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 Abstract: Background: Breast Cancer Resistance Protein (BCRP or ABCG2) is a polyspecific efflux-

transporter which belongs to the ATP-binding Cassette superfamily. Up-regulation of BCRP is 

associated to multi-drug resistance in a number of conditions, e.g. cancer and epilepsy. Recent 

proteomic studies show that high expression levels of BCRP are found in healthy human intestine and at 

the blood-brain barrier, limiting the absorption and brain distribution of its substrates. Therefore, the 

early recognition of BCRP substrates seems to be crucial in the early phase of drug discovery.  

Objective: The development of computational models that allow the early detection of BCRP substrates 

and non-substrates.  

Method: We have jointly applied the Enhanced Replacement Method and ensemble learning approaches 

to obtain combinations of 2D linear classifiers capable of discriminating among substrates and non-

substrates of the wild type human BCRP.  

Results: The ensemble learning approach combining the 10-Enhanced Replacement Method best 

individual models obtained through MAX Operator displayed the best ability to discriminate between 

BCRP substrates and non-substrates across all the validation sets/libraries used.  

Conclusion: The best model ensemble obtained outperforms previously reported 2D linear classifiers, 

showing the ability of the Enhanced Replacement Method and ensemble learning schemes to optimize 

the performance of individual models. This is the first application of the Enhanced Replacement 

Method to solve classification problems. 
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INTRODUCTION 

Breast Cancer Resistance Protein (BCRP, also known as 
ABCG2) is an ATP-dependent efflux pump characterized by 
broad substrate specificity. It limits the absorption and 
biodistribution and promotes the elimination of structurally and 
functionally heterogeneous substrates, including anticancer, 
antiepileptic, antiviral and antihypertensive drugs, among 
others. Up-regulation of BCRP expression has been linked to 
multi-drug resistance issues in many disorders, such as cancer 
[1-2] and epilepsy [3-5]. Though most of the early research on 
ATP-binding cassette (ABC) transporters has focused on P-
glycoprotein (Pgp, ABCB1), attention has recently been drawn 
to other members of the superfamily: recent reports 
demonstrate that BCRP expression levels at both the small 
intestine and the blood-brain barrier of healthy indivisuals are  
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comparable (and even higher) than those of Pgp [6-7], 
suggesting a prominent role of BCRP in drug 
pharmacokinetics. Therefore, regulation of BCRP activity 
and/or recognition of BCRP substrates in the early phase of 
drug discovery are critical to enhance drug bioavailability and 
design novel therapeutics aimed at diseases linked to BCRP-
mediated multi-drug resistance issues. 

To date, limited studies have been reported on the 
development of high-throughput in silico models for the early 
recognition of BCRP substrates [8-9]. The main limitations of 
these models are the inclusion of conformation-dependent (3D) 
molecular descriptors and that they have usually been derived 
from unbalanced training sets in which substrates are 
overrepresented in comparison to non-substrates (with the 
exception of the recent report from Erić and colleagues [10], 
where a balanced dataset was used). The use of 3D descriptors 
(which demand conformational pre-optimization of the screened 
compounds) limits the application of such models in virtual 
screening campaigns, in which chemical repositories containing 
thousands to millions of small molecules are typically screened 
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through in silico filters. On the other hand, inferring models from 
unbalanced training sets tend to produce predictions that are 
biased towards the overrepresented category of training 
examples [11-12]. 

We have recently reported an ensemble of linear 
classifiers obtained through Stepwise Forward Linear 
Discriminant Analysis. These classifiers are entirely based 
on conformation-independent (0-2D) molecular descriptors 
and they have been derived from a balanced and 
representative training set obtained through a clustering 
procedure [13].  

Here, we have resorted to the Enhanced Replacement 
Method (ERM) [14-15] and ensemble learning in an attempt 
to improve the performance of the previously reported 
model-ensemble. 

MATERIALS AND METHODS 

Dataset Compilation and Partition into Representative 
Training and Test Sets  

The dataset was compiled from literature. For this 
purpose, we have considered a compound as a substrate only 
if it is efficiently transported by BCRP and as a non-
substrate otherwise. Correspondingly, compounds that bind 
to BCRP but are not transported are not considered 
substrates. A 305-compound diverse dataset containing 
BCRP substrates and non-substrates was initially compiled 
from 150 articles. From this initial dataset, additional 
inclusion and exclusion criteria were considered to define the 
final dataset. Firstly, since it has been reported that single-
nucleotide substitutions modify the substrate specificity of 
BCRP [16-24], and taking into account that the clinical 
importance of such variants is not clear at the moment [25], 
we have only kept substrates from wild type BCRP in the 
final dataset. Secondly, substrates of BCRP homologs from 
other species with no evidence of human BCRP-mediated 
transport were not included to avoid noise due to inter-
species variability in substrate specificity. As a result, from 
the initial 305-compound dataset only 262 compounds were 
kept: 156 substrates and 106 non-substrates of human wild-
type BCRP. The dataset was split into a balanced and 
representative 164-compound training set (consisting in 85 
substrates and 79 non-substrates) and a 98-compound 
independent test set (71 substrates and 27 non-substrates). In 
order to obtain representative partitions of the dataset, the 
LibraryMCS v0.7 (ChemAxon, 2011) hierarchical clustering 
procedure has been jointly applied with the k-means 
optimization clustering algorithm implemented in Statistica 
10 Cluster Analysis Module (Statsoft Inc., 2011). In the 
recent years, many novel clustering algorithms have been 
developed for different applications [26-30]. The 
LibraryMCS is a hierarchical clustering procedure that uses 
the maximum common substructure (MCS, the largest 
subgraph found in two chemical graphs) in combination with 
molecular fingerprints to group a set of small molecules. It 
has specifically been developed for the clustering of small 
molecules and it has been widely applied for such purpose 
[31-34]. Following Everitt et al. advice [35], hierarchical 
clustering was applied to decide on an initial partition of n 
molecules into k groups; this preliminary clustering was then 
optimized through the k-means approach, minimizing the 

Euclidean distance to the group centers. A number of 
molecular descriptors calculated with Dragon 4.0 (Milano 
Chemometrics, 2003) reflecting diverse features of the 
molecular structure (logP, number of H bonds donors and 
acceptors, molecular weight, sum of atomic van der Waals 
volumes, polar surface area, sum of atomic Sanderson 
electronegativities, 2D Petitjean shape index and total 
information index of atomic composition) were normalized 
and used to compute such distance. After the clusters were 
independently recognized in the substrates and non-
substrates categories, around 50% of each cluster from the 
substrate category and 25% of each cluster in the non-
substrate category were randomly assigned to a test set for 
validation purposes. The remaining elements were kept as 
calibration set. This scheme provided a balanced training set 
where neither the substrates nor the non-substrates were 
overrepresented. Details on the training and test set 
compounds are available as Supplementary information so 
that the reader can appreciate the structural diversity of the 
dataset. 

Descriptor Computation and Modeling Procedure 

Dragon software v. 6.0 (Milano Chemometrics, 2012) 
was applied for the computation of 2029 conformation-
independent descriptors, distributed along 19 descriptor-
blocks, among them topological indices, ring descriptors, 2D 
atom pairs, information indices and others. A very important 
issue in multivariate analysis is to remove data having low 
variance using pre-filtering processes [36-37]. Here we have 
applied the initial filtering steps provided by Dragon 
software to exclude molecular descriptors with low 
information content, including constant or near-constant 
values (identical values for all the training examples but one) 
and descriptors with standard deviation below 0.001.  

A binary, dummy variable linked to the category of each 
compound was used as dependent variable (class = 1 for 
substrates and class = −1 for non-substrates). The ERM [14-
15] was used to select, from the descriptor pool, linear 
combinations of descriptors capable of predicting whether a 
chemical compound is or is not a BCRP substrate. The 
original Replacement Method (RM) was developed to 
explore the descriptor space in an efficient manner, in search 
of a subset of molecular descriptors from a large set of 
descriptors [38-40]. It is a rapidly convergent iterative 
algorithm which produces linear models that perform quite 
close to the full search solution with much less 
computational cost. Briefly, an initial subset of descriptors d 
from the pool of D descriptors is randomly selected. One of 
these selected descriptors, Xi, is then replaced one by one 
with all the remaining (D-d) descriptors in the pool. The 
subset of descriptors with the smallest standard deviation (S) 
is kept. From this resulting subset, the descriptor with the 
largest standard error in its regression coefficient is 
substituted one by one with all the remaining (D-d) 
descriptors in the pool. If the replacement of the descriptor 
with the largest error by those in the pool does not decrease 
the value of S, then the descriptor is not changed. The 
procedure is repeated until the selected subset of descriptors 
remains unmodified. An improvement on the RM, called the 
Modified Replacement Method (MRM) [15] uses the same 
strategy except that in each step the descriptor with the 
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largest error is substituted even when that replacement is not 
associated to a smaller value of S. The MRM converges to 
different solutions, commonly bounces from one point to 
another and simulates ‘a higher noise’ than the RM, though 
keeping the overall decreasing trend of the S function. This 
apparent thermal agitation makes the MRM less likely to get 
trapped in local minima at the cost of larger computer time. 
The ERM arises from the combinations of the RM and MRM 
following the RM-MRM-RM sequence; it combines the 
good features of both methods and is the only algorithm that 
goes through a complete simulated annealing cycle [15]. 
ERM is less dependent on the starting subset of descriptors 
and shows less propensity to fall in local minima. ERM has 
also proven to provide better models than the more complex 
Genetic Algorithms [14]. 

Here, we have applied the ERM to obtain models 
including from 4 to 12 molecular descriptors. Models with a 
larger number of predictors were not considered to maintain 
the observations to predictor ratio above 15, reducing the 
chance of overfitting [41-42].  

Only those models containing descriptors with significant 
coefficients at an alpha level of 0.05 were retained. Leave-
one-out cross-validation and external validation (discussed in 
the next section) were used to assess each model’s 
robustness and predictive ability. 

External Validation and Model Comparison 

The 98-compound independent test set was used for 
external validation. Later, we have applied Receiving 
Operating Characteristic (ROC) curves analysis to assess and 
compare model performance [43]. The ROC curves are 
graphical plots of Sensitivity (𝑆𝑒) versus 1 minus Specificity 
(𝑆𝑝), which provide a rational frame to balance type I and 
type II errors; they are also useful to optimize a model cutoff 
score value and to compare models statistically. 𝑆𝑒 
represents the true positives (𝑇𝑃) rate, while 𝑆𝑝 refers to the 
true negatives (𝑇𝑁) rate: 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

where 𝐹𝑃  denotes False Positives and 𝐹𝑁  stands for False 
Negatives. In our particular application, we are searching for 
drugs which are not recognized by BCRP (BCRP non-
substrates) which will be considered our hits or positives, 
whereas we want to discard BCRP substrates, which will be 
then regarded as negatives. A perfect classifier presents an 
Area Under the Receiving Operating Characteristic curve 
(AUROCc) of 1, while random classification is associated to an 
AUROCc of 0.5. MedCalc (MedCalc software, 2011) was used 
to obtain and statistically compare ROC curves. For statistical 
comparison of two AUROCcs, the nonparametric method of 
DeLong et al. [44] was used for the calculation of the standard 
error of each AUROCc and then the z-statistic was calculated 
in order to obtain the correspondent p-value [45].  

It has been observed that standard errors of enrichment 
metrics such as the AUROCc used here are higher for small 

datasets than for large datasets [46]. Moreover, using a 
limited test set with a relatively high proportion of positives 
leads to a saturation effect: once the hit compounds saturate 
the early part of the ranking the enrichment metric cannot get 
any higher. If a model is conceived to analyze large chemical 
repositories where very few hits might be dispersed among a 
large number of non-hits, a more challenging and 
informative test is to conduct a pilot screening on a large 
database in which relatively few hits are dispersed among a 
high proportion of non-hits. Therefore, we have built two 
pilot chemical libraries in order to estimate in a more 
realistic way the utility of our model in a real virtual 
screening setting.  

On the one hand, we built a 577-compound pilot 
chemical library (called simulated library) in which our 98-
compound test set was dispersed among 479 putative BCRP 
substrates acting as decoys. Since the human BCRP 
substrates reported in literature are limited, our putative 
substrates are substrates of non-human BCRP homologs 
from other species or highly similar compounds to known 
human BCRP substrates retrieved from ZINC and PubChem 
databases through molecular similarity searches (similarity 
score > 0.75 compared to known substrates). The resulting 
pilot library contains 27 known non-substrates among 550 
known or putative substrates, leading to a hit ratio smaller 
than 0.05. The same pilot library has previously been applied 
to assess the performance of our already reported 
classificatory models (which were derived from the same 
training set through Stepwise Forward Linear Discriminant 
Analysis) [13].   

As a final challenge to our models, we have used the 
Enhanced Directory of Useful Decoys resource (DUD-E) 
[47-48] to build a second, larger and more diverse chemical 
library (which will be called DUD-E library) containing 
1346 compounds (1248 decoys plus the original 98-
compound test set) where each decoy is physicochemically 
similar but topologically dissimilar to its corresponding non-
substrate. For this purpose we used the automated decoy 
generation tool available online. Succinctly, the decoys are 
property-matched to known hits (in our case, the known non-
substrates) using molecular weight, an estimated LogP 
(miLogP), hydrogen bond donors and acceptors count, 
rotatable bonds and net molecular charge. About 50 decoys 
for each compound are chosen from ZINC [49] using a 
dynamic protocol that adapts to the local chemical space by 
narrowing or widening windows around the 6 properties. The 
goal is to obtain from ZINC 3000 to 9000 potential decoys 
matching the compounds. In a final step, ECFP4 fingerprints 
are generated for the compounds and its potential decoys; 
each compound’s decoys are ranked by their maximum 
Tanimoto coefficient and the most dissimilar 25% are kept.  

Ensemble Learning  

Ensemble learning uses multiple learning algorithms to 
obtain better predictive performance than the one that could 
be obtained from any of the individual constituent learning 
algorithms [50]. Here we have combined a) the scores of the 
10 individual models that displayed the best AUROCc for 
the test set and; b) the scores of all the individual models that 
showed a global accuracy above 70% for the test set (in total, 
97 models). We have used five combination schemes to 
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obtain a combined score: MAX Operator; MIN Operator; 
Average Score; Average Ranking and; Average Voting. 
Voting was computed according to the equation previously 
used by Zhang and Muegge [51]: the vote obtained by the jth 
compound in the ith model is equal to max(0, int(11-
rankij/0.02NDB)), where rankij is the ranking of the jth 
compound according to the ith model, and NDB is the 
number of compounds in the entire screened library. This 
procedure gives 10 votes to the first 2% ranked compounds, 
9 votes for the next 2%, and so on. Compounds in the bottom 
80% of the ranking list receive no votes. The five 
combination schemes were analyzed and compared through 
ROC curves. 

Fig. 1 shows a flowchart summarizing the modeling 
methodology. 

RESULTS AND DISCUSSION 

459 models incorporating between 4 and 12 molecular 
descriptors were obtained through the ERM. All of them 
displayed good results in the LOO cross-validation. 97 of 
them showed an overall percentage of good classification 
above 70% for the test set. The features of the 10 models 
showing the highest AUROCc for the test set are provided in 
Table 1. Dragon’s nomenclature for the descriptors has been 
kept. A more detailed insight into the performance of each of 
these models on the training and test sets, the simulated 
library and the DUD-E library is presented in Table 2. We 
have also included the results for the best individual model 
previously reported [13] (inferred through Stepwise Forward 
Linear Discriminant Analysis) and the two best 2-model 
ensembles obtained in that same study. All the individual 
models showed an AUROCc statistically different from 
random classification (p < 0.0001) for the training set, the 

test set and the 577-compound simulated library (Table 2). 
All the 10 best models obtained through the ERM 
outperformed the best model obtained through Stepwise 
Forward Linear Discriminant Analysis (SF) for both the 
training and test sets, while all models display a similar 
behavior on the simulated library. Considering the AUROCc 
for the test set, the best ERM individual model was M438, 
which slightly outperforms the two best 2-model ensembles 
obtained through the Stepwise Forward approach (SF-E1 and 
SF-E2) in relation to the classification of the training and test 
set compounds; it also slightly outperforms SF-E1 regarding 
the simulated library classification while it shows similar 
performance to SF-E2 (p = 0.6651). The results suggest that 
the ERM provides better results than the Stepwise Forward 
approach. However, all the individual models experimented 
a significant drop on their performance when they were 
applied on the DUD-E library, evidently our most 
challenging test. 

The sharp drop in all the individual models performance 
when applied to the DUD-E library demonstrates the 
difficulty to find a single linear relationship capable of 
accurately classifying substrates and non-substrates when 
facing a real in silico screening application. In this sense, one 
should keep in mind that the broad substrate specificity of 
BCRP makes our modeling problem particularly challenging. 
It has been pointed out that the polyspecificity of ABC 
transporters due to multiple binding sites and high protein 
flexibility determines a complex phenomenon which can 
only be partially addressed by current methods in the 
computational drug design field [52-53]. This explains why 
many modeling efforts to identify ABC transporters 
substrates have resorted to ensemble learning or locally 
weighted methods [54-57]. Thus, we have applied ensemble 
learning methods combining the best ERM individual  

 

Fig. (1). Schematic representation of the modeling procedure. 
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Table 1. Summary of the features of the 10-ERM individual models which showed the best performance on the test set. 

 

Model Descriptors included F Wilk’s λ 
Overall accuracy 

Training Set 

Overall accuracy 

Test Set 

M36 

SM5_B(e): spectral moment of order 5 from Burden matrix 
weighted by Sanderson electronegativity 

P_VSA_i_2: P_VSA-like on ionization potential, bin 2 

SpDiam_EA: spectral diameter from edge adjacency mat. 

nRCONHR: number of secondary amides (aliphatic) 

19.970 0.666 83.5 75.5 

M61 

SpMax2_Bh(s): largest eigenvalue n. 2 of Burden matrix 
weighted by I-state 

SpMaxA_EA(ed): normalized leading eigenvalue from edge 
adjacency mat. weighted by edge degree 

nRCONHR 

CATS2D_07_NL: CATS2D Negative-Lipophilic at lag 07 

F01[C-C]: Frequency of C - C at topological distance 1 

19.211 0.622 79 71 

M107 

EE_B(e): Estrada-like index (log function) from Burden matrix 
weighted by Sanderson electronegativity 

P_VSA_i_2 

SpDiam_EA 

nRCONHR 

B10[C-C]: Presence/absence of C - C at topological distance 10 

DLS_01: modified drug-like score from Lipinski (4 rules) 

18.373 0.587 83.5 71 

M203 

IDE: mean information content on the distance equality 

SpMaxA_Dz(e): normalized leading eigenvalue from Barysz 
matrix weighted by Sanderson electronegativity 

SpPosA_B(v): normalized spectral positive sum from Burden 
matrix weighted by van der Waals volume 

nArOR: number of ethers (aromatic) 

S-108: R=S 

NaaaC: Number of atoms of type aaaC 

CATS2D_07_NL 

B10[C-C] 

18.426 0.512 83 70 

M289 

N%: percentage of N atoms 

SpMax2_Bh(s) 

SM11_EA: spectral moment of order 11 from edge adjacency 
mat. 

Eig05_EA: eigenvalue n. 5 from edge adjacency mat 

nCs: number of total secondary C(sp3) 

nRCONHR 

NaaaC 

CATS2D_07_NL 

Ui: unsaturation index 

17.838 0.490 83.5 74.5 

M356 

N% 

nR04: number of 4-membered rings 

SpMax2_Bh(s) 

SM11_EA 

SM13_AEA(bo): spectral moment of order 13 from augmented 
edge adjacency mat. weighted by bond order 

nCs 

nRCONHR 

NaaaC 

CATS2D_07_NL 

Ui 

17.841 0.462 85 73.5 
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Table 1. (contd….) 

M380 

IDE 

WiA_Dz(m): average Wiener-like index from Barysz matrix 
weighted by mass 

SpPosA_B(v) 

SpMax2_Bh(s) 

SaaaC: Sum of aaaC E-states 

SdS: Sum of dS E-states 

CATS2D_05_DA: CATS2D Donor-Acceptor at lag 05 

CATS2D_01_NL: CATS2D Negative-Lipophilic at lag 01 

B10[C-C] 

DLS_01 

17.415 0.468 85 73.5 

M438 

nR07: number of 7-membered rings 

D/Dtr04: distance/detour ring index of order 4 

piPC09: molecular multiple path count of order 9 

ATSC2e: Centred Broto-Moreau autocorrelation of lag 2 
weighted by Sanderson electronegativity 

GATS1e: Geary autocorrelation of lag 1 weighted by Sanderson 
electronegativity 

SpMax2_Bh(i): largest eigenvalue n. 2 of Burden matrix 
weighted by ionization potential 

SpMax2_Bh(s) 

SM04_EA(ed): spectral moment of order 4 from edge adjacency 
mat. weighted by edge degree 

Eig10_EA(dm): eigenvalue n. 10 from edge adjacency mat. 
weighted by dipole moment 

Uc: unsaturation count 

DLS_01 

17.588 0.440 86 75.5 

M446 

nR04 

SpMax_A: leading eigenvalue from adjacency matrix (Lovasz-
Pelikan index) 

ATSC2e 

SpMax2_Bh(s) 

P_VSA_i_2 

Eig05_EA 

nRCONHR 

NaaaC 

B03[O-O]: Presence/absence of O - O at topological distance 3 

F09[C-S]: Frequency of C - S at topological distance 9 

cRo5: Complementary Lipinski Alert index 

17.419 0.442 85 71 

M471 

SRW09: self-returning walk count of order 9 

IDE 

WiA_Dz(e): average Wiener-like index from Barysz matrix 
weighted by Sanderson electronegativity 

SpMax2_Bh(s) 

Eta_betaS_A: eta sigma average VEM coun 

C-034: R--CR..X 

CATS2D_08_DP: CATS2D Donor-Positive at lag 08 

CATS2D_07_NL 

B02[C-O]: Presence/absence of C - O at topological distance 2 

B08[N-O]: Presence/absence of N - O at topological distance 8 

B10[C-C] 

Ui 

18.666 0.403 88 74.5 
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Table 2. 𝑺𝒆, 𝑺𝒑, Global accuracy and AUROCc values of the 10 best individual models obtained with the ERM for the training and 

test sets, the simulated library and the DUD-E library. Such values for the best previously reported individual model (SF) 

and the two best 2-model ensembles (SF-E1 and SF-E2) obtained through the Stepwise Forward technique have also been 

included for comparison purposes. A score of zero has been considered as the cutoff value to assess 𝑺𝒑 and 𝑺𝒆. The best 

AUROCc for each set of compounds has been indicated in bold. 

 

 
Training Set Test Set Simulated Library DUD-E Library 

Model 𝑺𝒑 𝑺𝒆 Global  AUROCc 𝑺𝒑 𝑺𝒆 Global AUROCc 𝑺𝒑 𝑺𝒆 Global AUROCc 𝑺𝒑 𝑺𝒆 Global AUROCc 

M438 91 81 86 0.945** 85 52 75.5 0.823** 76 52 74.5 0.755** 51.8 61.6 61.4 0.503 

M380 86 85 85 0.939** 72 78 73.5 0.789** 68 78 67 0.746** 77.8 57.5 57.9 0.576 

M107 82 85 83.5 0.894** 73 67 71 0.788** 61 67 61 0.719** 66.7 48.6 49 0.636* 

M471 86 90 88 0.957** 76 70 74.5 0.788** 75 70 74.5 0.765** 70.4 45.4 45.9 0.611* 

M356 87 84 85 0.946** 79 59 73.5 0.783** 70 59 69.5 0.747** 59.3 51 51.2 0.591 

M61 86 71 79 0.885** 75 63 71 0.774** 70 63 67 0.756** 63 46.7 47 0.666* 

M203 82 84 83 0.924** 70.4 70.4 70 0.774** 67 70.4 71 0.736** 70.4 57.4 57.6 0.590 

M289 85 82 83.5 0.936** 59 80 74.5 0.774** 71.5 80 69.5 0.751** 59.3 50.1 50.3 0.580 

M36 88 78 83.5 0.863** 74 76 75.5 0.773** 65 76 66 0.725** 74.1 47.4 47.9 0.634* 

M446 86 85 85 0.948** 77.5 55.5 71 0.772** 66 55.5 65 0.732** 55.5 51.1 51.2 0.610† 

SF 79 68 74 0.796** 63 74 66 0.748** 66 74 66 0.732** 46 74.1 46.6 0.622† 

SF-E1 84 75 79 0.850** 70 74 71 0.785** 64 74 64 0.736** 53.6 74.1 54.1 0.660* 

SF-E2 85 80 82 0.902** 76 70 74.5 0.804** 68 70 68 0.771** 48 70.4 48.5 0.637† 

AUROCc statistically different from a random classification (AUROCc = 0.5) ** p < 0.0001; * p < 0.01, † p < 0.05 

 

Table 3. The table shows the AUROCcs values for the 10- and 97-ERM model ensembles obtained through the five combination 

schemes for the training and test sets, the simulated library and the DUD-E library; the AUROCcs values for the best 

individual model M438 have also been included. The best AUROCc for the 10-model ensemble has been highlighted in 

bold for each set of compounds. 

 

AUROCc 

10-model ensemble Training Set Test Set Simulated Library DUD-E Library 

MAX Operator 0.954** 0.850** 0.824** 0.743** 

MIN Operator 0.939** 0.776** 0.724** 0.526 

Average Score 0.963** 0.833** 0.791** 0.628* 

Average Ranking 0.963** 0.830** 0.789** 0.629† 

Average Voting 0.871** 0.724** 0.711** 0.558 

97-model ensemble Training Set Test Set Simulated Library DUD-E Library 

MAX Operator 0.829** 0.647† 0.530 0.589 

MIN Operator 0.934** 0.740** 0.573 0.512 

Average Score 0.964** 0.778** 0.745** 0.598 

Average Ranking 0.963** 0.781** 0.745** 0.591 

Average Voting 0.906** 0.712** 0.651* 0.622† 

M438 0.945** 0.823** 0.755** 0.503 

AUROCc statistically different from a random classification (AUROCc = 0.5) ** p < 0.0001; * p < 0.01, † p < 0.05 
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Fig. (2). Graphical comparison of the ROC curves from the best performing ensembles and the best ERM individual model 
(M438) for each set of compounds assessed. Selective ensemble of 10 models through the MAX Operator is the only approach 
that consistently shows good performance on all the validations sets/libraries used. 

models through five different combination schemes, leading 
to remarkably improved results (Table 3; the best ERM 
individual model –M438– has been included in the table to 
facilitate the comparison). 

Compared to the best ERM individual model, the 
combination of the 10 best individual ERM models using 
MAX Operator showed very similar performance on the 
training and the test sets (p = 0.5626 and p = 0.4522, 
respectively), but it markedly improved the performance on 
the simulated library (p = 0.0353) and the DUD-E library (p 

< 0.0087). No improvement compared to the best individual 
model (and, in fact, reduced accuracy) was observed when 
combining the 97 models that showed best performance on 
the test set. This suggests that, when resorting to ensemble 
learning, selective combination of relatively few good 
models might be better than combining several weak models. 
This is in agreement with previous studies applying 
ensemble learning that suggest that the combination of a few 
and selected classifiers (selective ensemble) may provide 
better accuracy and generalization than combining all 
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available learners [58-60]. Based on the previous results, we 
have also tested combinations of the 2, 3, 5, and 15 models 
(data not shown) with the best AUROCc on the test sets. 
None of these ensembles showed statistically significant 
differences on the training set, the test set and the simulated 
library AUROCcs. The 10-model ensemble displayed the 
best behavior on the DUD-E library, outperforming the 2-, 3- 
and 5-model ensembles (p < 0.0001) and showing very 
similar performance to the 15-model ensemble (p = 0.6679), 
constituting the best ensemble obtained.  

It is also interesting that, for both the individual models 
and the model ensembles (no matter which combination 
scheme was used), the performance on the 98-compound test 
set is generally better than the performance on the 577-
compound simulated library, falling sharply on the 1346-
compound DUD-E library. On the one hand, this seems to 
confirm that assessing the model’s performance on large 
chemical libraries is a more stringent test than assessing 
performance on small compound sets, and the ability of the 
Enhanced Directory of Useful Decoys to generate suitable 
decoys for validation purposes, on the other. The MAX 
Operator displayed the best results to combine individual 
learners, with an AUROCcs of 0.824 on the simulated library 
and of 0.743 on the DUD-E library, being the only ensemble 
scheme that showed a good performance on the larger and 
more diverse library tested, while all other individual models 
and model ensembles showed either poor or no classificatory 
power at all on this library. Fig. 2 shows the ROC curves of 
the 10-ERM model ensembles and the best ERM individual 
model for each set of compounds evaluated. 

CONCLUSIONS 

Using the ERM to deal with a classification problem for 
the first time, we have developed linear model ensembles 
capable of identifying BCRP substrates and non-substrates; 
these models are entirely based on conformation-
independent descriptors, thus being capable of screening 
large chemical repositories with high throughput. It should 
be highlighted that systematic comparisons of different 
virtual screening approaches with different levels of 
sophistication have surprisingly shown that the less 
sophisticated approaches might sometimes outperform more 
complex ones in terms of enrichment metrics: more complex 
methods are not unequivocally better; which method is more 
suitable seems to be highly target-dependent [51, 61]. 
Simpler approaches are, however, always more efficient.  

The models reported here might be efficiently apply at an 
early stage in drug discovery projects to discard drug 
candidates predicted as BCRP substrates, which might 
present BCRP-associated bioavailability issues, drug-drug 
interactions and multi-drug resistance issues linked to BCRP. 
The models reported here clearly outperform previously 
reported linear classifiers by our group, which were obtained 
through the simpler Stepwise Forward Linear Discriminant 
Analysis, and confirm the utility of the ERM to establish 
useful QSAR relationships. The ensemble learning approach 
combining the 10-ERM best individual models obtained 
through MAX Operator displayed the best capacity to 
discriminate between BCRP substrates and non-substrates 
across all the validation sets/libraries used here, proving to 
be effective to improve the predictive ability of the 

individual models. These results seem to confirm the 
strength of the selective ensemble approximation. The sharp 
drop in the classificatory power of the individual models and 
model ensembles when studying the DUD-E library 
underlines the ability of the Enhanced Directory of Useful 
Decoys to provide challenging collections of small 
molecules in order to assess computational models’ 
predictive ability previous to proceed to real in silico 
screening applications. Furthermore, it was confirmed that 
assessing model performance on a large and diverse database 
is a more stringent test than assessing performance on 
smaller libraries, allowing estimating in a more realistic way 
the utility of a model in a real virtual screening setting. 

CONFLICT OF INTEREST  

The authors declare no conflict of interest related to the 
present article.  

ACNOWLEDGEMENTS 

M. E. Gantner and L. N. Alberca are CONICET 
fellowship holders. A. Talevi and A. G. Mercader are 
members of the Scientific Research Career at CONICET. L. 
E. Bruno-Blanch is a researcher of the Faculty of Exact 
Sciences, National University of La Plata (UNLP). The 
authors would like to thank UNLP (Incentivos X-597), 
CONICET (PIP 11220090100603) and ANPCyT (PICTs 
2010-2531 and 2010-1774, PPL 2011-0003) for providing 
funds to develop our research. 

REFERENCES 

[1] Agarwal S, Hartz AM, Elmquist WF, Bauer B. Breast cancer resistance 
protein and P-glycoprotein in brain cancer: two gatekeepers team up. 
Curr Pharm Des 2011; 17(26): 2793-802. 

[2] Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance 
protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 
2012; 83(8): 1084-103. 

[3] Aronica E, Gorter JA, Redeker S, van Vliet EA, Ramkema M, Scheffer 
GL, et al. Localization of breast cancer resistance protein (BCRP) in 
microvessel endothelium of human control and epileptic brain. Epilepsia 
2005; 46(6): 849-57. 

[4] Nakanishi H, Yonezawa A, Matsubara K, Yano I. Impact of P-
glycoprotein and breast cancer resistance protein on the brain distribution 
of antiepileptic drugs in knockout mouse models. Eur J Pharmacol 2013; 
710(1-3): 20-8. 

[5] Sisodiya SM, Martinian L, Scheffer GL, et al. Vascular colocalization of 
P-glycoprotein, multidrug-resistance associated protein 1, breast cancer 
resistance protein and major vault protein in human epileptogenic 
pathologies. Neuropathol Appl Neurobiol 2006; 32(1): 51-63. 

[6] Tucker TG, Milne AM, Fournel-Gigleux S, Fenner KS, Coughtrie MW. 
Absolute immunoquantification of the expression of ABC transporters P-
glycoprotein, breast cancer resistance protein and multidrug resistance-
associated protein 2 in human liver and duodenum. Biochem Pharmacol 
2012; 83(2): 279-85. 

[7] Uchida Y, Ohtsuki S, Katsukura Y, et al. Quantitative targeted absolute 
proteomics of human blood-brain barrier transporters and receptors. J 
Neurochem 2011; 117(2): 333-45. 

[8] Hazai E, Hazai I, Ragueneau-Majlessi I, Chung SP, Bikadi Z, Mao Q. 
Predicting substrates of the human breast cancer resistance protein using 
a support vector machine method. BMC Bioinformatics 2013; 14: 130. 

[9] Zhong L, Ma CY, Zhang H, et al. A prediction model of substrates and 
non-substrates of breast cancer resistance protein (BCRP) developed by 
GA-CG-SVM method. Comput Biol Med 2011; 41(11): 1006-13. 

[10] Eric S, Kalinic M, Ilic K, Zloh M. Computational classification models for 
predicting the interaction of drugs with P-glycoprotein and breast cancer 
resistance protein. SAR QSAR Environ Res 2014; 25(12): 939-66. 

[11] Ghafourian T, Freitas AA, Newby D. The impact of training set data 
distributions for modelling of passive intestinal absorption. Int J Pharm 
2012; 436(1-2): 711-20. 



248   Current Bioinformatics, 2017, Vol. 12, No. 3 Talevi et al. 

[12] Van Hulse J, Khoshgoftaar T. Knowledge discovery from imbalanced 
and noisy data. Data Knowl Eng 2009; 68: 1513-42. 

[13] Gantner ME, Di Ianni ME, Ruiz ME, Talevi A, Bruno-Blanch LE. 
Development of conformation independent computational models for the 
early recognition of breast cancer resistance protein substrates. Biomed 
Res Int 2013; 2013: 863592. 

[14] Mercader AG, Duchowicz PR, Fernandez FM, Castro EA. Replacement 
method and enhanced replacement method versus the genetic algorithm 
approach for the selection of molecular descriptors in QSPR/QSAR 
theories. J Chem Inf Model 2010; 50(9): 1542-8. 

[15] Mercader AG, Duchowicz PR, Fernández FM, Castro EA. Modified and 
enhanced replacement method for the selection of molecular descriptors 
in QSAR and QSPR theories. Chemometr Intell Lab 2008; 92: 138-44. 

[16] Allen JD, Jackson SC, Schinkel AH. A mutation hot spot in the Bcrp1 
(Abcg2) multidrug transporter in mouse cell lines selected for 
Doxorubicin resistance. Cancer Res 2002; 62(8): 2294-9. 

[17] Eddabra L, Wenner T, El Btaouri H, et al. Arginine 482 to glycine 
mutation in ABCG2/BCRP increases etoposide transport and resistance 
to the drug in HEK-293 cells. Oncol Rep 2012; 27(1): 232-7. 

[18] Ejendal KF, Diop NK, Schweiger LC, Hrycyna CA. The nature of amino 
acid 482 of human ABCG2 affects substrate transport and ATP 
hydrolysis but not substrate binding. Protein Sci 2006; 15(7): 1597-607. 

[19] Janvilisri T, Shahi S, Venter H, Balakrishnan L, van Veen HW. 
Arginine-482 is not essential for transport of antibiotics, primary bile 
acids and unconjugated sterols by the human breast cancer resistance 
protein (ABCG2). Biochem J 2005; 385(Pt 2): 419-26. 

[20] Kathawala RJ, Gupta P, Ashby CR Jr, Chen ZS. The modulation of 
ABC transporter-mediated multidrug resistance in cancer: a review of the 
past decade. Drug Resist Updat 2015; 18: 1-17. 

[21] Ozvegy-Laczka C, Koblos G, Sarkadi B, Varadi A. Single amino acid 
(482) variants of the ABCG2 multidrug transporter: major differences in 
transport capacity and substrate recognition. Biochim Biophys Acta 
2005; 1668(1): 53-63. 

[22] Polgar O, Robey RW, Bates SE. ABCG2: structure, function and role in 
drug response. Expert Opin Drug Metab Toxicol 2008; 4(1): 1-15. 

[23] Pozza A, Perez-Victoria JM, Sardo A, Ahmed-Belkacem A, Di Pietro A. 
Purification of breast cancer resistance protein ABCG2 and role of 
arginine-482. Cell Mol Life Sci 2006; 63(16): 1912-22. 

[24] Robey RW, Honjo Y, Morisaki K, et al. Mutations at amino-acid 482 in 
the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer 
2003; 89(10): 1971-8. 

[25] Cervenak J, Andrikovics H, Ozvegy-Laczka C, et al. The role of the 
human ABCG2 multidrug transporter and its variants in cancer therapy 
and toxicology. Cancer Lett 2006; 234(1): 62-72. 

[26] Saha S, Spandana R, Ekba A, Bandyopadhyay S. Simultaneous feature 
selection and symmetry based clustering using multiobjective 
framework. Appl Soft Comput 2015; 29: 479-86. 

[27] Saha S, Bandyopadhyay S. A symmetry based multiobjective clustering 
technique for automatic evolution of clusters. Pattern Recogn 2010; 
43(3): 738-51. 

[28] Vijendra S, Laxman S. Symmetry Based Automatic Evolution of 
Clusters: A New Approach to Data Clustering. Comput Intell Neurosci 
2015; 2015: 796276. 

[29] Abubaker A, Baharum A, Alrefaei M. Automatic Clustering Using 
Multi-objective Particle Swarm and Simulated Annealing. PLoS One 
2015; 10(7): e0130995. 

[30] Karaboga D, Ozturk C. A novel clustering approach: Artificial Bee 
Colony (ABC) algorithm. Appl Soft Comput 2011; 11(1): 652-7. 

[31] Stahl M, Mauser H. Database clustering with a combination of 
fingerprint and maximum common substructure methods. J Chem Inf 
Model 2005; 45(3): 542-8. 

[32] Bocker A. Toward an improved clustering of large data sets using 
maximum common substructures and topological fingerprints. J Chem 
Inf Model 2008; 48(11): 2097-107. 

[33] Herhaus C. Introducing fuzziness into maximum common substructures 
for meaningful cluster characterisation. J Cheminform 2014; 6(Suppl 1): 
17. 

[34] Hariharan R, Janakiraman A, Nilakantan R, et al. MultiMCS: a fast 
algorithm for the maximum common substructure problem on multiple 
molecules. J Chem Inf Model 2011; 51(4): 788-806. 

[35] Everitt B. Cluster analysis. 5th ed. Chichester, West Sussex, U.K.: 
Wiley; 2011. 

[36] Bandyopadhyay S, Mallik S, Mukhopadhyay A. A Survey and 
Comparative Study of Statistical Tests for Identifying Differential 
Expression from Microarray Data. IEEE/ACM Trans Comput Biol 
Bioinform 2013. 

[37] Mallik S, Mukhopadhyay A, Maulik U. RANWAR: rank-based 
weighted association rule mining from gene expression and methylation 
data. IEEE Trans Nanobioscience 2015; 14(1): 59-66. 

[38] Duchowicz PR, Castro EA, Fernández FM. Alternative algorithm for the 
search of an optimal set of descriptors in QSAR-QSPR studies. MATCH 
Commun Math Comput Chem 2006; 55(1): 179-92. 

[39] Mercader AG, Duchowicz PR, Fernandez FM, Castro EA. Advances in 
the replacement and enhanced replacement method in QSAR and QSPR 
theories. J Chem Inf Model 2011; 51(7): 1575-81. 

[40] Talevi A, Bellera CL, Di Ianni M, Duchowicz PR, Bruno-Blanch LE, 
Castro EA. An integrated drug development approach applying 
topological descriptors. Curr Comput Aided Drug Des 2012; 8(3): 172-
81. 

[41] Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events 
per independent variable in proportional hazards regression analysis. II. 
Accuracy and precision of regression estimates. J Clin Epidemiol 1995; 
48(12): 1503-10. 

[42] Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A 
simulation study of the number of events per variable in logistic 
regression analysis. J Clin Epidemiol 1996; 49(12): 1373-9. 

[43] Triballeau N, Acher F, Brabet I, Pin JP, Bertrand HO. Virtual screening 
workflow development guided by the "receiver operating characteristic" 
curve approach. Application to high-throughput docking on 
metabotropic glutamate receptor subtype 4. J Med Chem 2005; 48(7): 
2534-47. 

[44] DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas 
under two or more correlated receiver operating characteristic curves: a 
nonparametric approach. Biometrics 1988; 44(3): 837-45. 

[45] Hajian-Tilaki K. Receiver Operating Characteristic (ROC) Curve 
Analysis for Medical Diagnostic Test Evaluation. Caspian J Intern Med 
2013; 4(2): 627-35. 

[46] Truchon JF, Bayly CI. Evaluating virtual screening methods: good and 
bad metrics for the "early recognition" problem. J Chem Inf Model 2007; 
47(2): 488-508. 

[47] Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular 
docking. J Med Chem 2006; 49(23): 6789-801. 

[48] Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful 
decoys, enhanced (DUD-E): better ligands and decoys for better 
benchmarking. J Med Chem 2012; 55(14): 6582-94. 

[49] Irwin JJ, Shoichet BK. ZINC--a free database of commercially available 
compounds for virtual screening. J Chem Inf Model 2005; 45(1): 177-82. 

[50] Rokach L. Ensemble-based classifiers. Artif Intell Rev 2010; 33(1-2): 1-
39. 

[51] Zhang Q, Muegge I. Scaffold hopping through virtual screening using 
2D and 3D similarity descriptors: ranking, voting, and consensus scoring. 
J Med Chem 2006; 49(5): 1536-48. 

[52] Demel MA, Kramer O, Ettmayer P, Haaksma EE, Ecker GF. Predicting 
ligand interactions with ABC transporters in ADME. Chem Biodivers 
2009; 6(11): 1960-9. 

[53] Ecker GF. QSAR studies on ABC transporter—How to deal with 
polyspecificity. In: Ecker G, Chiba P, editors. Transporters as Drug 
Carriers: Structure, Function, Substrates. Weinheim, Germany: Wiley-
VCH; 2009. 

[54] Cao DS, Huang JH, Yan J, Zhang LX, Hu QN, Xu QS. Kernel k-nearest 
neighbor algorithm as a flexible SAR modeling tool. Chemometr Intell 
Lab 2012; 114: 19-23. 

[55] Li WX, Li L, Eksterowicz J, Ling XB, Cardozo M. Significance analysis 
and multiple pharmacophore models for differentiating P-glycoprotein 
substrates. J Chem Inf Model 2007; 47(6): 2429-38. 

[56] Penzotti JE, Lamb ML, Evensen E, Grootenhuis PD. A computational 
ensemble pharmacophore model for identifying substrates of P-
glycoprotein. J Med Chem 2002; 45(9): 1737-40. 

[57] Svetnik V, Wang T, Tong C, Liaw A, Sheridan RP, Song Q. Boosting: 
an ensemble learning tool for compound classification and QSAR 
modeling. J Chem Inf Model 2005; 45(3): 786-99. 

[58] Li l, Hu Q, Wu X, Yu D. Exploration of classification confidence in 
ensemble learning. Pattern Recogn 2014; 47: 3120-31. 

[59] Sastry GM, Inakollu VS, Sherman W. Boosting virtual screening 
enrichments with data fusion: coalescing hits from two-dimendional 
fingerprints, shape, and doking. J Chem Inf Model 2013; 53: 1531-42. 

[60] Zhou ZH, Wu J, Tang W. Ensembling neural networks: Many could be 
better than all. Artif Intell Rev 2002; 137(1-2): 239-63. 

[61] Bender A, Glen RC. A discussion of measures of enrichment in virtual 
screening: comparing the information content of descriptors with 
increasing levels of sophistication. J Chem Inf Model 2005; 45(5): 1369-
75. 

 


