annotations and a set of UI wid-
gets to assist developers in the task of building data models in
a faster and less error-prone way. However, since it allows to
generate datamodels in industrywell-known interchange for-
mats, the approach can be integrated to other Model-Driven
approaches.

The rest of the paper is organized as follows. Section 2
provides the background and discusses some works related
to ours. Section 3 presents our approach for data modeling
in depth, providing details about its theoretical, procedu-
ral, and technical aspects. Section 4 describes a controlled
experiment conducted to prove the applicability and feasi-
bility of the approach and to assess its added value. Finally,
Sect. 5 concludes the paper and introduces future works we
are pursuing.

2 Background and Related Work

Data modeling is a fundamental part of the process to
develop an information system [1]. Classic, full code-centric
methodologies generally rely on data models. Scaffolding
(or so-called Rapid Application Development) approaches
that allow to automatically generate part of the applica-
tion code, such as Ruby-On-Rails3 and Grails4, also require

1 The 9th Annual State of AgileTM Survey. http://www.versionone.
com/pdf/2013-state-of-agile-survey.pdf.

123

http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf

DataMock: An Agile Approach for Building Data Models from User Interface Mockups

data specifications as an input (e.g., through commands or
annotations). This is also a requirement in more model-
based approaches like the ones presented in [18,19]. Even
methodologies that specify applications at a high abstrac-
tion level like Model-Driven Web Engineering (MDWE)
methodologies—such as Interaction Flow Modeling Lan-
guage (IFML) [20] and UML-Based Web Engineering
(UWE) [21], heavily rely on data models as a founda-
tional part of their modeling processes. In particular, MDWE
methodologies, although effective, require creating data
models at the beginning, in order to specify other artifacts
that rely on them, such as the navigation and presen-
tation models of the Web application. Finally, all these
approaches (ranging from code-centric to full model-driven
solutions) generally require the manual translation of free
or semistructured textual requirements into code or data
model representations and do not provide ways of main-
taining traceability between requirements and data model
concepts. In addition, they do not provide automatic ways to
detect data requirements inconsistencies. Software require-
ments elicitation and modeling are key activities in software
development, but requirements-related errors are yet a chal-
lenge [22].

Generating conceptual models from structured form-like
User Interface specifications has been already proposed by
Ramdoyal et al. [23]. In this work, simple interface widgets
allow users to express concepts without considering poten-
tially irrelevant User Interface aspects like detailed layout
and presentation or interaction details. The set of possible
widgets allowed in this approach are only the most com-
monly used in forms (like input boxes, buttons, tables). Each
widget is mapped to an Entity-Relationship (E-R) concept,
and heuristics are used along the drawing process to help
generating detailed data models from them. However, since
this approach can only be used on form-centered User Inter-
faces, it cannot be applied in the context of modern User
Interfaces (e.g., those that implement Rich Internet Applica-
tions behavior, responsive design, etc.). The ICONIXprocess
[24] proposes to start with graphical User Interface (GUI)
prototypes as a first requirements artifact. These prototypes
are used to gather behavioral requirements and, at the same
time, to build a first version of a domain model which con-
tains unambiguous concepts that should be clear for both
developers and stakeholders. However, no specific tooling or
guidance is provided for generating such models from the
GUI prototypes.

Following the same ideas of our approach, in [25] data
model specifications are integratedwith an existing andwell-
known requirements artifact: UML Use Cases [26]. In this
work, formal flows of information exchanged between the
actors and the system in each use case are used to specify
data concepts. Since stakeholders participate in the specifi-
cation of the use cases, in the context of this approach they

transitively participate in the construction of the data model.
However, the approach requires fulfilling a specific syntax
that can be very difficult to understand to end-users or other
stakeholders.

Data models generation from requirements specification
using Natural Language Processing is also an extensively
studied field. In [6] a stepwise conceptual model generation
fromnatural language requirements sentences is proposed. In
thiswork, some of themost important approaches in that field
are also referenced. A similar approach that uses the Seman-
tics of Business Vocabulary and Business Rules (SBVR)
OMG standard [27] as an intermediate model is commented
in [28]. More complex approaches that combine words, sen-
tences, and semantic tagging are also described in [5]. While
this kind of approaches provides a semiautomatic way of
generating conceptual model elements, the generatedmodels
have to be manually refined to obtain their definitive version.
Moreover, since they rely on natural language, which usually
contains business or even end-user jargon, entities in the final
model can contain wrong names or can even be not valuable
at all. Requirements traceability, an issue that is considered
by our approach, is also a much investigated field. An exten-
sive theoretical, practical, and technological survey can be
found in [29].

Data model consistency is also an actively investigated
topic [30,31]. According to [31], there exists five types
of model consistency: inter-model (consistency between
models of different levels of abstraction), intra-model (con-
sistency between models of the same level of abstraction),
evolutionary (consistency between different versions of the
same model), semantic and syntactic (consistency is vali-
dated against semantic and syntactic specifications defined in
UML metamodels). However, existing solutions in this field
are based on structural model analysis and require domain-
based constraints (usually expressed through additionalmod-
els of a different type) in order to detect domain-related
inconsistencies. A detailed analysis and comparison chart
of these solutions can be found in [31]. The modeling strat-
egy proposed in our approach belongs to the intra-model set
but does not require defining additional and different models
for consistency checking. As it will be commented later in
the paper, the set of data specifications defined with Data-
Mock has in fact a level of redundancy that allows to check
consistency between them.

On the other side, User-Centered Design (UCD) methods
provide several improvements in the development process, in
particular in the context ofAgilemethodologies [11]. Among
the different human–computer interaction (HCI) techniques
used in UCD, User Interface prototypes (mockups) are the
most used [11,32,33]. UI prototyping in the software devel-
opment process is itself a topic that has been studied in detail.
In particular, annotating User Interface prototypes has been
already described by Constantine et al. [34]. Advantages of

123

J. M. Rivero et al.

using User Interface prototypes in the context of well-known
Agile processes have been also reported [12,13,35]. Partici-
patoryDesign is a design approach of theUCDprocesswhere
all stakeholders are actively involved in the design processes.
Traditional design processes commonly involve clients and
consultants; in Participatory Design, end-users are also rec-
ognized as stakeholders and are brought into the process as
well. Participatory Design and prototyping approaches have
proven to be valuable to the development of software [36].
The enrichment strategy through annotations that is further
described in this paper can be applied to a variety of require-
ments artifacts. However, because of the popularity gained by
mockups during the last years, the approach makes a founda-
tional use of mockups, thus inheriting all the aforementioned
advances already reported in the literature and in industrial
surveys.

Conceptual modeling techniques and patterns have been
proposed in the literature to help developers and analysts in
applying good practices, and well-proven elegant data mod-
eling solutions when building conceptual models [37]. Some
of these approaches use type dependencies combined with
rules to derive classes and relationships [38]. Conceptual
Modeling Patterns undoubtedly help analysts and developers
to build better data models applying classic and success-
ful modeling solutions for common and repetitive modeling
problems. Thus, they can help to reduce or early detect data
requirements inconsistencies in comparison with working
with no pattern guidance. However, the applicability of these
patterns has to be identified manually by developers or ana-
lysts from stakeholders’ requirements descriptions and they
do not solve the traceability issues mentioned earlier in the
paper. Mockup-Driven Development (MockupDD) [17], an
approach from which DataMock was defined, already intro-
duced the idea of using and formalizing mockups in order
to model and generate software artifacts, working also as a
requirements engineering approach [39]. However, Mock-
upDD is a general approach, meant to model a variety
of aspects of applications like navigation, object persis-
tence, business rules, detailed queries. While data modeling
was also conceived in that approach, it was very limited:
Basic aspects like association cardinalities, inheritance, and
detailed data types were not included in the language. Thus,
data models that can be generated in that approach were very
limited. Additionally, no conflict detection and data model
generation were provided by the tooling. Data model gen-
eration and downloading were not provided either. Finally,
the controlled experiment included in that work was general
and not focused on the advantages of using mockups for data
modeling. This work in which the approach and tooling was
focused on data modeling intends to solve all these weak
points.

More close to implementation there exist several APIs that
allow specifying datamodeling concepts directly in the code,

using annotation capabilities of modern languages like Java
and C#. Two different examples are Java Persistence API
(JPA)2 and those included in the Entity Framework (.NET).3

While these annotation-based approaches can look similar to
the one used in DataMock, there are core differences:

1. They are language based and not technology indepen-
dent;

2. They are focused on mapping existing object-oriented
code to relational databases, generating the DB schema
automatically too;

3. They require having an existing model written in an
object-oriented language to start defining such relational
database-oriented mapping;

4. Underlying artifacts over which these annotations are
applied (code) are not understandable by common stake-
holders;

5. Annotations, inmost cases, are limited to an atomic spec-
ification in the sense that they map a concrete OO model
element (class, accessor, property, etc.) to a concrete
database element. DataMock, instead, allows to specify
several data model elements in a single annotation.

In addition to the aforementioned, software designers are
faced with challenges due to ever-increasing complexity
and market pressures [40]. The ability to efficiently explore
design alternatives and to detect design errors as early as pos-
sible in the design process is critical to creating high-quality
products within short development timeframes.

In DataMock, the data modeling task is accomplished
by annotating features required for the application and
considered important by its end-users over UI mockups,
iteratively. To be consistent with the terms used in our previ-
ous work, such annotations will be called tags throughout
the rest of the paper. The iterative process allows man-
aging the complexity of requirements elicitation activity,
while the tagging of the requested features directly over con-
crete requirements artifacts (i.e., mockups) allows preserving
requirements traceability [41].Aswewill describe later in the
paper, this iterative modeling approach also allows automat-
ically detecting requirement conflicts and inconsistencies.

The main advantages of our DataMock data modeling
approach can be summarized as follows:

1. It provides pre- and post-requirements specification data
requirements traceability [4] by explicitly linking User
Interface concepts to data specifications.

2 TopLink JPA Annotation Reference—http://www.oracle.com/tech
network/middleware/ias/toplink-jpa-annotations-096251.html.
3 Code First Data Annotations—https://msdn.microsoft.com/en-us/
data/jj591583.aspx.

123

http://www.oracle.com/technetwork/middleware/ias/toplink-jpa-annotations-096251.html
http://www.oracle.com/technetwork/middleware/ias/toplink-jpa-annotations-096251.html
https://msdn.microsoft.com/en-us/data/jj591583.aspx
https://msdn.microsoft.com/en-us/data/jj591583.aspx

DataMock: An Agile Approach for Building Data Models from User Interface Mockups

Table 1 Feature summary of the different data modeling and data model generation approaches commented in this section

Tool/Method Modeling strategy Requirements
artifacts
supported

Traceability features Requirements
conflict detection

Manual modeling with E-R
diagrams, Relational
models, OO/UML
Diagrams, using traditional
requirements artifacts (e.g.,
Use Cases, User Stories,
Mockups)

Manual (model built by
hand)

Any Manual Manual

Natural Language Processing Derived, by processing
textual requirements
artifacts

Text Weak—models usually
require adjustments which
imply unavoidable
traceability losses

Possible

Processing—e.g.,
Ramdoyal et al.

Derived, by processing
structured UI definitions

Structured UI Manual Possible

Modeling over other
artifacts (UML)—e.g.,
Kulak et al.

Manual, using UML
Class Diagrams
formalism

UML Class
Diagrams

Strong—semantics are
enough to avoid
implementing changes in
data models manually

Manual

DataMock Derived, from tagged UI
mockups

Mockups/structured
Mockups

Strong—semantics are
enough to avoid implement-
ing changes in data models
manually

Automatic

2. It improves data modeling productivity by using a
Domain-Specific Language (DSL), based on simple and
atomic data specifications, to iteratively construct data
models.

3. It reducesmodeling errors by checking that eachmodeled
concept maps to concrete functional parts of the applica-
tion, earlier defined through UI mockups.

4. It inherits all well-proven advantages of using mockups
in the development process [16,17].

A summary of the characteristics of data modeling
approaches commented in this section compared with Data-
Mock is reported in Table 1.

3 The DataMock Approach: From User Interface
Mockups to Data Models

In this section, we describe the DataMock approach in detail.
First, we introduce its process and general steps. Then, we
comment the tags’ syntax and application, which is the core
of the approach. After introducing such features, we describe
how these tags are processed in order to, for instance, gener-
ate Class Diagrams and help detecting errors in requirements
specifications. Finally, we describe the tool support devel-
oped for the approach.

Figure 1 provides an overview of the DataMock approach.
In particular, the figure represents the different steps of the

datamodeling process, the involved actors, the produced data
specification and data modeling artifacts, and the provided
tool support.

An iteration of the process starts by defining a set of User
Stories [42] and one or more mockups associated to them
(Steps 1 and 2). A User Story is a textual requirement artifact
following the form As a <role>, I want to <goal/desire>
so that <benefit>, being the <benefit> part optional. User
Stories must be independent (i.e., self-contained), negotiable
(rewritable), valuable (i.e., itmust deliver value to end-users),
estimable (i.e., it must have a predictable size), scalable (i.e.,
it must be small sized so that it can be tackled with some
estimated effort), and testable (i.e., it must provide for being
tested after it has been developed).

After all User Stories have been written, developers, with
essential help of end-users, apply tags over the mockups
associated to every User Story with the data specifications
that express the data elements represented on each mockup
(Step 3). After each tagging session, developers can gener-
ate a new version of the data models (expressed as UML
Class Diagrams) of the application being designed in order
to check and validate the defined specifications (Step 4). Any
refinement required over the data specifications can be done
directly over the taggedmockups, since the tagging language
(described later in this section) covers the essential modeling
aspects.

Tool support is provided for all the steps of the DataMock
process as a combination of existing tools and a set of cus-

123

J. M. Rivero et al.

Users

Developers

Users

Developers /
Designers

Users

Developers

Developers

A
ct

or
s

To
ol

s Mockups
tools

Mockups tools

Interactive Tagging
Tool (ITT) - tagging

Model
Generator (MG)

Mockup Processing
Engine (MPE)

Mockups
Building

Mockups
Annotation

Mockups
refinement

UML Class
Diagrams

Mockups and
Annotations
Processing

User Stories

St
ep

s

Step 1 Step 2 Step 3 Step 4

Annotations
refinement

Concretizing
informal aspects
of mockups using

MPE

A
rt

ifa
ct

s

Mockups
(Bitmaps/Sketches)

Mockups
(Digital)

Mockups
(HTML)

Annotated
Mockups

(without SUI)

Annotated
Mockups
(with SUI)

Generating
Data Models

through
MG

UML Class
Diagrams

Relevant widget
detection using

ITT

Interactive
Tagging Tool
(ITT) - importing

Steps done automatically using tooling

Steps done manually

Fig. 1 DataMock iterative data modeling process with actors, tools, and artifacts

tom tools that we developed for the purpose. User Stories
(Step 1) can be defined in the form of free text using any
text editor. Mockups can be built from User Stories (Step
2) using common digital tools, such as Balsamiq4 or Pen-
cil5—thus creating what we call tool-based mockups. Also,
HTML mockups built with common WYSIWYG tools or
even mockups in the form of digitalized images (what we
call bitmap mockups in this paper) can be used. Tags can be
added to mockups (Step 3) using the tagging features pro-
vided by these tools or via our InteractiveTaggingTool (ITT),
which allows importing and interactively taggingmockups. If
tool-basedmockups are used, ourMockupProcessingEngine
(MPE) tool can be used to concretize some of the informal
aspects of mockups (e.g., lack of UI structure) to improve

4 Balsamiq Mockups. http://balsamiqmockups.com.
5 Pencil Project. http://pencil.evolus.vn.

the generation of data models from them. Finally, the pro-
cessing of mockups to generate data models in the form of
UML Class Diagrams (Step 4) can be accomplished using
our Model Generator (MG) tool.

3.1 Steps 1 and 2: User Stories Definition and Mockup
Building

Since User Stories are mere textual artifacts, they can be
defined in any digital or physical way. Once defined, at least
one mockup must be associated to every story. Currently,
the use of digital tools like Balsamiq or Pencil is a grow-
ing trend for building UI mockups. DataMock supports the
use of such tools as well as mockups in the form of HTML
prototypes, or even digitalized versions of mockups drawn
by hand (bitmap mockups). HTML mockups can be reused
in DataMock via an interactive tool (described later in the

123

http://balsamiqmockups.com
http://pencil.evolus.vn

DataMock: An Agile Approach for Building Data Models from User Interface Mockups

paper) that allows filtering and selecting the parts of the
HTML source code that are relevant from the data mod-
eling point of view. Bitmap mockups can be reused just
importing them in a digital mockuping tool and placing
tags using the annotation features already present in such
kind of tooling. When using tools like Balsamiq or Pen-
cil with their native widget set or when HTML mockups
are manually enhanced filtering the relevant UI components,
an initial widget model can be generated from them that
results useful in further steps in the approach, as we will
describe later. The motivation behind the flexibility for using
different kind of mockups is to provide the most extensive
support as possible regarding the UI prototyping technol-
ogy to which both developers and end-users feel comfortable
with.

One identified problem when trying to reuse mockups
as specification artifacts is their lack in details inherent to
the UI structure [43]. If bitmap mockups are used, no struc-
ture is defined at all. When using tool-based mockups, their
internal structure is usually stored as a set of styled rectan-
gles, with no further UI information like containment among
widgets, layout [43]. This ismeant to be thisway sincemock-
ups were conceived as quick-to-build requirements artifacts
and not as software specifications; thus, their structure is
kept as simple as possible to accomplish their objective of
communicating and persisting requirements. On the other
hand, HTML prototypes are too detailed since their struc-
ture is inherently complex and they have plenty of elements
(their internal DOM) that are not necessarily related to data
requirements specifications. Having a well-defined UI struc-
ture where the important elements (from the data modeling
point of view) are detailed and highlighted can help to detect
and build datamodels from interface prototypes, as described
in [23].

For the purpose of formalizing the UI structure inde-
pendently of the type of mockup used, we generate an
instance of a Structural User Interface (SUI) model that is
mapped over the mockups. The SUI model is a User Inter-
face Description Language (UIDL) proposed in [14], i.e.,
a formal language that allows to describe the structure and
composition of a User Interface with a specific level of detail
and in a platform-independent way. It is composed by a
set of simple and composite widgets and provides a basic
structure to UIs represented using mockups, i.e., it com-
plements mockups with information about the structure of
the UI they represent. A graphical representation of the SUI
metamodel can be observed in Fig. 2a, while an example of
a SUI instance associated to an HTML mockup is shown
in Fig. 2b. Although adding a SUI model is not manda-
tory during the modeling tasks (by default every mockup
is converted to a Screen, without any internal component—
see Fig. 2a), having the detailed structure of the UI in the
form of a SUI instance can help to detect modeling errors,

as we will show later. Finally, the introduction of the SUI
over a UI mockup helps to accomplish a detailed traceabil-
ity: every UI component that is important from the data
modeling point of view is highlighted and referenced in
mockups, which are the main requirement artifacts used in
our methodology.

While several User Interface Description Languages
(UIDLs) currently exist (with UsiXML [44] being one of
them), we decided to use our custom UIDL (i.e., SUI) for the
following main reasons: (1) it is meant to describe aspects of
UI mockups that are relevant to data requirements specifica-
tion, (2) itwas designed to be enrichedwith annotations (tags)
and (3) to maintain compatibility with our previous work. On
the other hand, while a detailed comparison between SUI and
other UIDLs is out of the scope of this paper, the SUI struc-
ture is compatible with widget-oriented UIDLs such as the
UsiXML CUI model.

The tooling implemented for DataMock supports all the
three types of mockups mentioned above: bitmaps, tool-
based, and HTML. When bitmap mockups are used, no
SUI can be generated. When using tool-based mockups, a
first version of the SUI can be generated using the pre-
viously introduced MPE, whose technical details can be
found in [43]. Finally, if HTML mockups are used, devel-
opers have to identify which parts of the UI structure are
relevant from the data modeling point of view—which will
form the final SUI. This identification is accomplished inter-
actively using the ITT tool: Through DOM manipulation
of the original HTML mockup, the tool allows to high-
light and select elements that will form the SUI model.
Every time the user selects an element of the mockup,
an instance of the SUI Widget subclass is created and
made persistent. Following this step-by-step strategy, the
SUI model is created iteratively as the user selects rele-
vant elements in the mockup. More technical details of this
approach are provided in Sect. 3.5. The different artifacts and
tools involved in the process are graphically represented in
Fig. 1.

3.2 Step 3: Mockups Annotation

The central task of the DataMockmethod is the annotation of
mockups with data specifications. Annotations can be placed
in any order and over the different types of mockups intro-
duced earlier. As said before, at any point of the iterative data
modeling process annotations can be used to generate the cur-
rent datamodel in the formofUMLClassDiagram.Mockups
are annotatedwith tags [17] that can be formally applied over
specific UI widgets (if a SUI model is defined) or just freely
in the mockup (if no SUI is available, e.g., when bitmap
mockups are used). In the latter case, tags can be placed
graphically over parts of the mockups to preserve traceabil-
ity, but they are not formally associated to SUI widgets. As

123

J. M. Rivero et al.

SimpleWidget CompositeWidget

1..* widgets

Layout
layout

Tagtags *Widget

...Link Button TextBox Panel Repetition... Page

parentWidget

(a)

Panel
TextBox Button

LinkLinkLabelLabelLink

Repetition

Page

(b)

Fig. 2 The SUI metamodel and an example of its application: a Main components of the SUI metamodel, b SUI model mapped over a HTML
mockup of a photo stock Web application

a common practice when prototyping, different copies of the
same mockup are used to represent the dynamic behavior of
a given UI in which somewidgets could appear, disappear, or
move because of the user interaction and the UI changing its
state [43]. These copies are wired using navigation features
provided by mockup tools. Using this practice, DataMock
can also be applied in contexts of applications with dynamic
UIs since a concrete set of widgets will exist for every state,
and tags can be applied over all of them.

However, as the number ofmockups to draw/copy/annotate
increases with the number of UI states to represent, the
method poses some limitations when dealing with applica-
tionswith an extremely dynamic and very complexUI, unless
only a minority of UI states are worthy to be presented (and
thus modeled) to the stakeholders.

Tags are textual descriptions composed by a name and a
set of parameters following the form TagName(param1,
…, paramN). The TagName identifies the type of fea-
ture that is being modeled over the mockup. Each tag type
has its custom set of parameters. Each parameter has its
degree of complexity, varying from a simple text value to an
expression in a custom Domain-Specific Language (DSL).
Since we are making emphasis in data modeling, we will
describe primarily the use of data-related tags, which have

the form Data(<data-expression>). In this case,
instead of including only a class name (as we already intro-
duced in [17]),<data-expression> is an expression in
a customDSL that can describe one ormore datamodel spec-
ifications. The basic constructs of this language are shown in
Table 2.

These basic constructs can be combined to form more
complex data specifications. For instance, the following con-
struct:

Data(Post => Publication.comments

-> *Comment => Annotation)

denotes that a list of Comments is shown or manipulated
in the UI. These Comments are obtained originally from
a Post, traversing a comments association. At the same
time, Post and Comment inherit from Publication and
Annotation classes, respectively. Finally, thecomments
association is not part of the Post class itself, but belongs
to its superclass, Publication. The syntax used in our
Data tags reported in Table 2 can be seen very close to that
of the Object Constraint Language6 (OCL) syntax, specif-

6 OCL—http://www.omg.org/spec/OCL/2.4/.

123

http://www.omg.org/spec/OCL/2.4/

DataMock: An Agile Approach for Building Data Models from User Interface Mockups

Table 2 Basic constructs of the
DataMock’s Data tags

Construct Description

Data([*]Class) Denotes that an object of class Class is shown or
can be manipulated in the UI. If the optional * is used
(e.g., Data(*Post)), it denotes that a list of such
objects are shown or can be manipulated

Data(Class.attribute[:datatype]) Specifies that the attribute of an object of classClass
(called attribute) is shown or can be edited
through an underlying User Interface
widget. Optionally, a data type can be defined for that
attribute (one of Date, String, Integer,
Decimal, Boolean, or Blob). If no datatype is
specified, String is assumed

Data(Class1.association ->
[?][*]Class2)

Denotes that an object of Class2 is shown or can
be manipulated through the underlying element in the
UI. However, this element is obtained navigating from
an association called association from another
element of class Class1. If the * modifier is used,
it implies that a list of Class2 instances is shown
or can be manipulated in the UI and that the asso-
ciation is one-to-many. On the other hand, if the ?
modifier is present, it indicates that the association
is not mandatory—i.e., there may not be any object
referenced by the association

Data(Subclass => Superclass) Denotes that an object of classSubclass is shownor
can be manipulated in the User Interface and that the
class of this object (Subclass) inherits from another
one called Superclass

ically regarding navigation. However, OCL and DataMock
tags have different focuses: while OCL is meant to be used
over existing UML models to specify constraints that can-
not be expressed using just pure UML constructs, DataMock
tags are intended to declare the data model itself using nav-
igations. That implies that navigations in Data tags allows
to include details like minimum and maximum cardinality
and inheritance, features that OCL does not allow to declare.
In fact, OCL is written over an existing data model and does
not to add new elements to that but only constraints to be
fulfilled.

The previous example shows the semantic power of the
DataMock Data tags; in this case, in one tag, seven dif-
ferent data model elements are defined: four classes, two
inheritance relationships, and one association. While it is
true that developers will rarely define such complex tags at
once in a single iteration, it is expected for these to appear
after several iterations, when the development team gains a
clearer vision of the domain objects. Example of a tagged
tool-based mockup is depicted in Fig. 3.

Every tag applied over a mockup represents the poten-
tial addition of one or more data model features. These
features could define completely new data model elements
(for instance, new classes) or features related to exist-
ing ones. Data features in tags are idempotent—i.e., the
application of the same specification several times has no

effect after the interpretation of the first one. Extending the
example of Fig. 3, if a new invoice listing mockup was
tagged with Data(*Invoice)—i.e., a list of Invoices
will be shown in it—no extra class will be created since
the Invoice class has already been specified in another
mockup.

InFig. 4, the automatically generateddatamodel expressed
in the form of a UML Class Diagram and its source tags
are shown. It is important to note that every data specifi-
cation (tag) in DataMock is traceable, since it is explicitly
related to a mockup concept. Since data models are gener-
ated from these tags, it implies that the final data models are
also completely traceable. In the particular case of Fig. 4,
the mockup was created using the Pencil tool and the tags
were placed directly over the mockup using the annotations
features already present in the tool—thus, no SUI model was
defined.

To exemplify how the iterative data model building works
from the operational point of view, assuming that the tags
are processed from top to bottom as placed in Fig. 4, the
following steps are executed:

1. New mockup to be processed is found. An empty UML
Class Model is created.

2. Data(Invoice) tag is found. Invoice class is cre-
ated since it does not exist yet in the model.

123

J. M. Rivero et al.

Fig. 3 A tagged mockup
example

Invoice
number: Integer
date: Date
description: String

Customer
name: String

InvoiceItem
price: Double

items *

customer

Fig. 4 A tagged mockup and the data model generated from it through tags processing

3. Data(Invoice.customer− >Customer.name)

tag is found.Customer class is created, since it does not
exist. name property in Customer class is created since
it does not exist,String data type is assumed by default

since no data type was explicitly specified. Finally, the
customer association from Invoice to Customer
is created, since it does not exist.

123

DataMock: An Agile Approach for Building Data Models from User Interface Mockups

Table 3 Equivalence between
the developer- and
end-user-oriented textual
representation of the metamodel

Developer-Oriented Grammar End-User Oriented Grammar

Data(Invoice) an invoice

Data(*Invoice) a list of invoice

Data(Invoice.number:Decimal an invoice has a number, which is
a decimal value

Data(Invoice.lines ->
*InvoiceLine)

an invoice has a list of invoice
lines associated, called "lines"

Data(Invoice.lines ->
*InvoiceLine.product ->
?StockProduct =>
Product.name)

an invoice has a list of invoice
lines associated, called "lines";
an invoice line has an optional
stock product associated called
"product";
a stock product is a type of
product;
a product has a name;

4. Data(Invoice.number: Integer) tag is found,
number property (with Integer data type) is created
in Invoice class since it does not exist.

5. Data(Invoice.date: Date) tag is found, date
property (with Date data type) is created in Invoice
class since it does not exist.

6. Data(Invoice.description) tag is found,
description property in Invoice class is created
since it does not exist, String data type is assumed by
default since no data type was explicitly specified.

7. Data(Invoice.items− > ∗ InvoiceItem) tag is
found, InvoiceItem class is created, since it does not
exist. items (one-to-many) association from Invoice
to InvoiceItem is created, since it does not exist.

8. Data(InvoiceItem.price: Decimal) tag
is found, price property (with Decimal data type) is
created in InvoiceItem class since it does not exist.

9. Data(InvoiceItem.description) tag is found,
descriptionproperty inInvoiceItem class is cre-
ated since it does not exist,String data type is assumed
by default since no data type was explicitly specified.

Tags introduced so far are clearly modeler-centered, since
they include implicitly technical modeling concepts such
as classes, properties, inheritance, associations. However, in
order to facilitate involving end-users in the modeling pro-
cess, DataMock also provides a more verbose but end-user
friendly way of composing tags using the natural language.
For instance, Data(*Invoice) can be also referred as a
list of invoice, and Data(Invoice.number:
Integer) is equivalent to an invoice has a
number, which is a numerical value. The for-

mer grammar is called Developer-Oriented Grammar (DOG)
and the latter End-user-Oriented Grammar (EOG). Using
EOG, end-users can then understand data tags more clearly,
thus facilitating their involvement in the data modeling pro-
cess. From the technical point of view, this is accomplished
using a metamodel that abstracts tags from this inher-
ently textual representation. A more detailed description
of the equivalences between the two grammars is pro-
vided in Table 3. Currently, the mockup processing tooling
(described later) accepts both languages, allowing develop-
ers to choose which suits better for the modeling task. Since
both textual syntaxes are supported, the tool also allows con-
verting from one form to the other—i.e., one grammar is
fully convertible and traceable to the other. Note that some
implicit rules are used when converting from one gram-
mar to another—for instance, camel-cased class names in
DOG are translated into separate words in EOG and vice
versa.

In addition to the Data tags (which follow the form
Data(<data−expression>), in the DataMock tags
language we also included simple navigation specification
tags. These tags allow specifying additional information that
can be useful to suggest data model refactorings, as we will
show later in the paper. Navigation tags follow the form
Link(<mockup−name>), where <mockup−name> is
the name or id that identifies a mockup unequivocally.

In order to obtain a syntax-independent tag representa-
tion, we defined a tag metamodel, called Spec Metamodel
(SM), as depicted in Fig. 5. The metamodel allows to rep-
resent Class Diagram concepts in simple terms, thus being
semantically enough to generate them. The core class in
the Spec Metamodel is DataSpec. A DataSpec ref-

123

J. M. Rivero et al.

AttributeSpec
attributeName: String
dataType: DataType

DataSpec

 attributeSpec 0..1

AssociationSpec
associationName: String
oneToMany: Boolean
optional: Boolean

DataMockModel

dataSpecs 1..*

DataType
name: String

associationSpec 0..1

nextAssociationSpec 0..1

* inheritanceSpecs

ClassSpec
className: String

rootClass 1

InheritanceSpec
className: String

destinationClassSpec 1

Widget 1 widget
1 dataSpec

dataType 1

1
 dataSpec

Fig. 5 DataMock Spec Metamodel

erences at least a ClassSpec class or class hierarchy
through a rootClass association. A ClassSpec has a
className attribute and a list of InhertianceSpecs
that may define a hierarchy of classes to represent tags like
Data(Class=>Superclass1=>Superclass2). A
DataSpec can also define an attribute and its data type
through AttributeSpec to allow representing tags like
Data(Class=>Superclass1=>Superclass2.

superclassAttribute : String). It may also define
one or more associations through a chained list of
AssociationSpecs, thus allowing to represent tags like
Data(Class=>Superclass.associationName
− >AssociatedClass.attribute : String). An
AssociationSpec has a name (associationName),
a destination ClassSpec, and a minimum and maximum
cardinality (oneToMany and optional attributes).

It is important to note that since SMs are a way of
representing data tags in a syntax-independent way, sev-
eral elements in the SMs can generate a single element
in the resulting Class Diagram. For instance, if several
Data(Invoice)tags are placed in different mockups
related to an application being modeled, several
ClassSpecs with className = “Invoice” will be
used to represent these tags, but only one UML class will be
generated to represent the class Invoice. However, from
the semantic point of view, the following correspondences
can be established between elements in SM and UML Class
Diagram (CD)7 primitives:

7 OMGUnifiedModeling Language (OMGUML), Infrastructure, Ver-
sion 2.4.1. http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF.

– Classes in CD are represented by ClassSpecs in
SM

– Generalizations in CD are represented by
InheritanceSpecs in SM

– Associations in CD are represented by
AssociationSpecs in SM

– Property elements in CDs are represented by
AttributeSpecs in SM

Having the SM syntax-free form of representing tags, con-
verting from EOG to DOG syntax and vice versa is accom-
plished by a parser that converts the original representation to
an instance of the SM and then by a renderer that transforms
the SM instance into the destination representation.

3.3 Step 4: Mockups and Tagging Processing and Data
Model Generation

The data model generation process is detailed in Listing 1.
The first step of the process consists inmerging the individual
data specifications defined by each tag (Listing 1, lines 5 to
10). The process starts by parsing the tags placed onmockups
to create an instance of the SM (Listing 1, lines 7 to 8). After
obtaining such an instance and starting from an empty Class
Diagram, the Model Generator tool iterates over every ele-
ment of the SM instance (Listing 1, lines 11 to 22) and adds
a corresponding data model element in the UML Class Dia-
gram if not defined yet (Listing 1, lines 13 to 15). When any
inconsistency or error in the tags or the merged model being
built is found, an error is registered in the model generation
report and the involved elements are omitted until modelers
decide what to do with them (Listing 1, lines 17 to 20). The

123

http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF

DataMock: An Agile Approach for Building Data Models from User Interface Mockups

output of this process is the model increment for the current
iteration of the process and a list of the errors or warnings
found (if any) during the model generation, as described by
the current data specification tags in the mockups (Listing 1,
line 23).

At this point it is important to note that the DataMock pro-
posal is focused on data requirements and persistence and is
restricted to classes of the data model of an application that
can be visually described by end-users throughmockups.Our
proposal can also be used to model the boundary or control-
related classes of an application too (for instance, classes
denoting operations to be executed or showing a report in the
UI which is a summary of existing information in the sys-
tem), but this possibility is out of the scope of this paper. If a
developer or analyst includes these classes using the provided
annotation set, they will be included in the generated UML
ClassDiagrammodels,which is not strictlywrong, since they
are part of the system as well. However, the future use or role
that will have in the system (persistence, control, information
summarizing, etc.) is out of the scope of this work.

Listing 1. Pseudocode of mockups and tagging processing

1. processMockups(mockups: Mockup[])
2. dataModel <- new Class Diagram
3. errorList <- empty Error list
4. specModel <- new Spec Model
5. for each mockup in mockups
6. for each tag in mockup.tags
7. dataSpecs <- parse tag and obtain DataSpec(s)
8. add dataSpecs to specModel
9. end for
10. end for
11. for each ds in specModel
12. element <- determine data model element from ds
13. if dataModelElement not exists in dataModel
14. add dataModelElement to dataModel
15. else
16. existingElement <- get existing element from model
17. if existingElement <> ds
18. error <- get error description from inconsistent elements
19. add error to errorList
20. end if
21. end if
22. end for
23. return dataModel and errorList
24. end

3.4 Assisted Error Detection

The modeling approach that DataMock proposes is sparser
in the sense that it specifies data models elements using
relatively isolated specs applied in an iterative way. While
this characteristic allows explicitly validating and tracing
data requirements, it can introduce errors that are not com-
mon when building data models in one step. For instance,

DataMock can create duplicated classes due to typos, e.g.,
Invoice versus Inovice. On the other hand, since the
approach allows to tag the same concepts in different mock-
ups (when they appearmore than once), it also allows to unify
definitions and detect possible data modeling conflicts—for
instance, a property represented as a String in one tag
and as an Integer in a different one. In addition to the
basic model inconsistency detection included in Listing 1,
the DataMock tooling implementation includes a set of rules
and heuristics that are applied during the model transforma-
tion to detect and solve someof these errors or inconsistencies
in order to obtain better data models. In the same sense, pro-
cessors within the tool can detect errors introduced because
of bad modeling, not necessarily related to the DataMock
procedure. We call both types of errors fail patterns (analo-
gous to bad smells in traditional refactoring literature [45])
and provide one or more solution for each one—called tag
refactorings.

Some examples of these patterns are shown in Table 4. In
particular, Listing 2 reports the algorithm for the detection

of the repeated attributes error. The first step in the algorithm
scans each DataSpec instance in the DataMock model which
contains a class, a potential property and data type, and one
or more inheritance relationships in chain and (1) registers
the class if it does not exist yet (Listing 2, line 8) and, if an
attribute is defined in that DataSpec, (2) determines the root
class to which it is applied to; after this root class is found,
it is added to the corresponding class (Listing 2, lines 12 to
17). In this first step, we also register and index inheritance

123

J. M. Rivero et al.

Table 4 Partial basic fail pattern list supported by DataMock tooling

Pattern Description, example and solution

Name Typos • Description: Typos in tags can lead to different classes,
attributes or associations that should be unified.

• OCL invariant rule for detection (for attributes, the same
applies for classes or associations):
context AttributeSpec inv:
not AttributeSpec.allInstances -> exists(as |

as <> self and

leventstheinDistance(

as.associationName,

self.associationName) <= 2

)

• Example: five Data(Invoice)tags are found and only one
Data(Inovice) – typo – in mockups.

• Solution: Group class, attribute, or association names with low
string distance – e.g., using the Leventsthein algorithm [46].
The most used name will be proposed to correct the less used
names in the tags.

Repeated
Attribute in
Hierarchy

• Description: After building the data model, attributes with the
same name and type exist in different classes within a class
hierarchy.

• Detection pseudocode: included in Listing 2.

• Example: Data(Invoice.number:Integer) and
Data(Invoice => Document.number:Integer) tags are
defined. The number attribute is repeated in Invoice and in
its superclass, Document.

• Solution: Remove attribute in the subclasses.

Inconsistent
Data type

• Description: The same attribute or association has been defined
in the same class and with the same name, but with different
type or destination class respectively.

• OCL invariant rule for detection:
context AttributeSpec inv:
not AttributeSpec.allInstances -> exists(as |
as <> self and
as.attributeName = self.attributeName and
as.dataType <> self.dataType

)

• Example: Data(Invoice.number:String) and
Data(Invoice.number:Integer) tags are defined.

• Solutions:

o Select one type and unify attribute types to use a unique
type – propose the most used type as default.

o Rename one of the attributes so they can coexist.

123

DataMock: An Agile Approach for Building Data Models from User Interface Mockups

relationships between classes individually (Listing 2, lines
20 to 24). Since in a DataSpec instance several inheritance
relationship specs can be defined in a chain, this eases fur-
ther processing. Once all classes, attributes, and inheritance
relationships are indexed, the inconsistency detection step
starts (Listing 2, lines 27 to 35). In this step, all the attributes
indexed for all the classes are scanned (Listing 2, lines 27 and
28) and, for each one, the full hierarchy is traversed through
the attributeFoundInHierarchymethod (Listing 2,
lines 41 to 48) to check whether an attribute with the same
name exists. If such attribute is found, the process ends and
a message error is returned with the attribute and class in

which it is repeated. If no attribute matching this condition
is found, no error is thrown and the process ends gracefully.

While the DataMock tooling is capable of detecting and
applying semiautomated solutions by solely analyzing the
tags list placed over themockups as in the previous examples,
having a correctly mapped SUI model over the mockups can
help to detect more complex modeling flaws and solve them.
Two examples of patterns that make use of the SUImodel are
shown in Table 5. Note that, when the SUI model is mapped,
these rules make use of the widget property present in the
DataSpec instance—when SUI is not available, this property
will be set to null value.

Listing 2. Java-like of Repeated Attribute in Hierarchy detection algorithm

1. repeatedAttributeInHierarchy(model: DataMockModel) {
2. Map<String, String> inheritanceMap = new Map<String, String>();
3. Map<String, Set<String>> attributeMap =
4. new Map<String, Set<String>>();
5.
6. // builds inheritance map
7. for(DataSpec ds in model.dataSpecs) {
8. attributeMap.putIfKeyDoesNotExist(class, new Set<String>())
9. // register attribute if defined
10. if (ds.attributeSpec != null) {
11. // get final class
12. if (ds.inheritanceSpecs.nonEmpty()) {
13. String class = ds.inheritanceSpecs.last().className
14. } else {
15. String class = ds.rootClass.className;
16. }
17. attributeMap.get(class).add(ds.attributeSpec.attributeName)
18. }
19. // register inheritance relationships in spec
20. String class = ds.rootClass.className;
21. for (InheritanceSpec is in ds.rootClass.inheritanceSpecs) {
22. inheritanceMap.put(class, is.className);
23. class = is.className;
24. }
25. }
26. // seeks for repeated attributes in hierarchy
27. for (String class in attributeMap.keys) {
28. for (String attr in attributeMap.get(class)) {
29. if (attributeFoundInHierarchy(class, attr, inheritanceMap,
30. attributeMap) {
31. return "Attribute " + attr + " repeated in class " + class;
32. }
33.
34. }
35. }
36. }
37.
38. attributeFoundInHierarchy(String class, String attribute,
39. Map<String, String> inheritanceMap,
40. Map<String, Set<String>> attributeMap)
41. while (class != null) {
42. if (attributeMap.get(class).contains(attribute)) {
43. return true;
44. } else {
45. return false;
46. }
47. class = inheritanceMap.get(class);
48. }
49. }

123

J. M. Rivero et al.

Table 5 Partial fail pattern list that requires a mapped SUI model

Pattern Description

Isolated
contained class
to association

• Description/Detection: A CompositeWidget has a class-
related tag (for instance, following the form Data(Class)
or Data(Class1.attribute -> Class2). An inner
CompositeWidget or SimpleWidget references a
different class without referencing the one in the parent
CompositeWidget. Because of the containment relationship
expressed in the SUI, it is highly expected that the tag
belonging to the inner widget must reference the class
mentioned on the container one through an association.

• OCL invariant rule for detection:
context ClassSpec inv:
not ClassSpec.allInstances -> exists(cs |
cs <> self and
cs.className <> self.className and
self.dataSpec.widget.parentWidget =
cs.dataSpec.widget

)

• Example: A CompositeWidget has a Data(Invoice) tag.
An inner SimpleWidget has a Data(Customer.name)
tag. It is highly expected that some relationships must exist
between Invoice and Customer; then, a tag refactoring
from Data(Customer.name) to
Data(Invoice.customer -> Customer.name) is
suggested.

• Solution: Add the class referenced in the container widget to
the inner widget tag in a form of an association. Use the
parent class name lowercased as a default name for it.

Implicit
Association

• Description/Detection: Two different classes appear in
different tags of the same mockup (at a root level, for
instance, associated to CompositeWidgets) or in different
mockups linked through a navigation (Link()) tag.
However, no explicit relationship is defined so far between
these classes.

• OCL invariant rule for detection:
context ClassSpec inv:
not ClassSpec.allInstances -> exists(cs |
cs <> self and
cs.className <> self.className and
self.dataSpec.widget.parentWidget =
cs.dataSpec.widget.parentWidget

)

• Example: Data(*Invoice)and Data(Customer) tags
appear in two different mockups. They are also related
through a navigation tag that connects a mockup containing a
Data(Customer)tag to another that has a
Data(*Invoice)tag. However, no data tag implies an
association between both, which seems the case, because of
their visual and functional proximity.

• Solution: Create and association between both classes. The
direction, cardinality and name of this association are
suggested from the tags to be related, depending on their
cardinalities or the existence of a navigation tag. If both
classes are present in one mockup, the user has to choose the
direction of the association – i.e., over which class it should
be defined. On the other hand, if a navigation tag is present,
the class belonging to the source mockup will define it. In
both cases, the lowercased name of the destination class is
used as an initial name for the association.

123

DataMock: An Agile Approach for Building Data Models from User Interface Mockups

Fig. 6 Mockup Processor
Engine processing workflow and
components

Mockup
Parser

(tool-specific)

Hierarchies Detector

Mockup Validator

Repetition Detector

Template Detector

Layout Inferer
SUI Model

Mockup Processing
Engine

Mockup File
(tool-specific)

3.5 DataMock and Its Supporting Tools

In this section, we briefly describe the tool support available
for the DataMock approach. As depicted in Fig. 1, there are
four tools involved in the datamodeling process. The first one
corresponds to mockups tools, i.e., any tool that can be used
to createmockups, such as Balsamiq or Pencil.Mockup tools
allow creating digital mockups with low effort in comparison
with traditional IDEs orWYSIWYG tools frequently used by
developers. As commented earlier, while mockup tools make
mockup drawing a very simple and quick task, they lead to
poor UI specifications from the point of view of software
requirements specification. If tool-based mockups are used
in DataMock theMockup Process Engine (MPE) tool allows
processing them and obtaining an instance of the SUI model
[17,43].

The MPE tool (whose structure is depicted in Fig. 6)
defines a parser for every type of tool-based mockup
supported—for instance, Pencil or Balsamiq files. This
parser returns a list of individual SUI widgets without any
order or containment relationship. This widget list is trans-
formed and validated by a pipeline of individual processors.
First, a Mockup Validator checks that the widgets graph-
ical disposition is valid—i.e., containment widgets are in
fact CompositeWidgets and there is no visual collision
between SimpleWidgets. Then, a Hierarchies Detec-
tor analyzes the graphical containment relationship between
widgets and determines which Widgets are contained in
which CompositeWidgets, if any. After this step, a Rep-
etition Detector detects widgets that have been duplicated
by copy-paste and transforms them into Repetitions.
Finally, a Layout Inferer is used to choose a specificLayout
for internal widgets in CompositeWidgets and their
internal disposition according to the layout used. Details
about the Layout Inferer and the Repetition and Tem-
plate Detectors are omitted in this work since not relevant
from the data modeling point of view. All these processors
have inference parameters or arguments that can be tuned
accordingly—for instance, the Repetition Detector defines

a distance threshold between groups of widgets in order
to determine whether they are part of a Repetition or
whether they are individual widgets.

If HTML mockups are used, the Interactive Tagging Tool
(ITT) allows importing them and defining which DOM ele-
ments are relevant from the data modeling point of view,
thus building the SUI interactively. The ITT tool (depicted in
Fig. 7) consists of a Web application that facilitates import-
ing HTML mockups with their required internal resources
like images or stylesheets through compressed files. Then, it
shows the original mockups enriched with client-side scripts
(i.e., JavaScript scripts) and allows interactively highlighting
and selecting the DOM elements that will form part of the
SUI. On the other hand, the server-side of the tool imple-
ments several REST endpoints that allow the client-side to
inform new elements marked in the client-side and composes
the SUI on the server, accordingly.

Tagging can be accomplished in different ways. If tool-
based mockups are used, tags can be placed using comment-
ing features already present in mockup tools. In this case,
tags are associated to Widgets when being parsed by the
correspondingMockup Parser within the MPE. On the other
hand, when mockups are imported in the ITT tool, tags can
be placed over the marked elements that form the SUI (see
Fig. 7). In both cases, the result is a SUI in which every
Widget can have a tag associated. It is important to note
that, since theSUI is optional, annotation features inmockups
tools can also be used to only to place tags freely in a non-
formal mockup—for instance, a bitmap image embedded in
the mockup file. In this case, the MPE tool just processes the
tags and generates no widgets.

The last tool used in DataMock is theMockup Generator
(MG). This tool is triggered by the ITT tool and takes a list
of tags (potentially associated to Widgets, if an SUI model
was defined), and parses them to generate an instance of
the Spec Metamodel. All the tags from all the mockups are
considered in this process, which results in a complete and
merged data model. The MG tool is triggered by ITT users,
and if any semantic or syntactic error is found when parsing

123

J. M. Rivero et al.

Fig. 7 ITT tool screenshot during an HTML mockup tagging

tags, it omits them and informs about the concrete errors
in the web frontend of the ITT tool. Finally, the MG tool
allows generating a data model in the form of a UML Class
Diagram, using the XMI standard defined by the OMG.8

This generation is accomplished through a concrete set of
rules that transform every element of the Spec Metamodel
instance to its textual XMI representation. Since the tool does
not support data model visualization yet, generating models
in this format allows to easily import and visualize them in
tools like MagicDraw9 or ArgoUML.10 All this tooling is
publicly available.11

4 A Full Example of DataMock Usage

So far we have introduced the technical and procedural
aspects of DataMock. With this background in mind we will
show, through an example, how requirements traceability is
maintained within the approach. At this point we will con-
tinue with the invoice application example depicted in Fig. 4.
The mockup shown in this figure was built using the Pencil
mockup digital tool while the SUI model associated to it was
generated from it using the MPE tool. Looking at the figure
we can notice that there are parts of the mockup that are not
tagged, i.e., all the interface elements of the Payments panel.
From this visual hint and the validation of stakeholders, we
can derive that there are parts of the mockup that cannot be

8 XML Metadata Interchange—http://www.omg.org/spec/XMI/.
9 MagicDraw—http://www.nomagic.com/products/magicdraw.html.
10 ArgoUML—http://argouml.tigris.org/.
11 DataMock tooling source code repository—https://bitbucket.org/
jmrivero/datamock-tool-public/.

traced to an underlying data model. After discovering this
issue three new tags are added to the mockup corresponding
to the untagged elements in Fig. 4:

• *Payment—a list of Payments are shown in the UI.
• Payment.date:Date—a payment has an attribute
called date, which is of type date.

• Payment.amount:Decimal—a payment has an
attribute amount which is a decimal number.

These additions will lead to the creation of a new class
(Payment) with two attributes (date and amount). After
invoking theMG tool through the ITT tool, a new data model
with the new class and its two attributes is generated. How-
ever, the ITT tool detects a potential Isolated contained class
to association fail pattern: As it can be noticed, in Fig. 7 two
different Panels, tagged with different class tags, are shar-
ing the same mockup, at the same hierarchical level, with
no apparent relationship between them. Thus, the tool pro-
poses a tag refactoring transforming theData(*Payment)
tag to Data(Invoice.payment− > ∗ Payment) as a
default (because of the cardinality of Data(*Payment)
tag). In addition, the alternative Data(Invoice) to
Data(∗Payment.invoice− >Invoice) transformation
is also proposed as a second option. After choosing the
default option, the resulting mockup and model generated
from it can be seen in Fig. 8.

At this point, there is no data-related widget in the
mockup without a tag (except for action widgets like but-
tons). This means that every date-related widget in the UI
mockup has a corresponding tag that links it directly to
one or more concepts in the data model. The three tags
just added relate the widgets that were untagged to a class

123

http://www.omg.org/spec/XMI/
http://www.nomagic.com/products/magicdraw.html
http://argouml.tigris.org/
https://bitbucket.org/jmrivero/datamock-tool-public/
https://bitbucket.org/jmrivero/datamock-tool-public/

DataMock: An Agile Approach for Building Data Models from User Interface Mockups

Customer
name: String

InvoiceItem
price: Double

items *

customer

Payment

amount: Decimal
date: Date

payments *

Invoice
number: Integer
date: Date
description: String

Fig. 8 Tagged mockup and resulting data model from tags, with traceability links between both

(Payment), two attributes (date and amount) and an
association (payments) betweenInvoice andPayment
in the data model.

Let’s nowassume that in a second iteration of themodeling
process12 the InvoiceItem price (total price) is decom-
posed and calculated from a unit price and a quantity of items
ordered. This will lead to changes in the mockup: The table
containing the products must change to reflect the new struc-
ture of items. Such updated mockup is depicted in Fig. 8.
After the mockup is properly updated, two new attributes
remain untagged in it, unit price and quantity ordered. Thus,
the tagsData(InvoiceItem.quantity: Integer)
and Data(Invoiceitem.unitPrice: Decimal)
are added. At the same time, the attribute price is replaced
by totalPrice.

In this second iteration, stakeholders may also propose to
change the item description textbox to a dropdown menu, in
order to choose froma subset of items. Selecting an item from
the dropdownmenuwill imply that the unit price of such item
is updated accordingly in the corresponding textbox. This
change in the structure and interaction of the UI expressed
by stakeholders denote that items are separated entities from
the lines of the invoice since they should contain attributes
like its description and unit price. To express this change
in models, InvoiceItem is renamed to InvoiceLine,

12 The need for this second iterationmight also come from an evolution
of the developed application.

and description and unitPrice properties aremoved
to the Item class. This is expressed through the following
changes in existing tags (Fig. 8):

Data(Invoice.items− > ∗ InvoiceItem) is
changed to
Data(Invoice.lines− > ∗ InvoiceLines.

item− >Item)

Data(InvoiceItem.description) is changed
to Data(Item.description)
Data(InvoiceItem.unitPrice) is changed to
Data(Item.unitPrice)

After the tagging is finished, all the elements in the
mockup are traceable to the final data model that can be
generated through the MG tool, as can be seen in Fig. 8.
Since in this example we use tool-based mockups (built
with Pencil) with embedded tags, the ITT tool cannot
detect whether a tag was renamed or deleted and a new
one was created in its place. This is the case of the older
tag Data(InvoiceItem.price), which was rewrit-
ten as Data(InvoiceLine.totalPrice)—implying
both a class and attribute renaming. While this is not strictly
relevant when regenerating the data model of an applica-
tion yet to implement, it is important when dealing with
changes in running environments—for instance, in a rela-
tional DB already implemented and being used. The reason
behind this importance is related to data preservation: For

123

J. M. Rivero et al.

Table 6 Goal of the proposed experiment

Analyze the: Delivered data models

For the purpose of: Evaluating the DataMock approach

With respect to: Data model productivity, error reduction,
and requirements traceability provided
by it

From the viewpoint of: The project team

In the context of: Development of different applications
with simulated clients and users.

instance, while renaming an attribute/column in a running
relational DB will preserve the existing data, deleting exist-
ing attributes/columns and creating new ones will delete the
existing data. In fact, the problem of data storage structure
maintainability over time can appear in any persistence tech-
nology that requires predefined data schemas (i.e., to define
tables/entities/collections, their attributes/columns) to store
data. To avoid this problem, before regenerating the models,
the ITT detects deleted and new attributes by comparing the
new model with the older one. Then, for every attribute, it
asks the user whether it was effectively deleted or replaced
by some of the new ones. If not, it is considered as deleted.
On the other hand, if the user chooses a new attribute, it will
be considered as an attribute renaming operation. The same
operation applies for classes.

5 Assessing DataMock: A Controlled Experiment

In order to evaluate the concrete advantages that DataMock
brings to the data modeling process in comparison with a
traditional approach, we conducted a controlled experiment
in which we measured the efficiency of the approach. We
used the Goal-Question-Metric approach [47] to define the
goal of the empirical study and to drive the experiment itself.
Basically, GQM defines a certain goal, refines this goal into
questions, and specifiesmetrics that should provide the infor-
mation to answer these questions. A GQM goal template for
the evaluation is described in Table 6. In the next subsections,
we will describe in detail the evaluation study we conducted.

5.1 Planning Stage: Goal

The purpose of the evaluation is to make a quantitative and
qualitative comparison of theDataMockmethod to build data
models (concretely, UML Class Diagrams) versus a manual
modeling approach that adopts mockups as a mere infor-
mational requirements artifact. We decided to compare our
approach to manual modeling using mockups since, as we
commented earlier in this paper, mockups are the most used
requirements artifact in Agile methodologies which in turn

are the software development methodologies currently most
adopted in the industry [11]. The goal is to measure the
potential advantages that DataMock can provide in terms of
productivity and traceability in data modeling, in the context
of a software development process, in particular, when using
UML Class Diagrams as data models.

While providing full model generation and facilitating
error detection (as DataMock does) can be seen as advan-
tages in comparison with manual methods, this is not always
the case. For instance, if the generated models are imprecise
and require to be tuned, or if error detection produces too
many false positives, it can take longer for a developer to
generate a data model using DataMock than building them
manually. For this reason, we decided to evaluate the Data-
Mock modeling process as a whole, including the tooling
and its model generation capabilities to validate its concrete
advantages.

5.2 Definition Stage: Questions and Metrics

As required by the GQM method, we defined a set of ques-
tions to achieve the proposed goal.With this purpose inmind,
the following set of questions was defined:

• Question 1: Does the DataMock approach allows build-
ing data models faster, in comparison with building them
manually?

• Question 2: Does the DataMock approach allows build-
ing data models with less missing, misunderstood, or
non-explicitly required elements than building them
manually?

• Question 3: Does the DataMock approach allows build-
ing data models that are more traceable from the require-
ments point of view in comparison with models built
manually?

To answer these questions, we defined a set of associated
metrics, as the GQM method suggests. The metrics defined
were the following:

• Metric 1: Building Time (BT): The time taken to build a
specific data model using a particular method (manual or
DataMock).

• Metric 2: Error Score (ES): A numeric score defining the
impact of errors found in the generated datamodels using
a particular method. To compute this score, we compare
the models obtained as output of the DataMock and the
manual approaches against an ideal model (called control
model) built for every application by experts. Then, we
check the kinds of elements that are missing, wrong, or
not explicitly required. Each type of error has a score
according to a predefined scale depending on its gravity.

123

DataMock: An Agile Approach for Building Data Models from User Interface Mockups

Table 7 Error Scores used to
compute the ES metric

Error type Error Score Description

Missing class 1 A class is missing

Missing attribute 0.5 An attribute of a class is missing

Missing association 0.5 An association between two classes is
missing

Missing inheritance 0.5 An inheritance relationship between two
classes has been omitted

Extra class 0.5 A non-required class has been included

Wrong data type 0.25 An attribute in a class has a wrong data
type

Extra attribute/association 0.25 A non-required attribute or association
has been included in a class

Extra inheritance 0.25 A non-required inheritance relationship
has been added between two classes

The score for every error type is defined according to
their conceptual importance in the data model.

• Metric 3:Non-Traceable Elements (NTE): The amount of
Non-Traceable Elements found in data models—i.e., the
amount of data model elements that cannot be mapped
to our main requirements artifacts: mockups.

As most well-known model quality frameworks do, we base
our quality measure (ES) on a comparison between dif-
ferent elements [48]. However, in order to simplify the
evaluation, we compute model quality by comparing mod-
els of the same type and structure. The artifacts required
to compute the ES metric (the error scale and the control
models) were specified and designed by a team of profes-
sors of the National University of La Plata with more than
7 years of experience in teaching and applying data mod-
eling and object orientation. The models were built by the
experts with no tool assistance, in order to avoid potential
biases introduced by the tooling commented throughout this
paper. Error types and their predefined scores are depicted
in Table 7. To compare models against the control model,
we made a semantic comparison—i.e., we matched the ele-
ments (classes, attributes, associations, etc.) according to
their semantics in models, avoiding fine-grained design deci-
sions like concrete classes or attributes names.

Following theGQMprocedure,metricswere associated to
questions in the followingway:Metric 1 (BT) allows answer-
ing Question 1, Metric 2 (ES) facilitates answering Question
2, andMetric 3 (NTE) provides a concrete result for Question
3.

5.3 Data Collection Stage: Method

Participants To conduct our experiment, we randomly
selected 30bachelor students of theComputer Science degree
of the National University of La Plata presenting the same

advances level in the degree. Each participant was inter-
viewed in order to verify whether they had knowledge of
at least the basic concepts of data modeling and Object-
Oriented Programming. We also checked that every student
passed the basic data modeling courses within the degree
and that all of them were able to build UML Class Dia-
grams using tools. As we will describe later, each participant
worked with both approaches (manual modeling and Data-
Mock). The group was composed by 18 men and 12 women,
aged between 22 and 30 (mean 26.3), with 2–4years (mean
2.3) of experience in data modeling. All of them were famil-
iar with data modeling—i.e., they had taken and passed the
courses that included concepts of data modeling using E-R
diagrams and UML Class Diagrams.

Apparatus For manual modeling, we gave the students the
freedom to use their favorite UML modeling tool for man-
ually building the data models. On the other hand, the use
of the Interactive Tagging Tool (ITT) was required for Data-
Mock. We provided data tag stencils for common mockup
tools (like, for instance, Pencil) and also provided an online
version of the ITT. In addition, we introduced the general
approach and the tooling to the participants in one training
session 30 minutes long, so that they could start the experi-
mentwith full knowledge about both approaches (manual and
DataMock). We chose to use data tag stencils and common
tools in order to (1) use tools that were already familiar to
participants, and (2) avoid possible biases introduced by the
tooling implemented for DataMock, which was not entirely
stable when the experiment was conducted.

Procedure. A set of bitmap mockups of three different
applications were given to each participant—we will call
them applications A, B, and C . The applications consisted
in a Q&A site, a music catalog and search engine, and a
movie streaming and discovering app, respectively. Descrip-
tive statistics about mockups of the three applications can

123

J. M. Rivero et al.

Table 8 Descriptive statistics
about mockups of the three
applications

Application Number of
mockups

Average classes/attributes per mockup
estimated by the experiment team

A (Q&A) 5 Classes: 4.4 Attributes/Associations: 7

B (Music catalog) 7 Classes: 1.85 Attributes/Associations: 3.22

C (Video streaming) 6 Classes: 2.5 Attributes/Associations: 2.33

be found in Table 8. Some of these data have been cal-
culated and/or estimated by the experiment organization
team. To simulate the development of state-of-the-art Web
applications, the experiment organization team defined such
applications based on existing Web sites (e.g., music por-
tals or Q&A ones). Bitmaps mockups have been chosen to
prevent participants changing their structure (something that
can be done when using HTML or tool-based mockups) and
also to provide themwith themost detailed and faithful proto-
types as possible. An average of fivemockups per application
were built, and every participant received the same set for the
corresponding app. Every participant was asked to build data
models taking these mockups as a foundational requirements
artifact. The modeling was divided into two iterations per
application. Two of these models had to be built using one
particular approach (manual or DataMock), and the other
approach had to be used for the remaining one. This dis-
tribution allowed us to avoid the potential bias introduced
by a participant modeling the same application with both
approaches, one after another—which is known as a Mat-
uration validity threat [49]. Thus, every participant tested
both modeling approaches but modeled every application
only once, under one particular approach. The experiment
team ensured that each application was modeled the same
number of times with both modeling approaches. Finally, the
order in which the applications had to be modeled was ran-
domized. In order to consider a participatory design context,
a part of the professors forming the experiment organization
team acted as clients and end-users, solving possible doubts
or ambiguities present in the mockups without using techni-
cal jargon—just talking in terms of business objects. These
professors were involved in the mockups development and
in the tagging stages. However, they were not implicated in
the elaboration of the DataMock approach and they were
not presented during the aforementioned training sessions.
Finally, to obtain the full information set required, we also
asked participants to carefully take note of the time spent in
modeling under every approach and application.

Regarding measurement, the metric BT was measured
using a stopwatch: Every time the participant started tomodel
the stopwatch was started and then it was paused when he
paused or finished modeling. The remaining metrics (ES and
NTE) were computed manually by the experiment organi-
zation team, comparing models with each other and models
with mockups. In particular, in the case of metric ES, the

resulting model was compared against the control model in
order to find differences that could indicate errors or non-
optimal modeling. On the other hand, the NTE metric was
computed comparing the resulting models with mockups,
trying to map every concept modeled to a visual metaphor
and finding which ones could not be mapped.

5.4 Interpretation Stage: Discussion of Results

To quantify the advantages of the application of DataMock
(our treatment) versusmanual datamodeling usingmockups,
we computed the Cliff’s Delta effect size metric [50]. We
usedCliff’sDelta as it is oriented to effect sizemeasurements,
it is nonparametric, and also it does not strictly require the
assumption of normality in the data distribution. Cliff’s Delta
ranges between −1 and 1, with −1 indicating total failure
(or success, depending on the semantics associated to the
result) of the treatment and 1 indicating the contrary (e.g.,
the treatment performed better in the 100% of the cases).

For the BT metric, we computed the Cliff’s Delta per
application and approach using the modeling time measures
taken by the modelers under both approaches. A box-plot of
such time measures distribution can be observed in Fig. 9.
The result of the computation returned values of −0.41,
−0.51, and −0.91 for the applications A, B, and C, respec-
tively. According to the Cliff’s Delta semantics, through
this metric we can strongly assess that DataMock modeling
took less time in comparison with manual modeling. Since
Question 1 was based only on this metric, we can answer it
positively according to the results obtained.

As can be seen from the results, the building time improve-
ment was clearly better in application C than in the other
applications. We attribute that improvement to the fact that
mockups in application C seems to be less dense (i.e., with
fewer features per screen) than in applications A and B.

For the ES metric, with the error scale defined in Table 7,
an Error Score was computed for every application and par-
ticipant comparing its output model to the respective control
model for the concrete application. TheError Score per appli-
cation and participant consisted in the sum of the individual
errors found when doing the comparison. A box-plot of such
Error Score distribution can be observed in Fig. 10. Then,
as in the BT case, we computed the Cliff’s Delta per appli-
cation to obtain the effect size of applying DataMock to the
modeling process, in this case with regard to errors found in

123

DataMock: An Agile Approach for Building Data Models from User Interface Mockups

Fig. 9 DataMock versus manual data modeling time distribution

Fig. 10 DataMock versus manual data modeling fault error distribution

the resulting models. The result of the computation returned
values of −0.12,−0.52, and − 0.86 for the applications A,
B, and C, respectively. Again, according to the Cliff’s Delta
semantics, through this metric we can answer Question 2
positively and then strongly confirm that DataMock allowed
building data models with fewer errors in comparison with
building them manually. Also in this case the computation
of the Cliff’s Delta returned a better result for application C,
and we infer that the main reason for this was the same that
for the previous metric.

A similar approach to the ES case was used for the NTE
metric (distribution shown in Fig. 11) whose computation
returned the results −0.46, −0.7, and −0.53 for applications
A,B, andC, respectively.Again, thismetric allows answering
Question 3 positively, as DataMock models shown to have a
noticeable smaller number of untraceable elements compared
to data models obtained manually.

In addition to the positive results provided byCliff’sDelta,
we computed a statistical t-test for every metric to enforce
the positive answers previously suggested by the effect size
metrics. In this case, we decided to join the three samples
obtained for every application into a single sample in order
to increment the sample size for every test. Since the sample

sizes for every application were the same for both method-
ologies, we assume that merging them does not represent a
statistical bias in the test—because each application has the
same weight in the sample, in both cases. The results were
the following:

• For the BT metric, we concluded that, according to the
given samples, the mean Building Time in the DataMock
case is less than the mean in the manual modeling case
with a confidence of 99% (p = 0.006, μDM = 1.11, μM =
2.01, σDM = 0.71, σM = 1.00)13

• For the ES metric, we concluded that, according to the
given samples, the mean Error Score in the DataMock
case is less than the mean in the manual modeling case
with a confidence of 95% (p = 0.029, μDM = 16.38, μM

= 19.99, σDM = 2.95, σM = 4.84).
• For the NTE metric, we concluded that, according to the
given samples, the mean of Non-Traceable Elements in
the DataMock case is less than the mean in the manual

13 μDM and μM stand for μ values for DataMock and Manual mod-
eling, respectively; σDM and σM stands for σ values for DataMock and
Manual modeling, respectively.

123

J. M. Rivero et al.

Fig. 11 DataMock versus manual untraceable data model elements

modeling case with a confidence of 99% (p = 0.0007,
μDM = 10.96, μM = 19.75, σDM = 5.67, σM = 9.54)

The results of the three statistical tests allow us to enforce the
positive results, and thus, the positive answers for the three
questions defined in the evaluation. Individual values per par-
ticipant for the BT and ES metrics are available online.14

5.5 Threats to Validity

In the evaluation, we assessed that DataMock was signif-
icantly more efficient in terms of time and output model
quality than manual data model construction that use mock-
ups only as amere requirement artifact.When analyzing data
model quality, in addition to the taken Error Score metrics
we also noted that DataMock allowed building more precise
data models in the sense that unnecessary classes or classes
not explicitly required by end-users (simulated byprofessors)
were less common.

We have found, however, a number of potential threats to
our experiment’s validity. In the following list, we enumerate
such threats and explain how we tried to mitigate them:

• Errors in Control Model. The Control Model built was
an essential artifact to compute the ES metric. Thus,
errors found in it can compromise the values obtained
for this metric. Tomitigate this threat, we had the Control
Model built by members of the experiment organization
team, all of them with more than 7 years of experience in
teaching and applying data modeling in real applications.

14 DataMock Stats for BT and ES metrics—https://docs.google.com/
spreadsheets/d/1Sv4qLUdI87n23ERMndPSqGZcn4fBqHvfIu4ksUXc
_Ts/.

• Modeler’s lack of experience. Lack of data modeling
experience by experiment’s participants can lead to non-
uniform results—for instance, taking too much time to
build models with particular features. To mitigate this
threat, every participant was subjected to an interview
before the experiment to assess they had enough knowl-
edge and practical experience in the field.

• Modeler’s previous experience in similar applica-
tions. Having previous experience in developing or
regularly using applications similar to the three involved
in the experiment can affect the results since partici-
pants can build models faster or more completely than
other participants with less knowledge in this context.
We mitigated this threat including a set of questions in
the interviews to assess that modelers have no experience
in such domains.

• Non-balanced modeler experience.Modelerswithmore
experience can build models quicker (for instance,
quickly identifying patterns that already applied in other
applications) based on their previous experiences in com-
parison with those that have less experience in the field.
To mitigate this issue, as we commented before, we
assured that they had passed the basic courses in the
Computer Science degree that included concepts of data
modeling using E-R diagrams andUMLClass Diagrams.
In addition, we checked that there were no more than
2 years of difference regarding data modeling in the
academy or industry between the participants.

• Application complexity. The complexity of the differ-
ent applications chosen can be in favor of DataMock.
To mitigate this issue, we chose applications with differ-
ent complexity (mockup size and class/attribute density,
see Table 8), which leaded to the conclusion that while
DataMock performed better in applications with more
complexity, it also performs better when the complexity

123

https://docs.google.com/spreadsheets/d/1Sv4qLUdI87n23ERMndPSqGZcn4fBqHvfIu4ksUXc_Ts/
https://docs.google.com/spreadsheets/d/1Sv4qLUdI87n23ERMndPSqGZcn4fBqHvfIu4ksUXc_Ts/
https://docs.google.com/spreadsheets/d/1Sv4qLUdI87n23ERMndPSqGZcn4fBqHvfIu4ksUXc_Ts/

DataMock: An Agile Approach for Building Data Models from User Interface Mockups

of the applications is lower. It is important to say that,
while the complexity of the different applications can
vary, mockups provided for all of them included the core
functionality that the site must provide. Thus, we are able
to affirm that DataMock allows tackling data modeling in
an effective and efficient way when the application size
and complexity is adequate.

6 Conclusion and Further Work

In this paper we presented DataMock, a methodology that
provides an iterative data modeling strategy using mockups
and a simple language based on tags. Throughout this paper
we described the theoretical, technological, andmethodolog-
ical aspects of the approach. We also described a controlled
experiment we conducted to evaluate it. Experiment results
affirm that DataMock provides a more productive and trace-
able method for data modeling than manual modeling, since
adopting it leads to better quality and more traceable mod-
els in sensibly less time. The approach benefits from the use
of mockups, a current trend in the industry with statistically
proven advantages [16]. Since end-users can understand both
mockup concepts and natural language tags in DataMock,
data modeling with DataMock results natural for them. This
leads to a better communication between development and
end-user teams, which implies less errors and amore produc-
tive modeling process. We argue that the main advantages
and innovation of DataMock rely on its mockup-centered
data modeling approach. In fact, this allows developers to:

1. Get full traceability of data model elements from scratch.
This is possible since every data model specification
defined through a tag is linked to a mockup element. In
addition, thanks to the expressiveness of the tag language,
the derived data models need no major modifications—
they are generated by just merging the content of each
individual tag.

2. Detect domain-related inconsistencies, by iteratively
analyzing and comparing the specifications distributed
among tags.

During our evaluation, we also found interesting function-
alities that we can add to the DataMock tagging language,
like calculated fields. We are also working on including text-
analysis techniques and algorithms to DataMock, in order to
infer simple tags automatically by detecting classic widgets
and text patterns inmockups, and finally providemore agility
to the tagging process.

Through our controlled experiment we also detected that
the tagging strategy used presents a number of usability
issues. Thus, we are working on an enhanced version that
includes several semiautomated tag refactorings—like, for

instance, attribute or class renaming—within the same tool.
We expect that such refactorings will reduce even more the
data modeling time required by DataMock in comparison
with manual data modeling approaches. For this reason, we
are planning to conduct an extra controlled experiment to
assess the impact of introducing such features in the data
modeling approach. In this context and with these additions,
we are also considering additional evaluations in order to con-
firm DataMock’s advantages in broader environments—e.g.,
considering different types of applications or larger develop-
ment teams.

Since the approach relies on tagging mockups as much as
possible, tags can take a lot of physical space from the visual
point of view, especially if End-user-Oriented Grammar is
used. This makes harder for analysts or developers using
the approach to identify and understand the tags that have
been placed over mockups. On the other hand, and despite
the fact that the controlled experiment results were positive
regarding the time taken to specify datamodels, it also threat-
ens the efficiency of the modeling approach. To tackle this
potential improvement we are enhancing our tooling to allow
to: (1) summarize tags through different strategies like hid-
ing those not applied over CompositeWidgets (i.e., let
“more granular” tags only), (2) simplify some of the tag con-
structs (for instance, allowing expressions like .attribute
instead of Class.attributewhen some class context is
given). These improvements, in addition to increase tag read-
ability, will allow to place tags faster than how it can be done
right now.However, a detailed study need to be accomplished
to analyze how these simplifications can affect assisted error
detection. Finally, another feature that we are planning to
introduce is supporting data model visualization through the
integration with some API or Web graphical framework like
PlantUML.15

In addition, DataMock is intended to model applications
which are related to only one database and vice versa. While
mockups of different applications can help building a unified
database for the different applications, currently DataMock
does not provide support for federated database contexts—
where two or more applications use two or more different
databases. Thus, we plan to add optional database or data
source specifications to the tag set introduced in this paper
in order to provide support for such contexts.

As aforementioned, DataMock is not a full-cycle model-
driven development approach but an approach that uses
formal annotations and (when possible) UI widgets to help
building data models in a faster or less error-prone way.
However, it can be effectively integrated into existingmodel-
driven approaches if data models generated with our tool can

15 PlantUML: Open-source tool that uses simple textual descriptions
to draw UML models—http://plantuml.com/.

123

http://plantuml.com/

J. M. Rivero et al.

be imported to the tooling provided by such methodologies.
Thus, this is another further work path that we are pursuing.

References

1. Topi, H., Ramesh, V.: Human factors research on data model-
ing. J. Database Manag. 13(2), 3–19 (2002). doi:10.4018/jdm.
2002040101

2. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How
do practitioners use conceptual modeling in practice? Data Knowl.
Eng. 58(3), 358–380 (2006). doi:10.1016/j.datak.2005.07.007

3. Pinheiro, F.A., Goguen, J.A.: An object-oriented tool for tracing
requirements. IEEE Softw. 13(2), 52–64 (1996). doi:10.1109/52.
506462

4. Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements
traceability problem. In Proceedings of IEEE International Con-
ference on Requirements Engineering, pp. 94–101. (1994) doi:10.
1109/ICRE.1994.292398

5. Fliedl, G., Kop, C., Mayr, H.C., et al.: Deriving static and dynamic
concepts from software requirements using sophisticated tagging.
Data Knowl. Eng. 61(3), 433–448 (2007). doi:10.1016/j.datak.
2006.06.012

6. Kop, C., Fliedl, G., Mayr, H.C.: From Natural Language Require-
ments to a Conceptual Model. In: Proceedings of the First
International Workshop on Evolution Support for Model-Based
Development and Testing (EMDT2010), CEUR-WS.org, pp. 67 –
74 (2010)

7. Gorschek, T., Tempero, E., Angelis, L.: On the use of software
design models in software development practice: an empirical
investigation. J. Syst. Softw. 95, 176–193 (2014). doi:10.1016/j.
jss.2014.03.082

8. Liu, W., Easterbrook, S., Mylopoulos, J.: Rule Based detection of
Inconsistency in UML Models, pp. 106–123 (2002)

9. Escalona, M.J., Urbieta, M., Rossi, G., Garcia-Garcia, J.A., Luna,
E.R.: Detecting Web requirements conflicts and inconsistencies
under a model-based perspective. J. Syst. Softw. 86(12), 3024–
3038 (2013). doi:10.1016/j.jss.2013.05.045

10. Chang, C.K., Zhu, H.: Specifications in software prototyp-
ing. J. Syst. Softw. 42(2), 125–140 (1998). doi:10.1016/S0164-
1212(98)10004-3

11. Hussain, Z., Holzinger, A., Slany, W.: Current state of agile user-
centered design?: A survey. In: Proceedings of the 5th Symposium
of the Workgroup Human–Computer Interaction and Usability
Engineering, pp. 416–427. Springer, Berlin (2009)

12. Ferreira, J., Noble, J., Biddle R.: Agile development iterations and
UI design. In: AGILE 2007 Conference, IEEE Computer Society:
Washington, DC, pp 50–58 (2007)

13. Ton, H.A.: Strategy for balancing business value and story size. In:
AGILE 2007 Conference, IEEE Computer Society: Washington,
DC, USA, pp. 279–284 (2007)

14. Rivero, J.M., Rossi, G., Grigera, J., Luna, E.R., Navarro, A.: From
interfacemockups to web applicationmodels. In 12th International
Conference on Web Information System Engineering, Sydney,
Australia, pp. 257–264 (2011)

15. Mukasa, K.S., Kaindl, H.: An integration of requirements and user
interface specifications. In: 6th IEEE International Requirements
Engineering Conference, pp. 327–328, IEEE Computer Society:
Barcelona, Catalunya (2008)

16. Ricca, F., Scanniello, G., Torchiano, M., Reggio, G., Astesiano, E.:
On the effectiveness of screen mockups in requirements engineer-
ing. In: 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, ACM Press: New York
(2010)

17. Rivero, J.M., Grigera, J., Rossi, G., Luna, E.R., Montero, F.,
Gaedke, M.: Mockup-Driven development: providing agile sup-
port for model-driven web engineering. Inform. Softw. Technol.
56(6), 1–18 (2014). doi:10.1016/j.infsof.2014.01.011

18. Zhang, J., Chung, J.Y.: Mockup-driven fast-prototyping methodol-
ogy for web application development. Softw. Pract. Exp. 33(13),
1251–1272 (2003). doi:10.1002/spe.547

19. Forward, A., Badreddin, O., Lethbridge, T.C., Solano, J.: Model-
driven rapid prototyping with Umple. Softw. Pract. Exp. 42(7),
781–797 (2012). doi:10.1002/spe.1155

20. Brambilla,M., Fraternali, P.: Interaction FlowModelingLanguage:
Model-Driven UI Engineering of Web and Mobile Apps with
IFML. Morgan Kaufmann, Burlington (2014)

21. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: Uml-based web
engineering: an approach based on standards. In: Rossi, G., Pastor,
O., Schwabe, D., Olsina, L. (eds.) Web Engineering: Modelling
and Implementing Web Applications. Springer, London (2008)

22. Jwo, J.-S., Cheng, Y.C.: Pseudo software: A mediating instrument
formodeling software requirements. J. Syst. Softw. 83(4), 599–608
(2010). doi:10.1016/j.jss.2009.10.042

23. Ramdoyal, R., Cleve, A.: From pattern-based user interfaces to
conceptual schemas and back. In: Proceedings of the 30th Interna-
tional Conference on Conceptual Modeling—ER 2011, Brussels,
Belgium, pp. 247–260 (2011)

24. Rosenberg, D., Stephens, M.: Collins–Cope. Agile development
with ICONIX process—people, process, and pragmatism. (Apress
ed) (2005)

25. Fortuna, M.H., Werner, C.M.L., Borges, M.R.S.: Info Cases: Inte-
gratingUse Cases andDomainModels. In: 16th IEEE international
requirements engineering conference (RE), vol 0. IEEE Com-
puter Society: Catalunya, Spain, 2008; 81–84. DOI:http://doi.
ieeecomputersociety.org/10.1109/RE.2008.43

26. Kulak,D.,Guiney,E.:Use cases: requirements in context.Addison-
Wesley, Boston (2004)

27. Linehan, M.H.: SBVR Use Cases. Bassiliades N., Governatori G.,
Paschke A. (eds). Lecture Notes in Computer Science Volume
2008; 5321: 182–196. doi:10.1007/978-3-540-88808-6

28. Bajwa, I.S., Choudhary, M.A.: From natural language software
specifications to UML class models. Zhang, R., Zhang, J., Zhang,
Z., Filipe, J., Cordeiro, J. (eds). Lecture Notes in Business Informa-
tion Processing, vol. 102, pp. 224–237. (2012). doi:10.1007/978-
3-642-29958-2

29. Winkler, S., Pilgrim, J.: A survey of traceability in requirements
engineering and model-driven development. Softw. Syst. Model.
9(4), 529–565 (2009). doi:10.1007/s10270-009-0145-0

30. Huzar, Z., Kuzniarz, L., Reggio, G., Sourrouille, JL.: Consis-
tency Problems in UML-Based Software Development. In: Jardim
Nunes, N., Selic, B., Rodrigues da Silva, A., Toval Alvarez, A.,
(eds). Lecture Notes in Computer Science, vol. 3297, pp. 1–12.
(2005) doi:10.1007/b106725

31. Usman, M., Nadeem, A., Kim, T., Cho, E.: A survey of con-
sistency checking techniques for UML models. In: Proceedings
of Advanced Software Engineering and Its Applications (ASEA)
(2008). doi:10.1109/ASEA.2008.40

32. LaRoche, C.S., Traynor, B.: User-centered design (UCD) and tech-
nical communication: The inevitable marriage. In: 2010 IEEE
international professional communication conference. IEEE, pp.
113–116 (2010). doi:10.1109/IPCC.2010.5529821

33. Nielsen, J.: The usability engineering life cycle. IEEE Comput.
25(3), 12–22 (1992). doi:10.1109/2.121503

34. Constantine, L.: Canonical Abstract Prototypes for Abstract Visual
and Interaction Design. In: Jorge, J.A., Jardim Nunes, N., Falcão e
Cunha, J., (eds.) Springer, Berlin (2003). doi:10.1007/b13960

35. Martin, A., Biddle, R., Noble, J.: The XP customer role in practice:
Three studies. In Agile Development Conference, IEEE Computer
Society: Salt Lake City, Utah, USA, pp. 42–54 (2004)

123

http://dx.doi.org/10.4018/jdm.2002040101
http://dx.doi.org/10.4018/jdm.2002040101
http://dx.doi.org/10.1016/j.datak.2005.07.007
http://dx.doi.org/10.1109/52.506462
http://dx.doi.org/10.1109/52.506462
http://dx.doi.org/10.1109/ICRE.1994.292398
http://dx.doi.org/10.1109/ICRE.1994.292398
http://dx.doi.org/10.1016/j.datak.2006.06.012
http://dx.doi.org/10.1016/j.datak.2006.06.012
http://dx.doi.org/10.1016/j.jss.2014.03.082
http://dx.doi.org/10.1016/j.jss.2014.03.082
http://dx.doi.org/10.1016/j.jss.2013.05.045
http://dx.doi.org/10.1016/S0164-1212(98)10004-3
http://dx.doi.org/10.1016/S0164-1212(98)10004-3
http://dx.doi.org/10.1016/j.infsof.2014.01.011
http://dx.doi.org/10.1002/spe.547
http://dx.doi.org/10.1002/spe.1155
http://dx.doi.org/10.1016/j.jss.2009.10.042
http://doi.ieeecomputersociety.org/10.1109/RE.2008.43
http://doi.ieeecomputersociety.org/10.1109/RE.2008.43
http://dx.doi.org/10.1007/978-3-540-88808-6
http://dx.doi.org/10.1007/978-3-642-29958-2
http://dx.doi.org/10.1007/978-3-642-29958-2
http://dx.doi.org/10.1007/s10270-009-0145-0
http://dx.doi.org/10.1007/b106725
http://dx.doi.org/10.1109/ASEA.2008.40
http://dx.doi.org/10.1109/IPCC.2010.5529821
http://dx.doi.org/10.1109/2.121503
http://dx.doi.org/10.1007/b13960

DataMock: An Agile Approach for Building Data Models from User Interface Mockups

36. Muller, M.J.: The Human–Computer Interaction Handbook. In:
Jacko, J.A., Sears, A. (ed.) pp. 1051–1068, L. Erlbaum Associates
Inc, Hillsdale (2003)

37. Batra, D.: Conceptual data modeling patterns: representation and
validation. In: Wang, J. (ed.) Data Warehousing and Mining:
Concepts, Methodologies, Tools, and Applications, pp. 280–302.
Hershey Publisher, Hershey (2008)

38. Vidya Sagar, V.B.R., Abirami, S.: Conceptual modeling of natural
language functional requirements. J. Syst. Softw. 88, 25–41 (2014).
doi:10.1016/j.jss.2013.08.036

39. Rivero, J.M., Robles Luna, E., Grigera, J., Rossi, G., Improving
user involvement through a model-driven requirements approach.
In: 2013 International Workshop on Model-Driven Requirements
Engineering (MoDRE). Rio de Janeiro, Brazil, pp. 20–29 (2013).
doi:10.1109/MoDRE.2013.6597260

40. Wills, L.M., Kordon, F.: Rapid system prototyping. J. Syst. Softw.
70(3), 225–227 (2004). doi:10.1016/S0164-1212(03)00070-0

41. Ghabi, A., Egyed, A.: Exploiting traceability uncertainty among
artifacts and code. J. Syst. Softw. 108, 178–192 (2015). doi:10.
1016/j.jss.2015.06.037

42. Cohn, M.: User stories applied: for agile software development.
Addison-Wesley, Boston (2004)

43. Rivero, J.M., Rossi, G., Grigera, J., Burella, J., Robles Luna, E.,
Gordillo, S.: Frommockups to user interface models: an extensible
model driven approach. In: Proceedings of the 10th International
Conference in Web Engineering (ICWE’10), Springer, Berlin, pp.
13–24 (2010)

44. Limbourg,Q.,Vanderdonckt, J.,Michotte,B.,Bouillon, L., Florins,
M., Trevisan, D.: USIXML: A User Interface Description Lan-
guage for Context-Sensitive User Interfaces. In: Proceedings of
the ACM AVI 2004 Workshop

45. Fowler,M., Beck,K.: Refactoring: improving the design of existing
code. Addison-Wesley, Boston (1999)

46. Beijering, K., Gooskens, C., Heeringa, W.: Predicting intelligibil-
ity and perceived linguistic distance by means of the Levenshtein
algorithm. Linguist. Neth. 24, 13–24 (2008)

47. Basili, V., Caldiera, G., Rombach, D.: The Goal Question Metric
Approach. (1994)

48. Nelson,H.J., Poels,G.,Genero,M., Piattini,M.:Aconceptualmod-
eling quality framework. Softw. Qual. J. 20(1), 201–228 (2011).
doi:10.1007/s11219-011-9136-9

49. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.,
Wesslén, A.: Experimentation in Software Engineering. Springer,
Berlin (2012)

50. Cliff, N.: Dominance statistics: ordinal analyses to answer ordinal
questions. Psychol. Bull. 114(3), 494 (1993)

José Matías Rivero received
a PhD in Computer Science
from the National University of
La Plata (UNLP), Argentina, in
2015. Currently, he is a post-
doc scholar at the National Sci-
entific and Technical Research
Council (CONICET), the most
important public research insti-
tute in that country. His research
interests lie in the area of Web
Engineering and more specif-
ically include the topics of
UI Prototyping, Mockups, User-
Centered Design, and User-

Centered Requirements Engineering. He has co-authored more than
15 papers published in international conferences and journals.

Julián Grigera is a PhD student
and teaching assistant at Facul-
tad de Informática, Universidad
Nacional de La Plata, Argentina,
where he is a member of the
Research and Development in
Advanced IT Lab (LIFIA). His
research interests are Web Engi-
neering and Web Usability.

Damiano Distante is Associate
Professor of Computer Science
at the Unitelma Sapienza Uni-
versity, Italy. He holds a PhD
in Information Engineering and
a Master Degree in Computer
Science and Engineering from
the University of Salento, Italy.
His main field of research is
software engineering in general
and software evolution and web
engineering in particular. His
research interests include: design
and model-driven development
ofWeb applications, evolution of

Web systems, e-learning methodologies and technologies, data min-
ing and information retrieval techniques. He co-authored more than 50
papers in referred international journals andproceedings of international
conferences. He is member of the IEEE Computer Society.

Francisco Montero is Associate
Professor of Computer Science
at the University of Castilla-La
Mancha, Spain. During his mas-
ter degree studies at the Uni-
versity of Castilla-La Mancha
and theUniversity Polytechnic of
Valencia (Spain), he was a holder
of several research scholarships
funded by the Regional Gov-
ernment of Castilla-La Mancha
and the National Government.
He got his bachelor degree and
PhD in theUniversity of Castilla-
La Mancha. He is currently an

active collaborator of the LoUISE Research group of the University of
Castilla-La Mancha. His current research interests are usability, acces-
sibility, User Interfaces, and human–computer interaction.

123

http://dx.doi.org/10.1016/j.jss.2013.08.036
http://dx.doi.org/10.1109/MoDRE.2013.6597260
http://dx.doi.org/10.1016/S0164-1212(03)00070-0
http://dx.doi.org/10.1016/j.jss.2015.06.037
http://dx.doi.org/10.1016/j.jss.2015.06.037
http://dx.doi.org/10.1007/s11219-011-9136-9

J. M. Rivero et al.

Gustavo Rossi is Full Profes-
sor of Web Engineering at Fac-
ultad de Informatica, Univer-
sidad Nacional de La Plata,
Argentina, and researcher at
Conicet, Argentina. He is direc-
tor of LIFIA (Research Lab on
advanced informatics) at UNLP,
and he is a member of IEEE and
ACM. He has published more
than a hundred papers on top
conferences and journals. His
research interests include model-
driven web engineering, require-
ments engineering, and human–
computer interaction.

123

	DataMock: An Agile Approach for Building Data Models from User Interface Mockups
	Abstract
	1 Introduction
	2 Background and Related Work
	3 The DataMock Approach: From User Interface Mockups to Data Models
	3.1 Steps 1 and 2: User Stories Definition and Mockup Building
	3.2 Step 3: Mockups Annotation
	3.3 Step 4: Mockups and Tagging Processing and Data Model Generation
	3.4 Assisted Error Detection
	3.5 DataMock and Its Supporting Tools

	4 A Full Example of DataMock Usage
	5 Assessing DataMock: A Controlled Experiment
	5.1 Planning Stage: Goal
	5.2 Definition Stage: Questions and Metrics
	5.3 Data Collection Stage: Method
	5.4 Interpretation Stage: Discussion of Results
	5.5 Threats to Validity

	6 Conclusion and Further Work
	References

