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Abstract: We theoretically investigate the effect that twisted lighthas
on the orbital and spin dynamics of electrons in quantum rings possessing
sizable Rashba spin-orbit interaction. The system Hamiltonian for such
a strongly inhomogeneous light field exhibits terms which induce both
spin-conserving and spin-flip processes. We analyze the dynamics in terms
of the perturbation introduced by a weak light field on the Rasha electronic
states, and describe the effects that the orbital angular momentum as well as
the inhomogeneous character of the beam have on the orbital and the spin
dynamics.
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1. Introduction

In a recent series of articles we studied the interaction of twisted light (TL) [1] with semi-
conductor nanostructures, and showed that interesting neweffects are produced because of the
orbital angular momentum (OAM) and the inhomogeneous character of the TL beam. In par-
ticular, we demonstrated that circulating electric currents are generated in interband transitions
in semiconductor quantum rings (QR) [2], and that new electronic transitions become optically
allowed in semiconductor quantum dots (QD) [3, 4]. Nevertheless, the topic of spin dynamics
driven by TL has not been, to the best of our knowledge, addressed so far in the literature. De-
tailed descriptions of spin dynamics are of the utmost importance in condensed matter physics,
from first principles to applications in spintronics. At thesame time, the control of nanosystems
by optical means is a very active field of research, for it proves to be an efficient, fast technique
to manipulate quantum states.

In this article, we report our theoretical predictions on the orbital and the spin dynamics of
conduction-band electrons in QR illuminated with TL, when the Rashba spin-orbit interaction
(SOI) in the QR is taken into account. By comparison with the canonical case of irradiation
with plane waves, we show that a variety of new effects arise,some connected to the orbital
angular momentum of the TL beam, and others to its inhomogeneous character.

In Sec. 2 the theoretical model is introduced, the matrix elements of the TL-QR interac-
tion are obtained in Sec. 3, Sec. 4 studies the quantum evolution of the photoexcited QR, and
conclusions are presented in Sec. 5.

2. Twisted light and Quantum rings

The system under investigation is a phase-coherent mesoscopic quantum ring of radiusa, thick-
nessd, and heighth (with a≫ d,h), illuminated at normal incidence (z-axis) by THz twisted
light radiation. We consider the situation where the QR and the TL symmetry axes coincide,
which we believe poses no technological difficulty since large QRs are currently manufactured
[5]; otherwise, our previous findings on off-centered beams[4] may serve to clarify experimen-
tal results. The electronic states of the QR are described inthe envelope-function approxima-
tion, and will be given after the Hamiltonian is introduced.While studying spin and orbital dy-
namics, we will assume that there is one electron occupying initially (t = 0−) a conduction-band
QR eigenstate. Experimentally, if phase-coherence is desired, net charge in the conduction-band
states is injected via modulation doping, in order to reduceimpurity scattering. Electrons can
also be promoted to the conduction-band states by means of photo-excitation with ultrashort
optical pulses, although in this case their lifetime prior to recombination is of the order of
nanoseconds. THz TL radiation will then induce intraband transitions.

The TL beam is represented by its vector potential in cylindrical coordinates (keeping only
its transverse components) [6]

A(r, t) = εεεσ Fl (qr r)ei(qzz−ωt) eil φ + c.c.

= A(+)(r, t)+A(−)(r, t) , (1)

with the polarization vectors given byεεεσ = x̂+σ iŷ= eσ iφ (r̂+σ iφ̂), σ =±1, andc.c. denoting
the complex conjugate. The radial functionFl(qr r) is left, for the moment, unspecified. Disre-
garding the longitudinal component ofA is justified in usual experimental conditions, in which
qz ≫ qr .

The Hamiltonian of the system of QR plus TL, including the Rashba spin-orbit coupling in
the QR [7], is decomposed into

H = HSOI+H1,



Table 1. Notation
tanγ =−ωR/ω0

h̄ωR = 2αR/a
h̄ω0 = h̄2/(m∗

ea2)
xs =−(1− sw)/2

w=
√

1+Q2
R= 1/cos(γ)

with

HSOI =
p̂2

2m∗
e
+V(r)+

αR

h̄
[σ̂σσ × p̂]z (2)

H1 = − q
me

A(r, t) · p̂− qαR

h̄
[σ̂σσ ×A(r, t)]z (3)

whereq=−eandme (m∗
e) are the charge and mass (effective mass) of the electron,V(r) the QR

confinement potential, and̂σσσ is the vector of Pauli matrices. The Rashba coupling constant is
αR. The perturbationH1 introduced by the light beam has been deduced from minimal coupling
up to first order inA(r, t). We leave out the Dresselhaus spin-orbit coupling since, asshown in
Ref. [8], in quasi-one-dimensional structures it can be eliminated by an adequate choice of the
lateral confinement.

In principle, Eq. (3) should include a Zeeman term coming from the magnetic component of
the TL field. A simple calculation of∇×A(r, t) shows that this magnetic field has transverse as
well as longitudinal components, which are proportional toqz andqr , respectively. Therefore,
both are small compared to the other terms in the Hamiltonianand can be safely neglected.

Eq. (3) exhibits the unfamiliar term(−qαR/h̄)[σ̂σσ ×A(r, t)]z coupling linearly the light elec-
tric field to the spin operators via the Rashba-type spin-orbit coupling. Note that the final ex-
pression of the Hamiltonian in Ref. [7] does not contain an analogous term. That simplification
was possible due to the applicability of the dipole approximation in that work. The Göppert-
Mayer transformation, leading to the dipole-moment Hamiltonian, is not possible in our prob-
lem due to the inhomogeneous nature of the TL beam. Therefore, we continue our analysis
within the Coulomb gauge which leads to the Hamiltonian of Eqs. (2,3).

As has been shown in previous works [9, 7] the HamiltonianHSOI can be exactly diagonal-
ized, having envelope eigenfunctionsΦns(r) = ψns(ϕ)R(r)Z(z) with

ψns(ϕ) =
1√
2π

ei(n+1/2)ϕνs(γ,ϕ) , (4)

with the z-projection of the total angular momentumn+1/2, angular coordinateϕ , and angle-
dependent spinor

ν1(γ,ϕ) =

(

cos(γ/2)e−iϕ/2

sin(γ/2)eiϕ/2

)

(5)

ν−1(γ,ϕ) =

(

−sin(γ/2)e−iϕ/2

cos(γ/2)eiϕ/2

)

, (6)

whereγ is the angle between the z-axis and the spin; this angle depends on the quantum number
n, but for negligible Zeeman energy, it becomes independent of n: tanγ =−ωR/ω0, with h̄ωR=
2αR/a andh̄ω0 = h̄2/(m∗

ea2). The energies of the states are

εns =
h̄ω0

2

[

(n− xs)
2− Q2

R

4

]

, (7)



with xs = −(1− sw)/2, w =
√

1+Q2
R = 1/cos(γ), ands= ±1 for respectively spin up and

down in the (ϕ-dependent) local frame. (The notation is summarized in Table 1.)

3. Interaction between twisted light and quantum rings

We now obtain the matrix elements of the light-matter interaction given by Eq. (3), in the case
of TL beams (Eq. (1)) applied on the QR described in the previous Section. The matrix elements
are thus calculated in the basis set of the QR states, Eq. (4),and we will treat separately the
two terms ofH1 = H11+H12 given in Eq. (3). In Sec. 4 we will employ the matrix elements
obtained here in order to analyze the orbital and spin dynamics of the QR in time-dependent
perturbation theory, consideringH1 as a perturbation toHSOI.

3.1. Hamiltonian H11 =−(q/me)A(r, t) · p̂
As customary, we separate the Hamiltonian into positive andnegative parts

H11 = H(+)
11 +H(−)

11

= − q
me

[

A(+)(r, t)+A(−)(r, t)
]

· p̂ . (8)

Let us calculate the matrix element〈n′s′|H(+)
11 |ns〉 of the positive term, between initial|ns〉

and final〈n′s′| states, where〈r |ns〉 = Φns(r)uλ (r), uλ (r) is the microscopic (with lattice pe-
riodicity) wave-function. A series of simplifications are possible thanks to the assumption that
all processes occur in the same subband:i) p̂ acting on the microscopic wave-function yields
a vanishing matrix element;ii) p̂ acting on the envelope wave functionsZ(z) andR(r) would
induce transitions between differentz/r-subbands, and thus are disregarded. In addition, since
the QR is thin, the smooth functionFl (qr r) can be taken as constant at the value ofr = a and
pulled out of the matrix element. Finally, we separate the integral over the whole QR into an
integral on the cell and a sum (that can be taken as an integral) over all cells [10]. After these
simplifications, we are left with the element

〈n′s′|H(+)
11 |ns〉 = −σ

1√
2

h̄q
me

eiqzz0Fl (qr a)e−iωt

×
∫

V
d3rΦ∗

n′s′(r)ei(l+σ)ϕ
[

1
r

∂ϕ Φns(r)
]

. (9)

Using Eq. (4)

∂ϕψns(ϕ) = i(n+1/2)ψns(ϕ)−
is

2
√

2π
ei(n+1/2)ϕ νs(−γ,ϕ) . (10)

Then,

〈n′s′|H(+)
11 |ns〉 = ξσ e−iωt δl+σ ,n′−n[δs,s′(n+1/2− scosγ)+ δs,−s′ sinγ] , (11)

whereξσ =− iσ√
2

h̄q
mea eiqzz0Fl (qr a). The product of spinors does not depend onϕ , and was pulled

out of the integral. For the negative partH(−)
11 we simply use〈n′s′|H(−)

11 |ns〉= 〈ns|H(+)
11 |n′s′〉∗ .

We see that the HamiltonianH11, though not a spin-orbit interaction, produces spin flips due
to the last term of Eq. (11). This is possible becauseH11 acts upon eigenstates of the Rashba
HamiltonianHSOI, which are not eigenstates ofσ̂z. In the case of weak Rashba effect, the spin-
flip term is proportional to the angleγ ∝ αR; for vanishing spin-orbit coupling, we recover the
spin-conserving interaction.



3.2. Hamiltonian H12 =−(qαR/h̄)[σ̂σσ ×A(r, t)]z

As mentioned previously,

H12 = −qαR

h̄
[σ̂σσ ×A(r, t)]z (12)

appears as a consequence of the inhomogeneous nature of the light field and, in contrast toH11,
is a spin-light coupling which is linear in the electric fieldstrength. This dependence stems
from the functional form of the Rashba-type spin-orbit coupling.

Again, for the positive part of the vector potential

〈n′s′|H(+)
12 |ns〉 = − qαR

2π
√

2h̄
eiqzz0 Fl(qr a)e−iωt

×
∫

V
dϕ e−i(n′−n−l)ϕν†

s′(γ,ϕ)(σ iσ̂x− σ̂y)νs(γ,ϕ) .

The productsν†
s′(γ,ϕ)(σ iσ̂x− σ̂y)νs(γ,ϕ) can be evaluated, and brought into the matrix form

iσeiσϕ
(

sinγ cosγ +σ
cosγ −σ −sinγ

)

= iσeiσϕMσ . (13)

Note how the polarization of the light couples to the spin degree of freedom, through the off-
diagonal terms. With these expressions, the matrix elementreads

〈n′s′|H(+)
12 |ns〉 = ησ e−iωtδn′−n,l+σ Mσs′s, (14)

whereησ =−iσ qαR
h̄ eiqzz0 Fl (qr a).

3.3. The total perturbation H1

A compact matrix form of the total perturbation, in a representation whereν†
1 = (1,0) and

ν†
−1 = (0,1), is

H1,n′n = e−iωtδn′−n,l+σ

×
[

ξσ

(

n+ 1
2 − cosγ sinγ
sinγ n+ 1

2 + cosγ

)

+ησ

(

sinγ cosγ +σ
cosγ −σ −sinγ

)]

+H.c. ,(15)

where theH.c. implies not only the conjugate and transposition of the spinmatrix, but also the
transpositionn↔ n′. We remind the reader that the terms proportional toξσ (ησ ) come from
H11 (H12).

4. Evolution of single-particle states

We use standard time-dependent perturbation theory, for the case of a harmonic perturbation.
The general formula for the wave function is

Ψ(r, t) = ∑ans(t)e
−i εnst/h̄ψns(ϕ) (16)

where the coefficients are given by

a(1)ns (t) =
1
h̄
〈ns|H(+)

1 (0) |n0s0〉
1−ei(ω f i−ω)t

ω f i −ω

+
1
h̄
〈ns|H(−)

1 (0) |n0s0〉
1−ei(ω f i+ω)t

ω f i +ω
(17)



where{n0,s0} are the quantum numbers of the initial state, andh̄ω f i = εns− εn0s0.
In contrast tointer-band transitions, where the Rotating Wave Approximation (RWA) is usu-

ally applied in expressions such as Eq. (17)—e.g. by neglecting the term withω f i +ω for
absorption—, inintra-band transitions this approximation is not justified. In fact, the resonant
|ω f i | −ω and non-resonant|ω f i |+ω terms are of the same order of magnitude, and should
both in principle be included.

Some comments on the topic of gauge invariance as related to twisted light are in order. As
previously mentioned, we work in the Coulomb gauge, where the vector potential appears as
the main quantity, in contrast to other treatments of light-matter interaction based on the light’s
electric and magnetic fields. In the standard—and simplest—case of plane waves, the Göppert-
Mayer transformation on a fully homogeneous field yields a Hamiltonian whosep2/2m is gauge
invariant, thus representing a physical quantity, i.e. thekinetic energy; in contrast, the same
term in the Coulomb gauge is not, by itself, gauge invariant.As a consequence, for example,
the eigenvectors ofp2/2m+V(r), though the same mathematical functions, do not have the
same meaning in both gauges. In general, the correspondencebetween the predictions obtained
in both gauges is achieved via a transformation of the wave function. In the special case of
the calculation of transition probabilities, these coincide in both gauges without the need of a
transformation of the wave function if the vector potentialis zero at the initial and final times, as
explicitly demonstrated by Lambet al.[11]. In addition, the discrepancies between the results of
aE(t) ·d and aA(t) ·p approach are reported to be smaller the closer to resonance excitation one
is [11, 12]. This suggests that consideration of the gauge invariance problem is more important
in our present work, where we deal with intraband excitation. Furthermore, the case of twisted
light is a more delicate one, since the inhomogeneous character of the beam precludes our use
of the Göppert-Mayer transformation. In any case, our results, obtained within a given gauge,
are perfectly valid even though they may require further work in order to be used to interpret
particular experimental situations.

4.1. General considerations

For arbitrary OAMl and polarizationσ of the light, Eq. (15) shows that transitions to nearby
and distant states are possible. We mention that a particular situation happens for the value
l =−σ : thetotal angular momentum of the electron is unchanged by the light.

In general, we can say that in this system there will be two different time scales present in
the quantum evolution: one associated with the evolution ofthe orbital, and another one with
the spin, degrees of freedom. In the limit of zero Rashba SOI,there would be no spin evolution.
By the same token, since the SOI is in general a weak interaction, the spin evolution will be
slow compared to the orbital one.

The rate of spin conversion achieved by TL irradiation is notsimply proportional to the OAM
of the beam, but it is rather related to the beam functionFl(qr r) for the radial profile via the
constantsξ andη . The orbital motion is dictated by the constantξ , while the spin evolution
(spin-flip) by both constantsξ andη .

The case of plane waves can be deduced from our formalism by taking l = 0. Although in
this case a gauge transformation could be made towards aE(t) · d Hamiltonian, our present
Hamiltonian can still be used. Then, Eq. (15) shows that spinflips occur even whenl = 0 due
to the presence of the Rashba SOI.

In what follows we consider in more detail the evolution under small spin-orbit coupling,
since it is the usual situation in real materials.



4.2. Small spin-orbit coupling

The conditionωR ≪ ω0 allows for the simplification of the Hamiltonian Eq. (15) to

H1,n′n = e−iωtδn′−n,l+σ

×
[

ξσ

(

n− 1
2 γ

γ n+ 3
2

)

+ησ

(

0 1+σ
1−σ 0

)]

+H.c. (18)

We exemplify by studying the evolution of a particle initially in state|n0,1〉. A TL field, having
l = 1 andσ = 1, is turned on at timet = 0+ and turned off at timet = T. Then, the wave
function is that of Eq. (16) with coefficients

a(1)n0−2,−1(T) =
1−ei(ω f i+ω)T

h̄(ω f i +ω)
(ξ ∗

1 γ +2η∗
1)

a(1)n0+2,−1(T) =
1−ei(ω f i−ω)T

h̄(ω f i −ω)
ξ1γ

a(1)n0+2,1(T) =
1−ei(ω f i−ω)T

h̄(ω f i −ω)
ξ1(n0−1/2)

a(1)n0−2,1(T) =
1−ei(ω f i+ω)T

h̄(ω f i +ω)
ξ ∗

1 (n0−5/2) , (19)

whereω f i is understood as having the right indices for each case; while in all casesi = {n0,1},
for example, for the third line of Eq. (19),f = {n0+2,1}.

Fig. 1. Pictorial representation of the electronic bands and a transition induced by TL hav-
ing OAM l = 1 andσ = 1. According to time-dependent perturbation theory: an electron
initially in the state{n0,↑} evolves into a superposition of neighboring states having the
same and the opposite spin states. Transitions, indicated by enclosed numbers (blue), cor-

respond to the coefficients: (1)a(1)n0−2,−1(t), (2) a(1)n0+2,−1(t), (3) a(1)n0+2,1(t), (4) a(1)n0−2,1(t),
of Eqs. (19).



A pictorial representation of the process is given in Fig. 1.The initial state evolves into a
superposition of neighboring states having the same and theopposite spin states and differing
in their total angular momentum byl +σ = 2. The perturbationH11 is responsible for spin-
conserving and spin-flip terms, whileH12 causes only spin flips. As seen from Eq. (18), the
ratio η/(ξ γ) = 1/

√
2 determines the relative contribution for spin conversionbetweenH11

andH12. On the other hand, the rate of change of orbital and spin degrees of freedom can be
estimated from the corresponding matrix element of the interaction Hamiltonian. The rates are
then estimated byΓs = ξ γ/h̄ for the spin andΓo = ξ/h̄ for the orbital degrees of freedom, as

can also be easily seen from the expressions fora(1)n0+2,−1(T) anda(1)n0+2,1(T) in Eq. (19). In the

case of a GaAs QR of radiusa= 10−6 m havingαR = 10−14 V m and pulsed laser parameters
typical for experiments: power 106 J Hz, repetition rate 106 Hz and wavelength 10−5 m, we
obtainΓs = 0.1ps−1 andΓo = 0.5ps−1.

One can notice that, even without applying the RWA, only one of the terms in Eq. (17) sur-
vives for each final statef . This is due to the fact that we keep track of the selection rule for the
momentum conservation (encoded in the matrix element of theinteraction Hamiltonian), which
is usually missing in the standard treatment of plane-wavesexcitation. In fact, the four terms are
in Eq. (19) correspond to resonant processes, sinceω f i < 0 for transitions # 1 and # 4. More-
over, the processes are real, in the sense that an electronictransition to a higher (lower) energy
state, occurs simultaneosly with an annihilation (creation) of a photon as signaled by the nega-
tive (positive) sign of the complex exponential exp(−iωT) (exp(iωT))—the exponential stems
from the positive (negative) part of the vector potential Eq. (1), which in a second-quantization
formalism, will be accompanied by an annihilation (creation) photon operator.

Let us imagine a different situation from that illustrated in Fig. 1, that of an initial state
n0 < 0, i.e. lying to the left of the band minimum. The selection rule on the total angular mo-
mentumδn−n0,2 in the first term of Eq. (18) tells us that this is a transition to a staten such
thatn> n0, to the right ofn0. Since this term isH(+), it corresponds to a photon annihilation;
however, the transition leaves the electron in a lower energy state, giving rise to avirtual pro-
cess. Virtual processes serve as intermediate states in a sequence of transitions ending in energy
conservation, or they may happen in a time scale compatible with the Heisenberg’s uncertainty
principle. In general, the situation is somewhat complicated, and the type of transition depends
on the values ofn0, σ andl . Using large values of the OAM can create a large difference be-
tween transitions, and one effectively may neglect some of them: non-resonant terms can be
disregarded.

4.3. Induced polarization and current

Since both resonant and non-resonant terms ought to be considered, the current in intraband
transitions is much smaller than expected for interband transitions. This is easily seen for the
case of TL acting upon a QR having no SOI. When the SOI is not present, we can replace the
wave functions byψm(ϕ) = eimϕ —for a discussion on the difference between this and Eq. (4)
see Ref. [7]. It is a simple matter to derive the matrix elements for the interaction with TL

〈m′|H(+)
11 |m〉 = ξσ e−iωtδl+σ ,m′−mm. (20)

To exemplify, let us takel = 1 andσ = 1, and study the evolution from an initial state|m0〉.
Then, the only non-vanishing terms are{am0,am0−2,am0+2}. A calculation of the current den-
sity, after the light is turned off att = T, yields, after integrating the current density in the whole
ring

J ≃ qh̄
m

{

m0+2|ξ−|2D2m3
0

}

, (21)



whereD is a constant that depends on the sign ofm0, but for intraband transitions we expect
D(−|m0|)≃ D(|m0|). The perturbation increases the rotation in the same direction the particle
was originally moving, either right or left. Then, we conclude that there is no significant current
for a balanced population of electrons in the QR.

5. Conclusions

We have studied the dynamics of electrons confined to semiconductor-based quantum rings
under irradiation by twisted light, in the presence of Rashba spin-orbit coupling. We worked
out the matrix elements of the light-matter interaction in the Coulomb gauge on the Rashba
states of the quantum ring. Because the unperturbed states encode the SOI, the common light-
matter interaction̂p ·A, though not a spin-orbit coupling, can produce spin flips. Wepointed
out that the dynamics of orbital motion and spin exhibit two distinct time scales, and we have
estimated these two in the case of small spin-orbit interaction. We point out that, for strong
spin-orbit interaction as reported by Zhuet al [7], the spin dynamics can be faster than the
orbital one. In view of the impossibility to apply the Rotating Wave Approximation, we studied
the differences between optical excitation of inter- and intraband transitions. Thanks to the
freedom to choose the value of OAM, we observe that resonant and non-resonant terms may be
manipulated in order to gain control of specific transitions.
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