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a b s t r a c t

This work presents a comparative study of chemometric methods used to quantify adulteration of extra
virgin olive oil (EVOO) with soybean edible oil using fluorescence and UVeVis spectroscopies. The
adulteration was prepared by adding soybean edible oil in different concentrations (10, 50, 100, 150, 200,
250 and 300 g/kg). Different multivariate regression strategies were evaluated: partial least squares (PLS)
using full spectrum; PLS with significant regression coefficients selected by the Jack-Knife algorithm
(PLS-JK) and multiple linear regression (MLR) with previous selection of variables by stepwise algorithms
(SW-MLR); successive projections algorithm (SPA-MLR); and genetic algorithm (GA-MLR). The predictive
ability of the models was assessed, for each spectroscopic technique. For fluorescence spectroscopy,
satisfactory prediction results were obtained for all the regression models with Root Mean Square Error
of Prediction (RMSEP) values varying from 14.0 to 17.5 g/kg. When the regression methods were eval-
uated for UVeVis spectra, higher RMSEP values were found, varying from 13.3 to 30.4 g/kg. The results
indicate that the two spectroscopic techniques have similar performances with respect to predictive
ability of the regression models.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Extra virgin olive oil (EVOO) consumption is widespread due to
its high nutritional value and pleasant sensory characteristics, ob-
tained by labor-intensive techniques from the cultivation of olive
trees to oil production (Lerma-García, Ramis-Ramos, Herrero-
Martínez, & Sim�o-Alfonso, 2010; �Smejkalov�a & Piccolo, 2010).
These characteristics confer high quality and high commercial
value to the product, making it a frequent target of adulteration by
the addition of vegetable oils or olive oils of lower quality (Johnson,
2015). For this reason, it is essential to ensure its quality and
identify fraudulent practices in commercially available EVOOs,
Paraíba, Departamento de
aç~ao em Química Analítica/
B, Brazil.
.J.C. Pontes).
mainly with regard to the health and economic needs of
consumers.

Internationally, the regulation and supervision of the EVOOs are
carried out by the European Union Commission (EUC, 2015), Codex
Committee on Fats and Oils (CCFO, 2017) and the International
Olive Council (IOC, 2015). These also designate the official methods
to be used in the quality control of EVOOs. However, some of these
methods are time-consuming, complex, involve preparation of
samples before analysis, and use expensive and toxic reagents (Valli
et al., 2016).

A number of recent studies have reported simple, fast and
inexpensive analytical methodologies to verify the authenticity of
EVOOs efficiently and safely (Valli et al., 2016). These methodolo-
gies are used as an alternative to classical chromatographic
methods (Jim�ennez-Carvelo, P�erez-Casta~no, Gonz�alez-Casado, &
Cuadros-Rodríguez, 2017; Ruiz-Sambl�as, Marini, Cuadros-
Rodríguez, & Gonz�alez-Casado, 2012). They include: infrared
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spectroscopy (Lerma-García et al., 2010; Georgouli, del Rincon &
Koidis, 2017), voltammetric e-tongue (Apetrei & Apetrei, 2014),
digital images (Milanez & Pontes, 2015), UVeVis spectroscopy
(Ferreiro-Gonz�alez et al., 2017; Torrecilla, Cancilla, Matute, Díaz-
Rodríguez, & Flores, 2013), and fluorescence spectroscopy
(Mabood et al., 2015; Poulli, Mousdis, & Georgiou, 2007).

Fluorescence spectroscopy and UVeVis spectroscopy are
distinguished because they are simple, cheap, fast and require little
or no pretreatment of samples. In the case of fluorescence spec-
troscopy, moreover, there is high sensitivity and selectivity of the
technique (Guzman, Baeten, Pierna, & Garcia-Mesa, 2015).

Normally, spectral data is associated with multivariate regres-
sion methods to associate the predictor variables (or instrumental
response) with the dependent variables (or properties of interest)
(G�omez-Caravaca, Maggio, & Cerretani, 2016). The partial least
squares regression (PLS) (Wold, 2001) and multiple linear regres-
sion (MLR) methods (Martens & Naes, 1993, pp. 73e97) have been
widely used in different analytical applications (Pontes, Rocha,
Pimentel, & Pereira, 2011; de Paulo, Barros, & Barbeira, 2016).
Poulli et al. (2007) used the synchronous fluorescence method and
the PLS model to quantify virgin olive oil adulterated with different
concentrations of olive-pomace and other vegetable oils. Mabood
et al. (2015) investigated the effect of thermal treatment on the
discrimination of pure EVOO samples from EVOO samples adul-
terated with sunflower oil. In addition, the level of adulterationwas
quantified using the PLS regression method with a prediction error
of 1.75% of adulteration.

The PLS method is based on the simultaneous decomposing of
predictors (matrix X of instrumental response) and dependent
variables (matrix Y of the reference values of the parameters) in
factors, or latent variables, as expressed in Equations (1) and (2).

X ¼ TPT þ E (1)

Y ¼ UQT þ F (2)

where T and U are the score matrices and P and Q are the loading
matrices for X and Y, respectively; E and F are the residual matrices
(da Silva et al., 2015). Thereafter, a relationship is established be-
tween the scores of both variables sets thus making it possible to
obtain regression coefficients for each factor, as described in
Equation (3).

bY ¼ TQT þ G ¼ XW ðPTWÞ�1QT þ G ¼ Xbþ G (3)

In Equation (3), bY represents the estimate of the interest
parameter for a set of samples, W is the weight matrix as deter-
mined in the PLS algorithm, G represents Y-residual matrix re-
siduals and b corresponds to the regression coefficients (da Silva
et al., 2015). The goal is to search latent variables that can express
the variances of the X considering the prediction of the dependent
variables Y (de Almeida, Correa, Rocha, Scafi, & Poppi, 2013). Usu-
ally the PLS model is developed using the full set of predictor var-
iables. However, the Jack-Knife algorithm (JK) (Esbensen, 2002, pp.
483e488) can be used to select a reduced number of predictor
variables that participate in the PLS regression model. In this way,
confidence intervals can be calculated for the regression co-
efficients of the factors to evaluate the significance of each variable
used in the model (Honorato, Barros Neto, Martins, Galv~ao, &
Pimentel, 2007).

MLR method is simpler and can be more easily interpreted
because it does not decompose the X and Y matrices into latent
variables, as do the PLS methods (Hemmateenejad, Miri, Akhond,&
Shamsipur, 2002). In this case, the original variables are used in the
regression models and the concentration of the interest parameter
(Y) can be predicted as follows:

Y ¼ Xb (4)

where the b vector of regression coefficients can be estimated as
(Beebe, Pell, & Seasholtz, 1998, pp. 245e278)

bb ¼
�
XTX

��1
XTY (5)

The use of the MLR method, however, is limited to data with a
reduced number of variables and low correlation coefficient (Riahi,
Ganjali, Norouzi, & Jafari, 2008). When this is not the case, it is
necessary to select the variables that can be used by the model. The
successive projections algorithm (SPA) (Araújo et al., 2001; Galv~ao
et al., 2007) the stepwise algorithm (Montgomery& Peck, 1982, pp.
344e351) and the genetic algorithm (GA) (Devillers, 1996) have
been widely used for this purpose in many calibration problems
(Gonçalves, Vilar, Medeiros, & Pontes, 2016; Pourbasheer,
Aalizadeh, Ganjali, Norouzi, & Shadmanesh, 2014; Roy & Roy,
2009).

In the present study, we made a comparative study of different
chemometric models used to quantify adulteration of EVOO sam-
ples with soybean edible oil, using fluorescence and UVeVis
spectroscopies. The following regression strategies were evaluated:
partial least squares (PLS) using full spectrum, PLS with significant
regression coefficients selected by the Jack-Knife algorithm (PLS-JK)
and multiple linear regression (MLR) with previous selection of
variables by stepwise algorithm (SW-MLR), algorithm of successive
projections (SPA-MLR) and genetic algorithm (GA-MLR). The pre-
dictive ability of the models was assessed, for each spectroscopic
technique, according to the values of RMSEC (Root Mean Square
Error of Calibration), RMSEP (Root Mean Square Error of Prediction)
and determination (R2) coefficients.

2. Material and methods

2.1. Samples

A total of 39 adulterated EVOO samples were used. The adul-
teration was prepared by adding soybean edible oil in different
concentrations (10 g/kg, 50 g/kg, 100 g/kg, 150 g/kg, 200 g/kg,
250 g/kg, 300 g/kg). The procedure of adulteration was performed
at random to include variability in the data set. After addition of the
soybean oil, the blends were only manually shaken for about 30 s
and stored until the analysis. The unadulterated samples submitted
to adulteration (a total of 7 samples) were acquired in local markets
from a manufacturer and with different lots. The two soybean oils
used as adulterants were also acquired in a local market from the
samemanufacturer and lot. Both the EVOOs and soybean oil used in
this study were purchased from manufacturers with guaranteed
quality and reliability.

All samples were stored in amber glass bottles for a period of 15
days, protected from light and kept at a temperature of approxi-
mately 23 ± 2 �C to retard the oxidative process until time of
analysis. The samples were analyzed in crude form, without any
pretreatment or dilution with use of chemical solvents.

2.2. Fluorescence spectra acquisition

Fluorescence measurements were performed with a Jasco FP-
6500 Spectrofluorometer (Japan Spectroscopic Corporation, Tsu-
kuba, Japan). This is a fully computer controlled instrument using a
double-grating monochromator for excitation and a single-grating
emission monochromator. The slit width was 3 nm to excitation
and 5 nm for emission. The acquisition interval and integration
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time was maintained at 1 nm and 0.5 s, respectively. A PMT lamp
400 W and a quartz cell 10 � 10 � 45 mm were used for a right-
angle geometry.

The fluorescence emission spectra were collected between 300
and 750 nm. An excitation wavelength of 340 nm was selected for
the development of the multivariate models. The excitation wave-
length range from 280 to 480 nm was evaluated in 10 nm steps.

2.3. UVeVis spectra acquisition

A Hewllet Packard model HP 8453 UVeVIS spectrophotometer
(Agilent, Santa Clara, CA, US) equipped with a quartz cell (10 mm
optical path) was employed for the spectral measurements. The
spectrum was registered in the range between 190 and 1100 nm
with 1 nm resolution. The adjustment of the transmittance signal
was performed using isooctane as blank.

In the two spectroscopic techniques, all measurements were
performed in triplicate.

2.4. Software and chemometric procedures

For each spectroscopic technique, multivariate calibration
models based on PLS, PLS-JK, SPA-MLR, SW-MLR and GA-MLR
regression methods were developed to quantify adulteration in
EVOO samples. Adulteration levels (g/kg) were used as the
dependent variable y. Before the construction of these models, the
datasets were divided into calibration (70%) and prediction (30%)
subsets by using the algorithm SPXY (Sample set partitioning based
on joint X-y distances) (Galv~ao et al., 2005).

Full cross-validation leave-one-out was employed as the vali-
dation technique. The calibration samples were used in the
modeling procedures (cross-validation) including SPA, SW and GA
variable selection for MLR and determination of factors (latent
variables) in PLS models. The prediction samples were only
employed in the final evaluation and for the comparison of the
resulting models. Model performances were assessed according to
the values of RMSEC, RMSEP and determination (R2) coefficients.

An F-test, at a 95% confidence level, was carried out to assess the
existence of statistically significant differences between the values
of the RMSEP obtained by the calibrationmodels. The F-values were
calculated as the ratio of the squares of the largest and smallest
RMSEP values (Bhandare et al., 1993; Skoog, West, Holler,& Crouch,
2013, pp. 130e149) as shown below:

Fðn1;n2Þ ¼ ðRMSEP1Þ2
.
ðRMSEP2Þ2 (6)

In Equation (6), n1 and n2 are the number of prediction samples,
and RMSEP1 and RMSEP2 are the higher and lower root mean square
error, respectively. This ratio was compared with the critical F(0.95,
n, n) value, where n is the number of prediction samples. A paired t-
test, at a 95% confidence level, was carried out to assess whether
there were significant differences between the predicted values by
models and reference values.

The SPXY, SPA-MLR, SW-MLR and GA-MLR algorithms were
coded in Matlab (Mathworks, USA). PLS and PLS-JK was carried out
using Unscrambler X.1 (CAMO S/A).

3. Results and discussion

3.1. Spectral analysis

Fig. 1a shows the fluorescence emission spectra (between 350
and 700 nm) to the average of EVOOs adulterated at different levels.
It can be seen that as the amount of soybean oil added increases,
fluorescence intensity also increases.
The fluorescence of EVOOs has been attributed to some natural
fluorophores such as: phenolic compounds and tocopherols (be-
tween 300 and 390 nm), oxidation products of fatty acids (two
smooth peaks at 445 and 475 nm), vitamin E (525 nm), and
degradation products of chlorophyll a and b (peak at approximately
681 nm) (Guzman et al., 2015; Sikorska, Khmelinskii, & Sikorski,
2012; Zandomeneghi, Carbonaro, & Caffarata, 2005). Studies indi-
cate that main fluorophores of vegetable oils are the same as those
of EVOOs (Magalh~aes, Caires, Silva, Alcantara, & Oliveira, 2014).
However, refined oils have higher concentrations of oxidation
products of fatty acids usually related to the refining process,
resulting in higher fluorescence intensities between 400 and
500 nm (Kongbonga et al., 2011).

This characteristic can be observed in Fig. 1a, which presents
only the spectra corresponding to some concentration levels of
soybean oil in the blend. As vegetable soybean oil was added to
EVOO, it increased the amount of oxidation products of fatty acids
in these samples and, consequently, increased the fluorescence
intensity in the region between 400 and 475 nm, which corre-
sponds to the emission wavelength of oxidation products of fatty
acids. The increase of the intensity to approximately 525, can be
associated to the increase in the amount of vitamin E in the blend
(Zandomeneghi et al., 2005).

Fig. 1b presents the UVeVis absorbance spectra between 364
and 706 nm. Three clearly defined peaks, near the ultraviolet and
blue ranges, can be observed at 410, 450 and 470 nm, corre-
sponding to carotenoid absorption. The peak at approximately
660 nm corresponds to chlorophyll compounds absorption
(Tarakowski, Malanowski, Ko�sciesza, & Siegoczy�nski, 2014). In
contrast to what happened with the fluorescence emission spectra,
the measure to which the amount of soybean oil in the EVOO is
increased, the absorbance decreases, which is particularly true for
the regions where the absorption bands of the carotenoids and
chlorophyll compounds occur.
3.2. Multivariate calibration models

3.2.1. Fluorescence data
Table 1 presents the statistical parameters calculated for PLS,

PLS-JK, SPA-MLR, GA-MLR and SW-MLR models applied to the
fluorescence data.

As can be seen, satisfactory values of RMSEP were obtained by
all regression methods, especially by SPA-MLR, GA-MLR and SW-
MLR models.

The predictive ability of the models was evaluated according to
the RMSEP obtained for the prediction set. At a 95% confidence
level, the test-F indicated the absence of statistically significant
differences among the values of the RMSEP of themodels, as shown
in Table 1.

As can be seen in Table 2, all F-values calculated for fluorescence
data were below the critical F(0.95, 12, 12) value ¼ 2.69. The same
happened with the t-test: when applied to the prediction set, at a
95% confidence level, it did not indicate significant differences be-
tween the predicted and reference values.

Fig. 2 shows the variables selected for the SPA, SW and GA al-
gorithms and the predicted versus reference value plots for the
MLR models obtained using these variables. As can be seen, vari-
ables were selected along the whole spectrum, especially in the
bands between 400 and 550 nm, where emissions of oxidation
products of fatty acids and vitamin E occur. In the plots, there was
acceptable agreement between predicted and reference values for
both the calibration and prediction sets. Moreover, no systematic
error was present, as the points can be seen to be distributed on
both sides of the bisectrix line along the entire range of y-values.



Fig. 1. (a) Average spectra of fluorescence emission of EVOO samples. (b) Average spectra of absorbance in the UVeVis of EVOO samples. The lines in each spectrum represent the
averages for some adulteration concentration, expressed in grams of soybean oil for kg of blend. The unadulterated sample (0 g/kg) was presented only for the purpose of
comparison.

Table 1
Final prediction results in terms of RMSEC, RMSEP, determination (R2) coefficients of level of adulteration (g/kg) and number of variables (for MLR models) or latent variables
(for PLS models). N is the number of prediction samples analyzed by fluorescence spectroscopy.

Statistical methods N Fluorescence Measurement

RMSEC (g/kg) RMSEP (g/kg) R2 Variables or latent variables

PLS 12 19.0 17.5 0.95 2
PLS-JK 12 19.0 17.1 0.95 2
SPA-MLR 12 13.0 14.6 0.99 11
GA-MLR 12 8.42 14.3 0.99 13
SW-MLR 12 12.0 14.0 0.99 5

Calibration range: 10e300 g/kg of soybean oil in EVOO samples.
PLS: Partial Least Squares.
PLS-JK: Partial Least Squares e Jack-Knife.
MLR: Multiple Linear Regression.
SPA-MLR: Successive Projections Algorithm - Multiple Linear Regression.
GA-MLR: Genetic Algorithm - Multiple Linear Regression.
SW-MLR: Stepwise - Multiple Linear Regression.
EVOO: Extra Virgin Olive Oil.
RMSEC: Root Mean Square Error of Calibration.
RMSEP: Root Mean Square Error of Prediction.
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3.2.2. UVeVis data
Table 3 summarizes the results obtained from the calibration

models applied to the UVeVis spectra.
As can be seen in Table 3, satisfactory results were found for all

models. More specifically, lower values of RMSEP were found when
the PLS (full spectrum) and PLS-JK were used with three latent
variables. Moreover, these models showed slightly higher
determination (R2) coefficients values than those found by MLR
models with selection of variables. The superiority of the PLS
models over the MLR models was demonstrated with a F-test
performed at a confidence level of 95% (Table 2), indicating statis-
tically significant differences between the values of RMSEP ob-
tained by the PLS models (both full spectrum and to the regression
coefficients selection by JK) and the MLR (SPA, GA and SW).



Table 2
Results obtained for F-test and t-test for fluorescence and UVeVis data.

Models Fluorescence data UVeVis data F - critical Models Fluorescence data UVeVis data t - critical

F - values F - values t - values t - values

PLS and PLS-JK 1.06 1.02 2.69 PLS 1.08 0.53 1.79
PLS and SPA-MLR 1.44 3.15
PLS and GA-MLR 1.5 3.31 PLS-JK 0.91 0.55
PLS and SW-MLR 1.57 5.24
PLS-JK and SPA-MLR 1.36 3.11 SPA-MLR 1.48 1.62
PLS-JK and GA-MLR 1.42 3.27
PLS-JK and SW-MLR 1.48 5.16 GA-MLR 1.35 4.05
SPA-MLR and GA-MLR 1.04 1.05
SPA-MLR and SW-MLR 1.09 1.66 SW-MLR 1.22 1.43
SW-MLR and GA-MLR 1.04 1.58

PLS: Partial Least Squares.
PLS-JK: Partial Least Squares e Jack-Knife.
MLR: Multiple Linear Regression.
SPA-MLR: Successive Projections Algorithm - Multiple Linear Regression.
GA-MLR: Genetic Algorithm - Multiple Linear Regression.
SW-MLR: Stepwise - Multiple Linear Regression.

Fig. 2. Average spectra of EVOOs with indication of variable selected (�) by (a) SPA, (b) GA and (c) SW algorithms. Predicted versus reference plots obtained with (d) SPA-MLR, (e)
GA-MLR and (f) SW-MLR models for determination of EVOO adulteration in the ( ) calibration and ( ) prediction sets.
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Fig. 3 shows the predicted versus reference plots for the PLS and
PLS-JK models.

As well as the results obtained from the fluorescence data, the
models developed with data from UV-VIS spectroscopy provided
similar results, where samples were well distributed along the
bisectrix line, indicating the absence of systematic errors in
the data.
Table 2 shows the paired t-test, at a 95% confidence level, for

UVeVis data. As can be seen, the t-test did not identify statistically
significant differences between the predicted and reference values,
except for the GA-MLR model.



Table 3
Final prediction results in terms of RMSEC, RMSEP, determination (R2) coefficients of level of adulteration (g/kg) and number of variables (for MLR models)
or latent variables (for PLS models). N is the number of prediction samples analyzed by UVeVis spectroscopy.

Statistical methods N Fluorescence Measurement

RMSEC (g/kg) RMSEP (g/kg) R2 Variables or latent variables

PLS 12 28.3 13.3 0.98 3
PLS-JK 12 28.2 13.4 0.98 3
SPA-MLR 12 30.2 23.6 0.97 9
GA-MLR 12 14.5 24.2 0.98 14
SW-MLR 12 22.6 30.4 0.94 5

Calibration range: 10e300 g/kg of soybean oil in EVOO samples.
PLS: Partial Least Squares.
PLS-JK: Partial Least Squares e Jack-Knife.
MLR: Multiple Linear Regression.
SPA-MLR: Successive Projections Algorithm - Multiple Linear Regression.
GA-MLR: Genetic Algorithm - Multiple Linear Regression.
SW-MLR: Stepwise - Multiple Linear Regression.
EVOO: Extra Virgin Olive Oil.
RMSEC: Root Mean Square Error of Calibration.
RMSEP: Root Mean Square Error of Prediction.

Fig. 3. Predicted versus reference plots obtained with (a) PLS and (b) PLS-JK models for determination of EVOO adulteration in the ( ) calibration and ( ) prediction sets.
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4. Conclusion

This study compared different chemometric models for the
quantification of adulteration in EVOO samples, using fluorescence
and UVeVis spectroscopy. PLS, PLS-JK, SPA-MLR, GA-MLR and SW-
MLR regression models were developed and their predictive ability
was assessed based on values of RMSEC, RMSEP and determination
(R2) coefficients.

For fluorescence spectroscopy, the F-test did not show signifi-
cant difference between the models developed. The paired t-test
also found no significant differences between the predicted values
from the models and reference values.

When the regression methods were evaluated for UVeVis
spectroscopy, higher RMSEP values were found. Moreover, in the F-
test, there was difference between the PLS, PLS-JK methods and
MLR methods developed with previous selection of variables.

The results indicate that the two spectroscopic techniques have
similar performance with respect to predictive ability of the
regression models. With this, the choice of which one of the
techniques to use should consider aspects such as lower cost,
simplicity, speed and greater analytical sensitivity. In addition,
when compared to other analytical techniques, both techniques are
non-destructive and do not require pretreatment of samples. These
preliminary results are indicative that the screening approach is
promising and can support official analytical methods for identi-
fying adulteration of EVOOs with vegetable oils of lower quality.
However, these results need to be confirmed by analyzing a larger
set of samples.
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