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Abstract

This paper examines a recent proposal to calculate supertrees by minimizing the sum of subtree prune-and-regraft distances to
the input trees. The supertrees thus calculated may display groups present in a minority of the input trees but contradicted by
the majority, or groups that are not supported by any input tree or combination of input trees. The proponents of the method
themselves stated that these are serious problems of “matrix representation with parsimony”, but they can in fact occur in their
own method. The majority rule supertrees, being explicitly clade-based, cannot have these problems, and seem much more suited
to retrieving common clades from a set of trees with different taxon sets. However, it is dubious that so-called majority rule
supertrees can always be interpreted as displaying those clades present (or compatible with) with a majority of the trees. The
majority rule consensus is always a median tree, in terms of the Robinson–Foulds distances (i.e. it minimizes the sum of Robin-
son–Foulds distances to the input trees). In contrast, majority rule supertrees may not be median—different, contradictory trees
may minimize Robinson–Foulds distances, while their strict consensus does not. If being “majority” results from being median
in Robinson–Foulds distances, this means that in the supertree setting a “majority” is ambiguously defined, sometimes achiev-
able only by mutually contradictory trees.
© The Willi Hennig Society 2015.

Introduction

Supertrees are the equivalent of consensus trees
when the input trees have different sets of taxa, and
thus are useful to combine trees from data sets that
cannot be combined in a supermatrix. If combined
analysis is possible, neither supertrees nor consensus
can truly be a replacement for it, which has been
known since Barrett et al. (1991) showed that a group
supported by each of the individual data sets may
nonetheless be contradicted by the combined data set.
However, even if supertrees cannot replace data set
combination (as argued also by Gatesy et al., 2002;
Goloboff and Pol, 2002; and Janies et al., 2013,
among others), establishing the joint implications of
sets of trees may be a valid goal in itself, and this
obviously requires appropriate methods.

Methods for constructing supertrees are often stud-
ied by comparing the results when the input trees have
identical taxon sets against the results of consensus
methods. In one of the most important papers on
supertrees, Cotton and Wilkinson (2007) proposed a
method, majority rule supertrees, intended to behave
as the majority rule consensus tree, and justified the
intended behaviour on the grounds that.

The majority-rule consensus has proven particularly impor-

tant because of its use in summarizing bootstrap or jackknife

replicates (Felsenstein, 1985), quartet puzzling steps (Strimmer

and von Haesseler, 1996), and Bayesian posterior probability

distributions on trees. The majority-rule also seems quite nat-

ural when the input trees are inferred from independent data

as is often the case in supertree construction (p. 445)

The justification invoked by Cotton and Wilkinson
thus concerns a logical connection between those
groups (clusters, monophyletic groups, higher taxa) in
the result and those in the input trees. Other discus-*Corresponding author:
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sions of supertree methods based on their properties
on groups and/or nestings can be found in Steel et al.
(2000), Dong and Fern�andez-Baca (2009), and Dong
et al. (2010a,b). In the case of majority rule consensus
trees, being in more than half the input trees is a nec-
essary and sufficient condition for the group to be in
the result. Different connections between groups in the
result and in the input trees can be established (e.g. as
in Goloboff and Pol, 2002, which proposed a method
intended to behave as the semi-strict supertrees), but a
supertree analogue of the majority rule consensus is
clearly the most appropriate in many contexts, as
noted by Goloboff and Pol (2002), Goloboff (2005),
and Cotton and Wilkinson (2007).

SPR supertrees

Other authors, instead, take a different approach to
justifying a supertree method: the method is consid-
ered valid if it produces results that are closer to the
“true” phylogeny. This justification can only be
assessed in practice through simulations, and is always
tied to the specific conditions of the simulations per-
formed. A recent example of such an approach to jus-
tifying a supertree method is by Whidden et al. (2014),
who proposed supertrees based on the subtree prune-
and-regraft (SPR) distances (Hein et al., 1996). The
SPR supertree is the binary tree with the minimum
sum of SPR distances to the source trees (the source
trees can have polytomies). SPR supertrees became
possible with the work of Whidden and Zeh (2009)
and Whidden et al. (2010, 2013), which made calcula-
tion of SPR distances orders of magnitude faster than
previously possible (e.g. Nakhleh et al., 2005; Golob-
off, 2008). The program SPRSupertrees (written by C.
Whidden) implements the method and is available at
http://kiwi.cs.dal.ca/Software.
Whidden et al. (2014) defended their method on the

grounds that, when using it to combine source trees
representing different genes with simulated lateral gene
transfers (LGTs), it produces supertrees closer to the
model tree than matrix representation with parsimony
(MRP; Baum, 1992; Ragan, 1992; Baum and Ragan,
1993) and Robinson–Foulds (RF) supertrees (Bansal
et al., 2010). We do not dispute the results of Whidden
et al.’s simulations—it may well be true that under the
specific conditions of LGT they simulated, SPR super-
trees are more likely than MRP of RF supertrees to
return the true tree. In addition to their simulations,
based on the analysis of several real data sets, Whid-
den et al. also stated (p. 578) that their “results show
that SPR is suited to a range of phenomena and not
just LGT alone.” Given such optimistic statements, it
can be anticipated that the method will be used under
many situations regardless of whether LGT can be

assumed—indeed, C. Whidden (personal communica-
tion) states that the method is useful also for “hybrid-
ization, recombination, long branch attraction, or any
other evolutionary scenario where specific bipartitions
arise due to non-speciation events but ancestral and
descendant bipartitions may still be attributed to speci-
ation.”
Instead of considering the degree to which the

method produces supertrees closer to the true tree (as
Whidden et al. did), here we consider logical aspects
of the method, and how it summarizes relationships
from the source trees. As stated by Bansal et al. (2010,
p. 10), any method that calculates a supertree so as to
minimize some tree-distance measure (e.g. MRP, cli-
ques, triplets, quartets, Robinson–Foulds, or SPR) is
mathematically acceptable, and will find the supertree
that is (for the distance measure used) as similar as
possible to the original trees; furthermore, all those
methods (or even the difference in results among them)
can be useful in exploring the similarities and differ-
ences between the input trees. But this does not mean
that any of those methods is equally useful for estab-
lishing systematic conclusions: relevant measures in
this case must consider monophyletic groups
(= clades). As Whidden et al. (2014, p. 566) themselves
explicitly faulted MRP because it “can generate rela-
tionships that do not belong to any of the source trees
or are contradicted by a majority of source trees,” the
unwary reader might conclude that SPR supertrees
lack those defects. That conclusion, however, would be
incorrect. We show in the next section that SPR super-
trees may display groups contradicted by each of the
input trees and therefore cannot be interpreted in
terms of clade monophyly or be expected to display
groups present in the majority of the input trees.

SPR supertrees do not recover common clades

Whidden et al. (2014) compared their method with
MRP and the RF supertrees of Bansal et al. (2010).
The RF supertrees are a modification of Cotton and
Wilkinson’s (2007) majority rule supertrees (which
Whidden et al. do not cite). Whidden et al. conjec-
tured that, because the RF distance (Robinson and
Foulds, 1981) between the two trees resulting from
moving a single taxon to a distant branch is very large
(even when the two trees remain very similar), RF
supertrees may be strongly affected by cases of LGT
in some of the genes used to build the supertree.
When the aim of the supertree analysis is to identify

groups supported by (or compatible with) the majority
of the input trees, Whidden et al.’s method may pro-
duce unjustified results. Consider the case shown in
Fig. 1, three trees that differ in the location of two
taxa, X and Y. The first and last source trees differ in
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two SPR moves; the middle tree is median to the other
two, differing in one move from each. Note that (with
a single copy of each tree) every one of the groups is
present in the same fraction of trees (just one tree,
0.333). However, a supertree identical to the middle
tree will minimize the sum of SPR distances to all the
source trees, and will be chosen. This will also be the
case even when there are multiple copies (in equal
numbers) of the first and last tree, with a single copy
of the middle tree: the SPR supertree will continue
being identical to the middle tree. When there are 100
copies of the first and third trees, most of the groups
in the SPR supertree (again, identical to the middle
tree) are present in only one of the 201 source trees.
Furthermore, the group XY is present in the supertree,
but 200 input trees display X and Y as far away from
each other as is possible in a tree of this size. The mid-
dle tree is indeed median in terms of SPR distances,
but very far from being so in terms of the groups or
relationships displayed.
Because minimizing the sum of SPR distances to the

source trees has no special meaning in terms of the
groupings, the SPR supertree can also display clades
not present in any of the source trees, and contradict
groups present in the majority of the source trees—
both of which were explicitly considered by Whidden
et al. (2014) as problematic in the case of MRP. Whid-
den et al. (2014) did not discuss whether SPR super-
trees could have this behaviour, but Figs 2 and 3 show
examples of these two problems.
Figure 2 shows the case of three source trees; the

unique binary tree that minimizes the sum of SPR dis-
tances displays two groups (degh and dge, marked in
Fig. 2) that are not present in any of the source trees
—each of the individual source trees contradicts these
two groups.

Figure 3 shows a case with five source trees; the first
two are identical, while all the others differ in the loca-
tion of taxon h. The SPR distance for all tree-pairs is
1, except the first two trees (zero moves apart). Note
that the groups fg, efg, defg, and cdefg are present in
three of the five trees, while incompatible groups gh,
fgh, efgh, and defgh are in only two of the five. Choos-
ing any of the unique trees as supertree implies a sum
of SPR distances equal to 4 (one move to each of the
other trees), while choosing the tree in double copy
implies a sum equal to 3 (zero moves to the other
copy, and one move to each of the three remaining
trees). Therefore, the supertree is identical to the first
tree, which displays four groups present in the minor-
ity of the trees and contradicted by the majority. Note
that with more taxa and more trees, if the non-dupli-
cate trees correspond to more alternative positions of
the floating taxon h, the frequency of those four
groups (still present in the supertree) can be arbitrarily
close to zero (and the frequency of the contradictory

Fig. 1. A case with three types of topology in the input trees. For
the SPR distance the middle tree is median between the other two.
The SPR supertree is identical to the middle tree, even if there are
100 copies of the first and last input trees, and a single copy of the
middle tree.

Fig. 2. A case where the SPR supertree displays two groups
(marked) contradicted by each of the input trees.

Fig. 3. A case where the SPR supertree displays four groups
(marked) supported by two of the five input trees and contradicted
by three. The SPR supertree places taxon h deeply nested at the tip
of the tree, but h is located near the base in the majority of the
trees.
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groups fg, efg, defg, and cdefg arbitrarily close to
unity).
For examples similar to those in Fig. 3, one might

try to justify the SPR supertree on the grounds that h
is detected as a taxon of uncertain placement, and the
most common placement is as sister to g, which is
ignored by the majority rule consensus. C. Whidden
(pers. comm.) used this argument to justify the results
of SPR supertrees, and considered that this indicates
that “the majority rule is problematic” because
“naively combining compatible bipartitions containing
incompatible subtrees may result in such problematic
inferences.” That argument does not really justify the
SPR supertree, however. First, the notion of “place-
ment” is ambiguous—clades or groups of taxa are a
well-defined concept, but “placement” of a taxon in
certain “regions” of trees cannot be characterized in a
general way, except in the particular circumstance of
identical relationships for the other taxa (as in Fig. 3).
Second, in the case Fig. 3 that justification is con-
tradicted even if an intuitive characterization of the
“regions” where taxon h can be located is accepted:
taxon h is located near the base in three of the trees,
and at the tip of the tree in only two. The majority
rule consensus is then correct in placing h near the
base of the tree, but the SPR supertree places it at the
tip. With more taxa, and the floating taxon switching
position to a more distant group, this difference can
be made much more pronounced (given that every
SPR move has the same cost, regardless of how far it
moves the taxon), but Fig. 3 serves to illustrate the
effect.
The results for Figs 2 and 3 were confirmed using

Whidden et al.’s program (the most recent version,
1.2.1). The results shown are obtained only when the
option bipartition_cluster is set to more than 0.6. With
the default 0.5 for this option, the search for the SPR
supertree will ignore “rearrangements that violate bi-
partitions supported by 0.5 of gene trees.” Whidden
et al. (2014, p. 569) made clear that this is intended
only as a heuristic to facilitate the search for optimal
supertrees. The default value of 0.5 precludes cases like
those in Figs 2 and 3, but at the expense of not allow-
ing full minimization of the SPR distances to source
trees. In other words, while the default 0.5 produces
more reasonable results, it sets a limit on the degree to
which the criterion proposed by Whidden et al. (2014)
can be optimized. Thus, unrestricted optimization of
the criterion—SPR distances to the source trees—leads
to results that are hard to defend.
Note that the examples in Figs 1 and 3 would also

produce the same results if a “TBR supertree” were
applied. TBR distances are generally harder to calcu-
late than SPR distances, but the trees in those exam-
ples differ only in the position of terminal taxa (so
that their interconversion requires the same number of

TBR and SPR moves). Therefore, finding the tree that
minimizes the sum of TBR distances to the source
trees produces exactly the same results for those exam-
ples.
An additional problem with SPR supertrees con-

cerns a point that, on first approach, seems merely
technical, but in fact also concerns unsolved methodo-
logical issues. The SPR supertree is defined by Whid-
den et al. (2014) as the binary tree that minimizes the
sum of SPR distances; computations are much easier
on binary trees. Of course there may be multiple
equally optimal binary trees, or a single optimal super-
tree but supported only weakly, for example in the
case of conflicting input trees (as in the examples pre-
sented here), and then a less resolved supertree may be
desirable. C. Whidden (personal communication) sta-
ted that the ideal situation is “that users of the soft-
ware be aware of these concerns and apply tests such
as bootstrapping before establishing systematic conclu-
sions.” However, there are two problems with this.
First, it is unclear how to perform the bootstrapping—
should one resample the input trees themselves and re-
infer the supertree for each pseudoreplicate? Or the
original matrices and re-infer input trees? Second, once
the resampling method is decided, there is still the
problem of summarizing the results of the pseudorepli-
cates. In phylogenetics, bootstrapping assesses support
of clades based on their frequencies1 —the more fre-
quent the group, the higher its “support”—but C.
Whidden himself considers that the majority rule tree
is “problematic.” When bootstrapping SPR supertrees,
one would thus be left with no method to summarize
the results.

Majority rule supertrees

The only method that truly behaves like a majority
rule consensus tree for identical taxon sets is Cotton
and Wilkinson’s (2007) majority rule supertree, as it is
based on optimizing the same metric, the symmetric dif-
ference or RF distance (Robinson and Foulds, 1981).
For full taxon sets, given the definition of RF distances,
it can be deduced (Barth�elemy and McMorris, 1986)
that the least resolved (i.e. most polytomous) tree which
minimizes ∑RF to source trees with identical taxon sets
must have (i) any group present in the majority of the
source trees as present, and (ii) any group not present
in the majority of the source trees as absent, thus being
necessarily identical to the majority rule consensus tree.
Condition (ii) requires that polytomous trees be consid-
ered as well: ∑RF may be minimized only by trees with

1

Goloboff et al.’s (2003) GC is also based on clade frequencies.

Holmes (2003) presented some alternative views that, to our knowl-

edge, have never been used or implemented.
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polytomies. This contrasts with the case of phylogenetic
tree searches, where a polytomous tree can never have a
better score (under either maximum-likelihood or maxi-
mum-parsimony) than any of its possible resolutions,
and makes it difficult to calculate supertrees using tree-
search algorithms on binary trees.
Cotton and Wilkinson (2007) proposed their

method, in part, as a response to Goloboff and Pol’s
(2002) claim that an analogue of the majority rule con-
sensus tree for the supertree case may not be possible.
Dong et al. (2010b, p. 3–4) even suggested that “a
strict generalization of majority-rule consensus might
not be the ideal approach for supertree construction”
because “different trees ‘specialize’ in different groups
of taxa, leaving other groups largely unresolved or
unrepresented”—which would be better summarized,
in their view, by a supertree including those groups
that are supported more frequently than they are con-
tradicted (as in the frequency difference consensus of
Goloboff et al., 2003), instead of just including groups
in more than half the trees.
Goloboff and Pol’s argument regarding the difficulty

of a supertree analogue of the majority rule was that
when trees have different taxon sets, the trees which
support a given group without conflict (if combined
with some trees) may be the same trees which contra-
dict the group without conflict (if combined with other
trees), and therefore an individual tree cannot be said
either to support or to contradict a group, unless all
the taxa included and excluded from the group are
present in the tree. As a consequence, different contra-
dictory supertrees may at the same time be compatible

with the majority of the input trees (see Goloboff and
Pol, 2002; fig. 10). Cotton and Wilkinson (2007) cited
that argument, but did not contradict it; they instead
proposed to seek trees of minimum ∑RF, based on
Barth�elemy and McMorris’ (1986) demonstration that
(for identical taxon sets)

“The majority-rule consensus tree minimizes the sum of the

symmetric difference metric . . . between it and each of the

input trees. The majority-rule consensus tree is thus shown to

be a median of the input trees with respect to the (full-split)

symmetric-difference metric.” (Cotton and Wilkinson, 2007,

p. 446).

Cotton and Wilkinson (2007) then proposed the
strict consensus of the tree(s) minimizing ∑RF as a
formal equivalent of the majority rule tree in the
supertree setting. They proposed two types, majority
rule (�) and (+), based on two different ways to calcu-
late the RF distance between trees with different taxon
sets. The (�) is based on removing from the candidate
supertree the taxa absent from an input tree; the (+) is
based on grafting onto the input tree each of the miss-
ing taxa and refining all polytomies into the possible
binary trees (the distance is calculated as the shortest
between the candidate supertree and one of the trees
in the set derived from grafting and refining). Subse-
quently, Dong and Fern�andez-Baca (2009) proposed
two variants of the (+), called (+)s and (+)g. The (+)s
is the same as Cotton and Wilkinson’s (+) but retain-
ing the polytomous trees as well (instead of restricting
the set to the binary trees), and the (+)g is based on
grafting only (without refining polytomies). Given that
the RF distance to input trees may well be minimized
only by polytomous trees (see above), it seems more
reasonable to retain polytomous trees derived from the
grafting of missing taxa. Dong and Fern�andez-Baca
(2009) also proved that only the variants (�) and (+)g
produce the same results as the majority rule consen-
sus for trees with equal taxon sets.
The majority rule supertrees of Cotton and Wilkin-

son (2007) have several desirable properties (as shown
by Dong and Fern�andez-Baca, 2009). Being explicitly
clade-based, the approach is among the most reason-
able in the supertree setting, from a taxonomic per-
spective. However, there are two problems with the
idea that such supertrees are indeed “majority” rule.
The first problem is that Cotton and Wilkinson

(2007) did not show that minimizing ∑RF to trees of
different taxon sets would also produce supertrees with
groups present in the majority of the trees—the fre-
quency of such groups apparently cannot be counted,
based on Goloboff and Pol’s (2002) examples. Major-
ity rule consensus trees are not used by taxonomists
because they minimize ∑RF; instead, they are useful
because they display the groups present in the majority
of the source trees.

Fig. 4. A case where the majority rule supertree of Cotton and
Wilkinson (2007) (i.e. the strict consensus of the trees minimizing the
sum of RF distances to the input tree) does not itself minimize the
sum of RF distances, in either the (�) or the (+) versions. This can
happen only when the input trees have different taxon sets; for iden-
tical taxon sets, the strict consensus of all the trees which minimize
the sum of RF distances is always also a median tree. Under the (�)
method, two trees are RF-optimal (with ∑RF = 2); under the (+)
method, the same two trees plus a partly polytomous one are RF-
optimal (with ∑RF = 3). The majority rule supertree has a ∑RF = 4
in both the (�) and the (+) cases.
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The second problem is that, even if what makes a
tree “majority” is the fact that it minimizes ∑RF,
input trees with different taxon sets do not behave in
the same way as with identical sets of taxa. For identi-
cal taxon sets, the strict consensus of all the trees mini-
mizing ∑RF is itself of minimum ∑RF; in other
words, the majority rule consensus is the least resolved
among all trees of minimum ∑RF (Dong and Fern�an-
dez-Baca, 2009; p. 361). For different taxon sets,
instead, several trees may imply the minimum possible
∑RF while their strict consensus has a higher ∑RF.
When analysed under the (�) option, this is the case
for Fig. 1 of Cotton and Wilkinson (2007), which
reproduces the example of Goloboff and Pol (2002,
fig. 10) (a set of four trees, (a (ed)), (e(cd)), (d(bc)),
and (c(ab))). In that example, each of the four combi-
nations of three trees is RF-optimal (with ∑RF = 2),2

as well as the additional partly resolved tree (ed(abc)),
but the strict consensus of those five optimal trees has
∑RF = 4. Although the majority rule (+) supertree for
that example is itself of minimum ∑RF, there are
other cases for which neither the majority rule (�) nor
(+) is RF-optimal. Consider the example of Fig. 4,
with four input trees which produce the same supertree
under either (�) or (+). The ∑RF of the optimal trees
is 2 under (�) and 3 under (+); the majority rule su-
pertree has a ∑RF = 4 under either (�) or (+). Note
that because the source trees contain no polytomies,
the (+)g modification (Dong and Fern�andez-Baca,
2009; based on not refining the polytomies of the input
trees) is irrelevant in this case and produces the same
result as the original method of Cotton and Wilkinson
(2007). If the condition of “majority” results from a
tree being of minimum ∑RF, then the strict consensus
of the trees with minimum ∑RF does not represent a
“majority.” Only the individual trees of minimum
∑RF can be said to be “majority,” and they contradict
each other. In other words, for unequal taxon sets, the
minimization of ∑RF is ambiguous and not uniquely
defined—as Goloboff and Pol (2002) had claimed.

Discussion

The examples in Figs 1–3 show that SPR supertrees
may produce results that are hard to justify, from the
point of view of the clades obtained, even in cases
where the source trees have identical taxon sets. Whid-
den et al. (2014) speculated that cases of taxa placed
in distant parts of the trees (attributable, in their con-
text, to LGT) might have an adverse effect on super-
trees based on RF distances, given that the RF

distance between trees with a single taxon placed in
two distant parts of the tree is very large (despite the
trees being very similar). However, the way in which
SPR supertrees summarize otherwise similar trees but
with a few taxa in different positions (such as Figs 1
and 3) seems even more inappropriate, at least for the
purpose of identifying monophyletic groups in com-
mon. When the input trees are very different (as in
Fig. 2), the SPR supertree may display groups that are
neither present in nor implied by any input tree or
combination of input trees—these spurious groups are
widely recognized by most authors (Whidden et al.,
2014 included!) as the most serious problem of MRP.
It remains to be seen whether, in the presence of

extensive LGT, the SPR supertree is indeed most likely
to be the “true” phylogeny. Of course, a problem with
extensive LGT or hybridization is that they challenge
the very notion of choosing a single tree—when a spe-
cies is thought to have exchanged numerous genes, or
hybridized, with several other taxa, choosing a unique
location for that species may not be the best way to
represent that situation (as Whidden et al., 2014 them-
selves admitted, p. 578).
Taxa that can switch positions in multiple trees may

also decrease resolution of consensus trees, and a num-
ber of heuristic methods have been proposed to iden-
tify taxa (or clades) responsible for the loss of
resolution in that case (e.g. Wilkinson, 1994, 1995;
Aberer et al., 2013; and a number of methods imple-
mented in TNT, see Goloboff et al., 2008; p. 782; the
method of Pol and Escapa, 2009, iterPCR, was also
implemented in TNT subsequent to 2008). Ignoring
floating taxa when calculating consensus or supertrees
solves the problem of long LGTs mentioned by Whid-
den et al. (2014), diminishes the need for alternative
supertree methods, and is perhaps a more appropriate
way to represent cases of LGT and hybridization (as
the jumping taxa are not placed in any definite posi-
tion). However, in the case of supertrees, the caveat
still remains that when some taxa are pruned from the
source trees the way in which the other taxa are related
may change (as exemplified by Goloboff and Pol,
2002, fig. 12; this can never happen in the consensus
setting).
The problems with SPR supertrees, and the fact that

the problems with wildcard taxa they attempt to cor-
rect can be easily solved by pruned (super) trees, sug-
gest that majority rule supertrees are much better
justified for summarizing results. Unfortunately, no
computer program allows direct calculation of major-
ity rule supertrees. For this paper, we used TNT
scripts (available from the first author) for the (�) and
(+)g options, based on enumerating each possible
(binary and polytomous) candidate supertree and
calculating ∑RF for each; this enumerative approach
is extremely slow and practical only for very low

2

As in Cotton and Wilkinson (2007, p. 449), these RF values are

not normalized, because that would attribute different weights to

splits from trees of different size.
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numbers of taxa (eight or nine at the most). Dong
et al. (2010b) described an integer linear programming
implementation for majority rule supertrees, but their
implementation is not available and—due to the nat-
ure of the formulation—it can handle only modestly
sized problems. Bansal et al. (2010) proposed heuris-
tics for RF supertrees (i.e. the binary trees with mini-
mum ∑RF), which may be useful in approximating the
majority rule supertree, although their suggestion to
use greedy contractions of those binary trees to obtain
the majority rule supertree is problematic (see below).
The only conceptual caveat regarding majority rule

supertrees is that the degree to which they can be
considered to truly display clades in the majority of
the input trees is uncertain. In this regard, it is sur-
prising that despite the meticulous studies previously
published on properties and calculation of majority
rule supertrees (e.g. Cotton and Wilkinson, 2007;
Dong and Fern�andez-Baca, 2009; Dong et al. 2010a),
none of these papers has discussed the fact that the
primary goal of so-called “majority” rule supertrees,
the minimization of ∑RF, is not necessarily achieved
by the strict consensus of the individual trees of mini-
mum ∑RF, in either the (�) or the (+) versions. This
implies that, if “the majority-rule consensus tree mini-
mizes the sum of the symmetric difference metric”
(Cotton and Wilkinson, 2007), then majority rule su-
pertrees are not an equivalent, because they do not
minimize that sum. Another implication is that,
although Bansal et al.’s (2010) heuristic algorithms
for searching binary RF supertrees may be important
in helping to find the majority rule supertree, their
suggestion (Bansal et al., 2010, p. 11) that the major-
ity rule supertree be obtained by the greedy contrac-
tion of groups from one of the binary RF supertrees
will fail in many cases. This greedy contraction
(accepting all contractions that improve or match the
∑RF) always produces the correct results for identical
taxon sets, but when taxon sets differ, calculating the
majority rule supertree requires finding all individual
trees of minimum ∑RF and then calculating their
strict consensus.
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