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Abstract:  We theoretically investigate the effect that twisted ligats

on the orbital and spin dynamics of electrons in quantumsripgssessing
sizable Rashba spin-orbit interaction. The system Haméto for such

a strongly inhomogeneous light field exhibits terms whicHuice both

spin-conserving and spin-flip processes. We analyze thardigs in terms
of the perturbation introduced by a weak light field on thelRaslectronic
states, and describe the effects that the orbital angulaxentum as well as
the inhomogeneous character of the beam have on the orbdaha spin

dynamics.
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1. Introduction

In a recent series of articles we studied the interactiomigted light (TL) [1] with semi-
conductor nanostructures, and showed that interestingeffests are produced because of the
orbital angular momentum (OAM) and the inhomogeneous daraf the TL beam. In par-
ticular, we demonstrated that circulating electric cutseare generated in interband transitions
in semiconductor quantum rings (QR) [2], and that new eteitrtransitions become optically
allowed in semiconductor quantum dots (QD) [3, 4]. Nevdase, the topic of spin dynamics
driven by TL has not been, to the best of our knowledge, addreso far in the literature. De-
tailed descriptions of spin dynamics are of the utmost irtgpare in condensed matter physics,
from first principles to applications in spintronics. At th&me time, the control of nanosystems
by optical means is a very active field of research, for it psoto be an efficient, fast technique
to manipulate quantum states.

In this article, we report our theoretical predictions oa thrbital and the spin dynamics of
conduction-band electrons in QR illuminated with TL, whbe Rashba spin-orbit interaction
(SOI) in the QR is taken into account. By comparison with thaanical case of irradiation
with plane waves, we show that a variety of new effects ageme connected to the orbital
angular momentum of the TL beam, and others to its inhomageneharacter.

In Sec. 2 the theoretical model is introduced, the matrixnelets of the TL-QR interac-
tion are obtained in Sec. 3, Sec. 4 studies the quantum éwolot the photoexcited QR, and
conclusions are presented in Sec. 5.

2. Twisted light and Quantum rings

The system under investigation is a phase-coherent mgsospeantum ring of radiua, thick-
nessd, and heighh (with a > d, h), illuminated at normal incidence-@xis) by THz twisted
light radiation. We consider the situation where the QR d®TL symmetry axes coincide,
which we believe poses no technological difficulty sincgéa®Rs are currently manufactured
[5]; otherwise, our previous findings on off-centered befdhmay serve to clarify experimen-
tal results. The electronic states of the QR are describ#ueirnvelope-function approxima-
tion, and will be given after the Hamiltonian is introduc®dhile studying spin and orbital dy-
namics, we will assume that there is one electron occupnitiglly (t = 0~) a conduction-band
QR eigenstate. Experimentally, if phase-coherence iset&siet charge in the conduction-band
states is injected via modulation doping, in order to redogaurity scattering. Electrons can
also be promoted to the conduction-band states by meansotd-gdcitation with ultrashort
optical pulses, although in this case their lifetime priorrécombination is of the order of
nanoseconds. THz TL radiation will then induce intrabaadsitions.

The TL beam is represented by its vector potential in cylzaicoordinates (keeping only
its transverse components) [6]

A(rt) = &oR(qr)®@ Ndecc
= AP +AT(r Y, (1)

with the polarization vectors given gy = X+ iy = °'¢(f + gip), o = +1, andc.c. denoting
the complex conjugate. The radial functiBrig, r) is left, for the moment, unspecified. Disre-
garding the longitudinal component Afis justified in usual experimental conditions, in which
0z > Or.
The Hamiltonian of the system of QR plus TL, including the IRzes spin-orbit coupling in
the QR [7], is decomposed into
H = Hsoi+H,



Table 1. Notation

tany = —awr/wo
hor = 20r/a
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whereq= —eandme (M) are the charge and mass (effective mass) of the elestfonthe QR
confinement potential, angt is the vector of Pauli matrices. The Rashba coupling cohg&an
oRr. The perturbatiofd; introduced by the light beam has been deduced from minimadlowy

up to first order inA(r,t). We leave out the Dresselhaus spin-orbit coupling sincehagn in
Ref. [8], in quasi-one-dimensional structures it can beglated by an adequate choice of the
lateral confinement.

In principle, Eq. (3) should include a Zeeman term comingfitbe magnetic component of
the TL field. A simple calculation dfl x A(r,t) shows that this magnetic field has transverse as
well as longitudinal components, which are proportionajt@andq;, respectively. Therefore,
both are small compared to the other terms in the Hamiltoaihcan be safely neglected.

Eqg. (3) exhibits the unfamiliar terfi-qar/h) [0 x A(r,t)], coupling linearly the light elec-
tric field to the spin operators via the Rashba-type spirtadupling. Note that the final ex-
pression of the Hamiltonian in Ref. [7] does not contain aal@gous term. That simplification
was possible due to the applicability of the dipole appration in that work. The Goppert-
Mayer transformation, leading to the dipole-moment Haonitan, is not possible in our prob-
lem due to the inhomogeneous nature of the TL beam. Theref@eontinue our analysis
within the Coulomb gauge which leads to the Hamiltonian of.E@,3).

As has been shown in previous works [9, 7] the Hamiltortiige, can be exactly diagonal-
ized, having envelope eigenfunctiofgs(r) = Yns(¢)R(r)Z(z) with

_ L g2
‘-/-’ns(d’) - \/Z_[el VS(V)¢)) (4)
with the z-projection of the total angular momentam 1/2, angular coordinat¢, and angle-
dependent spinor

2)g-i$/2

nird) = (Sel=e:) ©
_sin(y/2)e 19/

i) = (oiger ) ©)

wherey is the angle between the z-axis and the spin; this angle dsmamthe quantum number
n, but for negligible Zeeman energy, it becomes independenttany = —wr/ wy, with hawr =
2ar/a andhay = R%/(m;a?). The energies of the states are

fs = [(n—xs)z—jé] ; (1)



with xs = —(1—sw)/2, w= ,/1+ Q3 = 1/cogy), ands = +1 for respectively spin up and
down in the ¢p-dependent) local frame. (The notation is summarized ineTal)

3. Interaction between twisted light and quantum rings

We now obtain the matrix elements of the light-matter int&oan given by Eq. (3), in the case
of TL beams (Eq. (1)) applied on the QR described in the pres/#ection. The matrix elements
are thus calculated in the basis set of the QR states, Ecar{d)ywe will treat separately the
two terms ofH; = Hy1 + Hi2 given in Eq. (3). In Sec. 4 we will employ the matrix elements
obtained here in order to analyze the orbital and spin dyosuwii the QR in time-dependent
perturbation theory, considerirty as a perturbation tblgg.

3.1. Hamiltonian H; = —(g/me)A(r,t)-p
As customary, we separate the Hamiltonian into positiverseghtive parts

Hin = Hﬁ)—i-Hﬂ)

_ SR
_ fW—b[A“)(r,t)nLA( (.0 -p. (®)

Let us calculate the matrix eleme(i’s| Hﬁ) Ing) of the positive term, between initighs)

and final(n's'| states, wherér [ns) = Pns(r)u, (r), uy (r) is the microscopic (with lattice pe-
riodicity) wave-function. A series of simplifications aregsible thanks to the assumption that
all processes occur in the same subbahp@: acting on the microscopic wave-function yields

a vanishing matrix elemenii;) p acting on the envelope wave functiofi&) andR(r) would
induce transitions between differenr-subbands, and thus are disregarded. In addition, since
the QR is thin, the smooth functida(qg, r) can be taken as constant at the value efa and
pulled out of the matrix element. Finally, we separate ttiegral over the whole QR into an
integral on the cell and a sum (that can be taken as an injexye all cells [10]. After these
simplifications, we are left with the element

WS Ing = o e g a)e
x./\;d3r¢;,g(r)ei(l+o)¢ [%%‘Dns(f)} . 9)
Using Eq. (4)
Opihs®) = (n+1/2nd9) ~ eI (). (10)
Then,
(MS|H IS = & 8,0 n[dss(n+1/2—scO8y) +& gsiny, (1)
whereé, = —12 N4 daz, (gr&). The product of spinors does not dependpoand was pulled

V2 mea
out of the integral. For the negative phrﬁ) we simply usen’s/| Hﬂ) [ns) = (ng Hﬁr) In'sy*.
We see that the Hamiltoniaf; 1, though not a spin-orbit interaction, produces spin flips du
to the last term of Eq. (11). This is possible becadggacts upon eigenstates of the Rashba
HamiltonianHso), which are not eigenstates 6. In the case of weak Rashba effect, the spin-
flip term is proportional to the anghe ag; for vanishing spin-orbit coupling, we recover the
spin-conserving interaction.



3.2.  Hamiltonian Hy = —(qar/h) [0 x A(r,1)];
As mentioned previously,

Hiz = ———=[0xA(r,t); (12)

appears as a consequence of the inhomogeneous natureighttieeld and, in contrast tbl1 1,
is a spin-light coupling which is linear in the electric figdttength. This dependence stems
from the functional form of the Rashba-type spin-orbit caugp

Again, for the positive part of the vector potential

ndH Ing = — 99R gdz20 ot
(n's|H;," [ng) 2\/§ﬁ Rarae

< [ doe UL () (01— Gy)us(y. ).
The productsvg(y, ¢)(0idx — Gy)vs(y, ¢) can be evaluated, and brought into the matrix form

iae“’¢( siny COSV.+G)=iaei"¢Ma. (13)
cosy—o  —siny

Note how the polarization of the light couples to the spinrdegf freedom, through the off-
diagonal terms. With these expressions, the matrix eleneauls

(MS|HE N9 = Noe™™&y 11 oMoss, (14)
whereng = —ic 3R9% R (g  a).

3.3. The total perturbation H

A compact matrix form of the total perturbation, in a reprgaéon Wherev1 (1,0) and
vl =(0,1),is
-1 ) )

Hiwn = efiwtén/,njwa
n- 3 —cosy siny siny  cosy+o
8 [EU ( siny n+%+cosy ) +1No ( cosy—a  —siny )] +H.c.,(15)

where theH.c. implies not only the conjugate and transposition of the spatrix, but also the
transpositiom < n’. We remind the reader that the terms proportional4dns) come from

Hi1 (H12).
4. Evolution of single-particle states

We use standard time-dependent perturbation theory, éocdlse of a harmonic perturbation.
The general formula for the wave function is

= ans(t)e " Myng(@) (16)
where the coefficients are given by
(1) B } +) 1 — g(@ri—wt
ans (1) = h—<nq H; 7 (0) [noso) Wi —w
1 ) 1— ei(wfi+w)t
=(ngH,; (0 - 17
s H; ™ (0) Inoso) — (17)



where{np, s} are the quantum numbers of the initial state, Bagh = &ns— &nys, -

In contrast tanter-band transitions, where the Rotating Wave ApproximatiRWA) is usu-
ally applied in expressions such as Eq. (17)—e.g. by ndgkgthe term withwi + w for
absorption—, inntra-band transitions this approximation is not justified. lotfahe resonant
|owri] — w and non-resonantosi| + w terms are of the same order of magnitude, and should
both in principle be included.

Some comments on the topic of gauge invariance as relateddted light are in order. As
previously mentioned, we work in the Coulomb gauge, wheeevikctor potential appears as
the main quantity, in contrast to other treatments of ligiattter interaction based on the light's
electric and magnetic fields. In the standard—and simplease-of plane waves, the Goppert-
Mayer transformation on a fully homogeneous field yields enftanian whose?/2mis gauge
invariant, thus representing a physical quantity, i.e.Kkimetic energy; in contrast, the same
term in the Coulomb gauge is not, by itself, gauge invariAsta consequence, for example,
the eigenvectors gb?/2m+V (r), though the same mathematical functions, do not have the
same meaning in both gauges. In general, the correspondetveeen the predictions obtained
in both gauges is achieved via a transformation of the wawetfon. In the special case of
the calculation of transition probabilities, these codgcin both gauges without the need of a
transformation of the wave function if the vector potenigaero at the initial and final times, as
explicitly demonstrated by Lamdt al.[11]. In addition, the discrepancies between the results of
aE(t)-dandaA(t)-p approach are reported to be smaller the closer to resonacitat®n one
is [11, 12]. This suggests that consideration of the gaweggi@nce problem is more important
in our present work, where we deal with intraband excitatfanthermore, the case of twisted
light is a more delicate one, since the inhomogeneous cteairaicthe beam precludes our use
of the Goppert-Mayer transformation. In any case, ourltgsabtained within a given gauge,
are perfectly valid even though they may require furtherkwiarorder to be used to interpret
particular experimental situations.

4.1. General considerations

For arbitrary OAMI and polarizatioro of the light, Eq. (15) shows that transitions to nearby
and distant states are possible. We mention that a partisitleation happens for the value
| = —o: thetotal angular momentum of the electron is unchanged by the light.

In general, we can say that in this system there will be twtedéht time scales present in
the quantum evolution: one associated with the evolutiotheforbital, and another one with
the spin, degrees of freedom. In the limit of zero Rashba 8@te would be no spin evolution.
By the same token, since the SOl is in general a weak intergdtie spin evolution will be
slow compared to the orbital one.

The rate of spin conversion achieved by TL irradiation issigiply proportional to the OAM
of the beam, but it is rather related to the beam funckdn,r) for the radial profile via the
constants andn. The orbital motion is dictated by the const&ntwhile the spin evolution
(spin-flip) by both constant§ andn.

The case of plane waves can be deduced from our formalismkingth= 0. Although in
this case a gauge transformation could be made towaEi$)ad Hamiltonian, our present
Hamiltonian can still be used. Then, Eq. (15) shows that #jpis occur even wheh= 0 due
to the presence of the Rashba SOI.

In what follows we consider in more detail the evolution ungmall spin-orbit coupling,
since it is the usual situation in real materials.



4.2. Small spin-orbit coupling
The conditionwr < wy allows for the simplification of the Hamiltonian Eq. (15) to

Hl,n’n = eiiwtan/—n,wa
1
n—s; y 0 1+0
X[EU( v n+%)+ng(1a 0 )]+H.c. (18)

We exemplify by studying the evolution of a particle initjaih state|ng, 1). A TL field, having
| =1 ando = 1, is turned on at timé& = 0" and turned off at timé = T. Then, the wave
function is that of Eq. (16) with coefficients

1— ei(wfi+w)T
ar%)fz,—l(-r) = m(fl)”rzrh)
1) 1- g (wri— )T
aio-1(T) = ﬁ
1— e(wi-—w)T
a1("|j(;)+2,1(T) = hen—w) $1(no—1/2)
1— elwf.+w)T
a1("|j(;)—2,1(T) = m 1(No—5/2), (19)

wherewy; is understood as having the right indices for each casegwidll cases = {nop, 1},
for example, for the third line of Eq. (19j,= {no+ 2, 1}.

S |

ns

n

Fig. 1. Pictorial representation of the electronic bands atransition induced by TL hav-
ing OAM | =1 andg = 1. According to time-dependent perturbation theory: actebe

initially in the state{np, 1} evolves into a superposition of neighboring states havieg t
same and the opposite spin states. Transitions, indicgteddlosed numbers (blue), cor-

respond to the coefficients: (aﬁ%lzﬁl(t), 2 afélzil(t), (3) a;?ﬁ’l(t), 4) a;?izyl(t),
of Egs. (19).



A pictorial representation of the process is given in FigThe initial state evolves into a
superposition of neighboring states having the same andppesite spin states and differing
in their total angular momentum By o = 2. The perturbatiot;1 is responsible for spin-
conserving and spin-flip terms, whilé;» causes only spin flips. As seen from Eq. (18), the
ratio n/(€y) = 1//2 determines the relative contribution for spin converdietweenH;;
andHj,. On the other hand, the rate of change of orbital and spinegsgof freedom can be
estimated from the corresponding matrix element of theactéion Hamiltonian. The rates are
then estimated b5 = £ y/h for the spin and o = £ /h for the orbital degrees of freedom, as
can also be easily seen from the expressionq(_foirzﬁl(T) anda%{rzvl(T) in Eq. (19). In the
case of a GaAs QR of radies= 10~® m havingar = 10-1* V m and pulsed laser parameters
typical for experiments: power £0 Hz, repetition rate FOHz and wavelength 1& m, we
obtainfs=0.1pstandl, =0.5ps L.

One can notice that, even without applying the RWA, only ohihe terms in Eq. (17) sur-
vives for each final staté. This is due to the fact that we keep track of the selectiom fai the
momentum conservation (encoded in the matrix element ahtbeaction Hamiltonian), which
is usually missing in the standard treatment of plane-waxegation. In fact, the four terms are
in Eq. (19) correspond to resonant processes, since: 0 for transitions # 1 and # 4. More-
over, the processes are real, in the sense that an elediramsition to a higher (lower) energy
state, occurs simultaneosly with an annihilation (cregtaf a photon as signaled by the nega-
tive (positive) sign of the complex exponential éxpwT ) (exp(iwT ))—the exponential stems
from the positive (negative) part of the vector potential @9, which in a second-quantization
formalism, will be accompanied by an annihilation (crea}iphoton operator.

Let us imagine a different situation from that illustratedfig. 1, that of an initial state
no < 0, i.e. lying to the left of the band minimum. The selectioteran the total angular mo-
mentumd,_n, 2 in the first term of Eq. (18) tells us that this is a transitionat staten such
thatn > ng, to the right ofng. Since this term i#1 (), it corresponds to a photon annihilation;
however, the transition leaves the electron in a lower gnstate, giving rise to airtual pro-
cess. Virtual processes serve as intermediate statesduarsee of transitions ending in energy
conservation, or they may happen in a time scale compatiititethie Heisenberg’s uncertainty
principle. In general, the situation is somewhat compéidaand the type of transition depends
on the values ohg, o andl. Using large values of the OAM can create a large differereze b
tween transitions, and one effectively may neglect somé@fnt non-resonant terms can be
disregarded.

4.3. Induced polarization and current

Since both resonant and non-resonant terms ought to bedeoedi the current in intraband
transitions is much smaller than expected for interbanastt@ans. This is easily seen for the
case of TL acting upon a QR having no SOIl. When the SOI is natgmte we can replace the
wave functions bym(¢) = €™ —for a discussion on the difference between this and Eq. (4)
see Ref. [7]. Itis a simple matter to derive the matrix eletaéor the interaction with TL

<Wf|Hﬁ)|m> = Eaeiiwthrg,m(,mm. (20)

To exemplify, let us také = 1 ando = 1, and study the evolution from an initial stajieg).
Then, the only non-vanishing terms &f@h,, am,—2,am,+2}- A calculation of the current den-
sity, after the light is turned off at= T, yields, after integrating the current density in the whole
ring

gh

3 = lmo+2g 202}, (21)



whereD is a constant that depends on the sigmmgf but for intraband transitions we expect
D(—|mg|) ~ D(|mg|). The perturbation increases the rotation in the same direttte particle
was originally moving, either right or left. Then, we cond&ithat there is no significant current
for a balanced population of electrons in the QR.

5. Conclusions

We have studied the dynamics of electrons confined to semiictiar-based quantum rings
under irradiation by twisted light, in the presence of Rashpin-orbit coupling. We worked
out the matrix elements of the light-matter interactionfie Coulomb gauge on the Rashba
states of the quantum ring. Because the unperturbed stated@the SOI, the common light-
matter interactiorp - A, though not a spin-orbit coupling, can produce spin flips. pveted
out that the dynamics of orbital motion and spin exhibit tvistidct time scales, and we have
estimated these two in the case of small spin-orbit inteaciWe point out that, for strong
spin-orbit interaction as reported by Zleti al [7], the spin dynamics can be faster than the
orbital one. In view of the impossibility to apply the RotagiWave Approximation, we studied
the differences between optical excitation of inter- anaipand transitions. Thanks to the
freedom to choose the value of OAM, we observe that resomaihhan-resonant terms may be
manipulated in order to gain control of specific transitions
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