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• First analytic attempt for bond dimer percolation by means of analytic methods.
• Extrapolations towards the thermodynamic limit agree well with numeric results.
• Percolation thresholds are reported; they are lower than for bond monomers.
• Jamming coverage is obtained and discussed.
• Critical exponents are obtained and scaled; they are close to expected values.

a r t i c l e i n f o

Article history:
Received 3 September 2013
Received in revised form 16 December 2013
Available online 27 December 2013

Keywords:
Percolation
Bond dimer
Critical exponents
Scaling techniques

a b s t r a c t

Percolation due to the simultaneous occupation of two neighboring bond sites, namely a
bond dimer, is considered here by means of the renormalization cell technique provid-
ing an analytic way to obtain results such as percolation threshold, jamming coverage and
critical exponents. This is complementary to previous numerical studies and extends the
validation of the renormalization cell technique. Four different bond dimer depositions are
considered: nematic, straight, angular and tortuous; results for each of them are given and
analyzed separately. Size of the cells is varied. These results are combined with means of
finite size scaling to obtain tendencies towards the thermodynamic limit. It is observed
that the percolation threshold is reached at lower concentrations than formonomeric bond
percolation establishing a trend for correlated bond percolation similar to the one already
established for site dimer percolation. Two different techniques are used to obtain the per-
colation threshold getting results that are in good agreement with numerical simulations;
similarly acceptable results for jamming coverage are obtained. Values for critical expo-
nents are also in good agreement with those reported by means of numerical techniques.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Most of the efforts done on bond dimer percolation have been based on computer simulations [1–3]. Themain aim of the
present paper is to provide an analytic approximation based on exact results for small cells that can be extrapolated to larger
sizes. The successful comparison with the previously mentioned numerical results will provide a basis for the estimation of
tendencies towards the thermodynamic limit.

This kind of percolation belongs to the class of percolation problems where the deposited object occupies several
contiguous lattice positions (bonds in the present case) in what is called percolation by extended objects. In this case, the
statistical problem becomes exceedingly difficult and a few studies have been devoted to understanding the percolation or
deposition of elements occupying more than one place (site or bond) [4–14].
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Fig. 1. Bond dimers depositions on a square lattice. (a) Nematic (N) only horizontal; (b) Straight (S) both horizontal and vertical with the possibility of
crossing; (c) Angular (A) where the 90° angle is marked by a black circle; (d) Tortuous (T ), which is a combination of all previous possibilities. Dashed and
solid lines represent empty and occupied bond positions respectively.

Although a real case for a bond dimer is harder to realize than for a site dimer (diatomic molecule) its inclusion in the
general study of percolating cases is of importance. On the other hand, a bond dimer is similar to a site trimer and establishes
the onset of long percolating objects where the difference of bond or site percolation tends to dilute as the size of the object
increases. This is on the line of studies including anisotropic percolation where the percolating object is long enough as to
go over several lattice sites or bonds [15–17].

A bond dimer is defined as two nearest-neighbor bonds connected to a common site. We consider the case in which such
dimer is rigid and remains as such after the deposition (it does not dilute) and the deposition is irreversible (it does not
migrate through the lattice). No bond overlaps are allowed. As such, this is a case of local correlated percolation.

We will assume here a square lattice where we study percolation along the left–right direction which we call horizontal
from now on (then vertical is the transversal direction). A portion of such lattice will be called a cell, which can be
characterized by its frame and by its size. The frame is given by the vertical and horizontal edges, denoted by q× ℓ; The size
is the number of constituent bond positions which for square cells corresponds to Γ = qℓ + (q − 1)(ℓ − 1), where q (ℓ) is
the number of bond positions along the vertical (horizontal) direction.

We present below a basic analytic approach to obtain estimations for percolation threshold and critical exponents for the
case of bond dimers; these results are then compared with computer simulations and results for similar systems available
in the literature. Jamming coverage (saturation of dimer deposition leaving monomeric places unoccupied) will also be
considered in the analysis below.

We follow here the approach of a recent paper dealing with dimer site percolation [18] for purposes of comparison.
However, bond dimer percolation is different from dimer site percolation, so algorithms and simulations are also different
from previous case. Themost evident new feature is that here the two elements can have not only a linear orderingwith two
possible orientations similar to the site case, but the constituent bonds can also forma90° anglewith 4 different orientations.
Thus the total number of possible occupation possibilities is 6.

Fig. 1 illustrates the different cases that could be present for bond dimer percolation on a square lattice. We have picked
the particular case of a square cell of frames q × ℓ = 4 × 4 where we consider different deposition possibilities. Fig. 1(a)
shows dimer deposition with just left–right orientation: this percolation case will be called nematic (N). Then, Fig. 1(b)
shows the case in which dimers can have both possible orientations in what will be called straight (S) dimers; in this case
crossing of perpendicular dimers sharing a site is allowed. Fig. 1(c) presents the case in which the bonds forming the dimer
span a 90° angle, which is depicted by a dot; this case will be called angular percolation (A); in this case two angular dimers
can share a site. Fig. 1(d) presents a mixture of all previous depositions in what is called tortuous percolation (T ); we shall
assume equal probability for each of these six possibilities in the T case, leaving out of the analysis any kind of anisotropy
in the lattice.
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Each kind of deposition corresponds to a different possible real situation, so one of them could better represent a
particular system. From this point of view we will consider them separately not attempting any average representation
for them. Certainly themost especial case is the N deposition whichwill be left out of consideration in some particular cases
below.

Depositions take place sequentially over random positions where both places to be occupied by the bond dimer must be
empty. At the beginning dimers are isolated but at a certain point clusters or islands arise. Eventually one of these clusters
grows large enough as to span the cell from left to right reaching percolation. The concentration of occupied positions at
which this phenomenon is achieved is called percolation threshold and it is one of the goals of the present paper.

2. Results and discussion

Let p be the probability that a monomeric (M) bond position is occupied, then 1 − p is the probability that such position
is empty. Then the monomeric bond percolation function that gives the probability that a cell will percolate can be written
in the following general form:

fℓ,Γ (p) =

Γ
j=ℓ

C j
ℓ,Γ pj(1 − p)Γ −j, (1)

where ℓ represents the number of horizontal bonds in the cell, and j is the number of bonds in the percolating cluster; it
follows that ℓ ≤ j ≤ Γ . The coefficients C j

ℓ,Γ correspond to the number of possible configurations leading to monomeric
percolation for a cell of horizontal dimension ℓ and total size Γ . The simple example for C3

2,5 = 8 as it can be appreciated
from Fig. 19 of Ref. [19].

In the problem discussed here numbers are larger, for instance C15
4,25 = 2.715.264, is the number of different monomer

bond configurations for a cell with horizontal length 4, where the total number of bond positions (size) is 25, and the
particular case of percolating clusters of 15 elements (j = 15) is considered. We obtained this and all the other numbers
reported below by means of a computational algorithm that generates all possible bond configurations for each cell.

It turns out that the percolation function for the case of monomer bond occupation on a square cell is a sigmoid with
a fix point at pren = 0.5 which represents the percolation threshold obtained by renormalization (ren) methods. Namely,
we need to solve the equation fℓ,Γ (pren) = pren. Alternatively, the percolation threshold can be approximately obtained by
finding the inflection (inf ) point of the curve pinf , namely, upon solving f ′′

ℓ,Γ (pinf ) = 0.
This same technique can be employed for the cases of dimer percolation given in Fig. 1, provided the following

adjustments are observed [18]:
(1) A dimer occupies simultaneously two empty nearest-neighbor positions compatible with its shape; the occupation
probability d is the one of two monomer positions, namely, d = p2. The corresponding probability for the same set of the
same two positions to be empty is (1 − d). This procedure links these two positions, which is a characteristic of correlated
percolation.
(2) The occupation process is carried out by stages of one dimer at a time up to saturation.
(3) Percolation is then studied according to the usually established rules independent of the kind of object thatwas deposited
on the lattice.
(4) Since occupation is at random it is possible that some single positions remain empty and cannot be occupied by dimers.
On one hand, this will lower the percolation threshold. On the other hand, the occupation of the cell will not always saturate
reaching a maximum filling in what is known as jamming coverage. This phenomenon will require a renormalization of the
percolation function taking into account those configurations that are really reachable. This is done in the following way:

fL,D(d) =
nL,D(d)
mL,D(d)

=

D
j=L

Gj
L,Dd

j(1 − d)D−j

D
j=0

H j
L,Ddj(1 − d)D−j

(2)

where L represents the number of percolating objects along the horizontal direction. Then j varies in the interval L ≤ j ≤ D,
D being the maximum number of dimers for the particular cell. The coefficients Gj

L,D correspond to the number of possible
configurations with a given percolation length j. Coefficients H j

L,D represent the total number of configurations for a given j,
regardless whether they percolate or not. Then it is obvious that Gj

L,D ≤ H j
L,D.

Table 1 yields the corresponding values for previous quantities applied to the four dimer cases shown in Fig. 1. This is
done for the same particular choice of j = 15 used in the case of monomeric occupation so a direct comparison is possible.
Size in each case is arbitrary and appropriate for the illustration purpose of this table. We begin by discussing the N case in
detail; other cases just follow this same approach. In the case of N occupation we illustrate the system bymeans of an 8× 6
cell, leading to a size Γ = 83 bond places, with L = 3 dimers directly percolating from left to right.
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Table 1
Number of percolating trajectoriesΓ 15

L,D and total trajectoriesH15
L,D associated to the

four dimers N , S, A, and T for different sizes.

Cell frame Dimer Γ L D G15
L,D H15

L,D

8 × 6 N 83 3 24 58,578,352 69,775,792
6 × 6 S 61 3 30 18,011,893,092 25,977,230,320
5 × 5 A 41 5 16 143,207,960 146,236,904
5 × 4 T 32 2 16 368,584 368,584

Fig. 2. Bond percolation function associated to monomers (M) and dimers (N , S, A, and T ). The jamming coverage values can be obtained by the maxima
of the functions given in the inset, obtained through the numerator of Eq. (2).

The maximum number of nematic dimers occupying this cell is given by D = q[ℓ/2], where [] represents the integer
part of the result obtained from using this expression, which turns out to be 24 for this example. The number of percolating
configurations with j = 15 is given in the next column under G15

L,D, which in this case is smaller than the total number of
configurations H15

L,D. An analogous interpretation for the columns of this table can be applied to the other occupation cases.
The corresponding expressions for column D are as it follows: D = qℓ/2 + (q − 1)[(ℓ − 1)/2] for S; D = (q − 1)(ℓ − 1) for
A; D = [(qℓ + (q − 1)(ℓ − 1))/2] = [Γ /2] for T .

Values in this tablemay appear a bit surprising at a first look. However, there is always a rationale behind these numbers.
Thus, for instance, the cell 6×6 used for the S case yields largerG15

L,D andH15
L,D coefficients than the larger cell 8×6 used for the

N case due to the fewer possible rearrangements originating partly in the lack of vertical connectors for the latter. Another
curiosity in this table is that the cells picked for the A and T cases both have the same D value (16) but their results for G15

L,D
and H15

L,D coefficients are enormously different. The reason for this can be found in the more possibilities of accommodation
for the A case which leaves more empty places for dimer occupation than the equivalent example for the T case which
saturates, so the all of them percolate making G15

L,D = H15
L,D. This last result is general for the case of large enough occupation

ratios and it is also true for the case of site dimer occupation as shown in Fig. 2 of a recent paper [18]. Several other special
cases could be discussed from Table 1 or a more general version of it, but we leave this discussion at this point.

Fig. 2 aims to illustrate the percolation analysis putting both monomeric and dimeric percolation in the same footing
recalling that d = p2. Then the percolation functions f ∆

X (p), where ∆ identifies the deposition (∆ = M,N, S, A, T ) and X
absorbs both size indices (L,D or ℓ, Γ ). Curves represent the bond percolation functions for several kinds of percolation on
a square cell of size 4 × 4. As a reference we also include the case of bond monomers which is shown by a thick continuous
line; this curve was obtained by solving the Eq. (1) above.

The analysis below is based on calculations for the following cells: (a) 4×6, 5×6, 6×6, 7×6 and 8×6 forN percolation;
(b) 4 × 4, 5 × 4, 6 × 4 and 7 × 4 for S percolation; (c) 4 × 4, 4 × 5, 5 × 4, and 5 × 5 for A percolation; (d) 3 × 3, 4 × 3,
3× 4, 4× 4, 4× 5 and 5× 4 for T percolation. Occupancy considers all possibilities of orientations of the appropriate dimer
according to each percolation case (N , S, A or T ). In the asymmetric cases of same size for the T case an average value for the
observables is considered [18].

Percolation functions for bond dimers included in Fig. 2 are obtained by solving Eq. (2) for square cells of sizes: 6 × 6
for N and S, 5 × 5 for A, and 4 × 4 for T . Fig. 2 represents the percolation functions for all the deposition cases presented
in Fig. 1 plus the percolation function for monomeric bond occupation included here for comparison purposes; a particular
size is chosen for each deposition. For f ∆

X (p) = 0.5 (∆ = M,N, S, A, T ) curves follow an order from left to right: M , T , S, A,
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Fig. 3. Finite scaling plots to determine the bond dimer percolation according to depositions N , S, A, and T . Left-hand side: using the inflection point of
the percolation function; Right-hand side: using renormalization techniques.

and N; eventually such an order is not the same in the thermodynamic limit. However, such an order is changed for larger
values of p due to the nature of each of the percolation functions. Thus, S overcomes T just under p = 0.80. More striking is
the case of the A function which goes under S at p = 0.56 and then goes under N at p = 0.90 reaching the end of the range
without saturation.

We turn now our attention to the inset of Fig. 2 which considers the numerator of Eq. (2) which determines jamming
coverage [18]. Amaximum is observed forN , S, and T , which correspond to the jamming coverage of each case; this behavior
is characteristic of correlated percolation. In the particular case of A dimers of the small size studied here, the numerator
of Eq. (2) does not show a maximum. Of course here we leave out of any consideration the M case since for monomeric
occupation there is no problem in saturating the lattice.

For the 6×6 cell used in the N case we observe that the numerator of Eq. (2) maximizes near p = 0.8which corresponds
to the jamming coverage in this particular case. Similarly, we find maxima for the 6 × 6 cell used in the S occupation and
for the 4 × 4 cell used in the T deposition. For the 5 × 5 cell used in the A case no maximum was found, which was also
the result for other cells with A occupancy. Upon taking into consideration the cells considered in the present study defined
above we can obtain average jamming coverages for the different depositions: 0.8248 for N , 0.8178 for S and 0.8890 for T .
Jamming coverage associated to the T case is greater than the other two, since the deposition for this system involves six
possible orientations. Average values for jamming coverage associated to N and S cases are very similar between them. The
overall average value given by these 15 cells is 0.8486. If the N case is excluded the resulting average considering both S and
T depositions turns out to be 0.8605, which is very close to 0.863(2) obtained by means of numerical simulations [3].

The percolation threshold is then calculated by means of the two procedures pren and pinf previously described. Results
are illustrated in Fig. 3, for each kind of percolation: N , S, A and T . Scaling techniques will be used to obtain results valid for
the thermodynamic limit.

Functionswill be obtained in terms of theminimumpercolation lengthwhichwe called ℓ formonomers and L for dimers.
It follows that L = 2ℓ.

In this treatment we can consider second-order approximations for the percolation threshold which allows to write

pren(inf )(ℓ) ∼ pc + ℓ−1/ν(a + bℓ−1
+ cℓ−2

+ · · ·+), (3)

where a, b, and c are adjustable parameters; ℓ represents the minimum percolation length in the left–right direction; ν is
the usual critical exponent whichwe take here with its theoretical value 4/3. All critical exponents are discussed in a special
section below.

Results are presented in Fig. 3 where the ordinate axis represents the percolation threshold given in terms of χ , which
is a scaled variable that takes care of finite size corrections defined as:

χ = ℓ−1/ν(a + bℓ−1). (4)

In this way the percolation thresholds for the cases under study can be obtained. Thus, the percolation thresholds for
the N case are 0.4921 and 0.4916 according to pren or pinf respectively (we adopt this order in the remaining discussion);
in both cases the regression coefficient is close to 1.0. It can be noticed that this result is very close to the one for bond
monomers whose percolation threshold is 0.5. For the S case the percolation thresholds are 0.4630 and 0.4627 respectively;
for the A case results are 0.4627 and 0.4622 respectively; for the T case we obtain 0.4866 and 0.4833 respectively. These
results are in good agreement with those obtained by means of different numerical techniques [2,3]. It can be noticed that
the percolation threshold is larger for N as compared to the other cases, a result which is similar to the one obtained for site
dimer percolation [3]. However,N percolation is quite unique as it lacks vertical connectors so percolation can be established
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in a direct way only. When considering the other 3 depositions the highest percolation threshold corresponds to the T case
which shows 6 possible orientations.

The percolation threshold for the N case is higher than for the S case. Such behavior has been already observed numer-
ically for site k-mers on a square lattice [10–13] and it is consistent with previous theoretical studies [15,16]. In addition it
is also confirmed by experimental data about carbon nanotubes percolation in polymer composites, where a growth in the
alignment of the nanotubes produces an increase in the percolation threshold [17].

The percolation thresholds for the S case reported above are in excellent agreement with numeric simulations where a
value 0.464(2) is reported [3]. Such a value is lower than the one for the T case, a tendency which has been observed in the
case site k-mers on a square lattice [2].

3. Critical exponents ν, β and γ

The criticality of a percolating system is associated to an order parameter. The way in which such an order parameter
behaves near a critical point is represented by the exponent of a function. In its own turn this critical exponent characterizes
the universality of the system according to the its dimensions. In what follows critical exponents ν, β and γ are studied
considering corrections to the scaling laws as given by Reynolds et al. [20].

The critical exponent ν is associated to the order parameter ξ representing the correlation length, which diverges at the
percolation threshold. Its formal definition is:

ξ ∼| p − pc |
−ν p = pc . (5)

On the other hand, we can make use of a relationship involving ν which can be obtained by means of renormalization
techniques:

ln ℓ = ν ln λ∗, (6)

where λ∗ represents the maximum value of the first derivative of the percolation function at p = pc in the limit of a cell of
infinite dimensions.

For finite cells we can define f∆X (p)−f∆X (pc )
(p−pc )

= λ∆∗

X , after a first-order approximation in the Taylor series for Eq. (1) at p = pc .
In this way λ∆∗ corresponds to the maximum value of the first derivative of the function f ∆

X (p).
The higher the degree in the polynomial describing f ∆

X (p) the better the approximationnear the critical point leading to its
divergence, namely, λ∆∗ tends to diverge at this point. However, we deal with finite size cells in whose case λ∆∗ maximizes
at the critical point reaching a value that depends both on the cell size Γ and on the minimum percolation length ℓ. Such a
maximum value will be denoted as

λ∗
= W∆

X λ∆∗

X , (7)

whereW∆
X is a multiplier which makes now λ∆∗

X maximum at the critical point.
Combining Eqs. (9) and (10) we find:

1
ν

=
lnW∆

X

ln ℓ
+

ln λ∆∗

X

ln ℓ
, (8)

or equivalently

ln λ∆∗

X

ln ℓ
=

1
ν∆
X

=
1
ν

−
lnW∆

X

ln ℓ
. (9)

Exponentβ is associated to order parameter P∞ when the probability of occupation p is over the percolation threshold pc .
Analogously, exponent γ is associated to order parameter Ss, which characterizes the average size of clusters approaching
pc from lower values of p. The formal definitions of these two exponents are:

P∞ ∼ (p − pc)β p > pc Ss ∼| p − pc |
−γ p < pc . (10)

Eqs. (1) and (2) lead us to functions P∞ and Ss, which can be studied for the appropriate interval, either p > pc or p < pc . Then
the critical exponents β and γ are determined from the slopes in the corresponding log–log plots for appropriate variables.

Fig. 4 represents the reciprocal value of the critical exponent ν for bond dimers in accordance to their orientation,
S (empty triangles), A (empty diamonds) or T (empty circles). The analysis goes over symmetric cells ℓ × ℓ as well as
over asymmetric cells in whose case the reported value corresponds to the arithmetic average between cells ℓ × (ℓ + 1)
and (ℓ + 1) × ℓ. We leave out of the critical exponent analysis the N case where the progression is directly along the
percolation direction saturating quickly for the small size cells considered here. Additionally, frames with odd ℓ values
along the horizontal direction are impossible in the N case.
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Fig. 4. Determination of critical exponent ν for bond dimers on the square lattice.

Fig. 5. Determination of critical exponent β for bond dimers on the square lattice.

The values for ν obtained from this analysis, namely, 1.304 for S, 1.235 for A, and 1.267 for T are very close to the ideal
expected value for monomers which is 4/3 [19]. It can be noticed that in both cases the regression is quite good.

In Fig. 5 we report the reciprocal value for β in the case of bond dimers according to their orientation, S (empty triangles),
A (empty diamonds) or T (empty circles). The procedure considers symmetric and antisymmetric cells as described for
previous figure. By the same reasons given in previous analysis nematic percolation is left out. The values obtained for β are
0.189 for S, 0.188 for A, and 0.190 for T , both not to far from the ideal value for monomers which is 5/36 [19].

In Fig. 6 we report the reciprocal value of critical exponent γ in the case of bond dimers according to their deposition
S (empty triangles), A (empty diamonds) or T (empty circles). Previous considerations on S, A, and T deposition and values
for asymmetric cells also apply here. The values obtained for γ are 2.404 for S, 2.353 for A, and 2.370 for T . These values are
close to the ideal value for monomers which is 43/18 [19].

As a way to condensate and compare these results with reports for other percolating object we construct Table 2. From
this perspective several comments are possible.

Results for ν are very encouraging from two points of view: (1) they are close to the exact value for monomer percolation
which is 4/3 [19] and (2) they are in general good agreement with previously published numeric results for percolation by
site dimers [2,18].

In the case of β our values are larger than the ideal one for monomers (5/36); however, our three values are very
consistent among themselves. This compares well with the disperse results reported for site dimer percolation [2,10,18].

Our γ values present a dispersion around the ideal value for ordinary percolation, namely, 43/18. Similarly, values for
site dimer percolation reported in the literature present an even larger dispersion [2,10,18].



Author's personal copy

W. Lebrecht et al. / Physica A 398 (2014) 234–242 241

Fig. 6. Determination of critical exponent γ for bond dimers on the square lattice.

Table 2
Resume of values for critical exponents ν, β and γ for different percolating objects.
As a general reference we include the theoretical values for bond monomers M; next
three columns refer to bond dimers according to depositions S, A, T ; we close with
reported values for site dimer percolation for comparisonpurposes. References are listed
following the general codes of the list at the end: asterisks identify results obtained in
the present paper.

Crit. exponent M Ref. [21] S* A* T * Site dimers Refs.

ν 4
3 ≈ 1.333 1.304 1.235 1.267 1.368, 1.373 [2]

1.491 [14]
β 5

36 ≈ 0.139 0.189 0.188 0.190 0.121 [2]
0.179 [10]
0.194 [14]

γ 43
18 ≈ 2.389 2.404 2.353 2.370 2.452 [2]

2.375 [10]
2.394 [14]

4. Conclusions

The approach used in the present paper shows that it is possible to tackle k-mer percolation bymeans of renormalization
methods. In particular finite size scaling using relatively small percolation cells yield linear regressionswhich are remarkably
good.

The application of this technique to bond dimers allows us to discuss different types of percolation (Nematic N , Straight
S, Angular A, and Tortuous T ) under the same description allowing for comparison of their similarities and differences.

Dimer percolation in general is the simplest correlated percolation. In thiswaywe can obtain some analytic description of
the jamming phenomenon usually obtained by the numerical approach. The results reported here by evaluation of analytic
expressions are in good agreement with values reported by means of numerical simulations.

The values obtained for percolation threshold for N , S, A, and T are consistent among themselves and comparison
with numeric results whenever possible shows good agreement. Generally speaking the percolation threshold for bond
dimer percolation obtained by two different methods (renormalization and inflection point) is lower than bond monomer
percolation thus marking the expected tendency for bond k-mer percolation.

Actual values for percolation thresholds obtained by the two analyticalmethods usedhere differ little among the different
deposition cases as shown in the discussion above following Fig. 3. It is found that the decrease of the percolation threshold
(which is 0.5 for the M case) is the following N (0.4921 and 0.4916), T (0.4866 and 0.4833), S (0.4630 and 0.4627) and A
(0.4627 and 0.4622), using the conventional order (pren, pinf ). It is remarkable that values are basically independent of the
method used to obtain the percolation threshold for each case.

Jamming coverage is lower for S deposition (0.8178) since it is possible to accommodate independently linear bond
dimers in any of the two directions. The jamming coverage increases just a bit (0.8248) when the vertical direction is
not longer allowed. When only A deposition is considered the occupancy by one bond dimer immediately affects both
horizontal and vertical progression not allowing saturation. Such a situation is relaxedwhen admixturewith straight dimers
is considered in the T case which shows the largest possible jamming coverage (0.8890).
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Jamming coverage for the T deposition turns out to be the largest one (0.8890), reflecting its higher connection of both
horizontal and vertical bonds. On the contrary S deposition presents the minimum jamming coverage due

Values obtained for critical exponents ν, β , and γ are in good correspondence with similar results for other types of
percolation. There is a dispersion among the different types of deposition S, A, and T , which can be expected especially for
the small size of the cells considered here. However, the linear regressions done using scaling techniques show high R values
indicating that critical exponents within each deposition also have a meaning.

Previous results are very encouraging for the use of the renormalization cell technique for k-mer percolation with k > 2.
As it follows from all previous results and analysis it is possible to obtain good values in real space for both percolation
threshold and critical exponents. The method shown here is very promising for dealing with more complex percolating
systems, heterogeneities and different kind of lattices.
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