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• Percolation properties of equilibrium adsorbed phases.
• Interacting binary mixtures adsorbed on square lattices.
• A rich variety of structural orderings were observed in the adlayer.
• Percolation thresholds and percolation phase diagrams were obtained.
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a b s t r a c t

In this paper, the adsorption of interacting binary mixtures on square lattices has been
studied. By using Monte Carlo simulation and finite-size scaling analysis, the connection
between the surface ordered phases and the percolating properties of the adsorbed
phase has been investigated. A rich phase diagram separating a percolating from a non-
percolating region has been determined. The main features of the phase diagram have
been discussed in terms of simple considerations related to the interactions present in the
problem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Percolation theory [1] is a powerful tool for modeling diversity of phenomena, such as: fire propagation, fire spreading
in multi-compartmented structures, spreading of computer viruses, network failures, gel formation, infectious disease
epidemics, granular mixture and medical research. Due to its wide applicability [2], this theory has attracted the attention
of different researchers, mathematicians, physicists, programmers, engineers, physicians, etc.

The percolation theory was derived from studying the random action of fluid-like materials as they migrate through a
latticework of channels. The distribution of these channels determines the probability that theywill become linked together
in a great network that allows the flow from one end of the lattice to the other. Broadbent and Hammersley [3] gave the first
mathematical formulation which was able to relate the emergence of the great network with the minimum concentration
of channels (called by the authors percolation threshold) by a simplified lattice percolation model.

Most of the studies of percolation have taken into account that the state of sites on lattice changes irreversibly fromempty
to filled (occupied). This scheme of filling is known as Random Sequential Adsorption (RSA) model [4,5]. In the framework of
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Nomenclature

L Lattice side
M Total number of lattice sites
T Temperature
wxy (x, y = A, B) Nearest-neighbor interaction energy
H Hamiltonian of the system
ci Occupation number of the site i (ci = 0 if empty; ci = 1 if occupied by A and ci = 2 if occupied by B)
P Metropolis transition probability
1H = Hf − Hi Difference between the Hamiltonians of the final state and initial states
kB Boltzmann constant
MCS Monte Carlo step
m Number of MCS to calculate the averages of the adsorption quantities
r Number of samples to calculate the averages of the percolation quantities
NA(B) Number of adsorbed A(B) particles
N Total number of adsorbed particles
RR(D)
L Probability of finding a rightward (downward) percolating cluster, formed by A and B particles

Q R(D)
L Probability of finding a rightward (downward) percolating cluster, formed by A particles

RI
L Probability of finding a cluster, formed by A and B particles, which percolates both in a rightward and in a

downward direction
Q I
L Probability of finding a cluster, formed byAparticles,which percolates both in a rightward and in a downward

direction
RU
L Probability of finding either a rightward or a downward percolating cluster, formed by A and B particles

Q U
L Probability of finding either a rightward or a downward percolating cluster, formed by A particles

RA
L ≡

1
2


RI
L + RU

L


Q A
L ≡

1
2


Q I
L + Q U

L


Greek symbols

µA(B) Chemical potential of A(B) particles
δ’s Kronecker delta functions
ϵ0 Interaction energy between a monomer (type A or B) and a lattice site
θA(B) Partial surface coverage corresponding to the A(B) species
θ Total surface coverage
θc Percolation threshold

adsorption, the RSA has been used tomodeling the electro-oxidation of ethanol, characterizing the coverage and percolation
properties [6], or to study deposition of proteins and colloids from solution onto solid surfaces [7].

Outside the framework of lattice and RSAmodel, the percolation concepts have been applied to study systems composed
by a binary mixture of patchy colloidal particles where each species has three coupling of two types, one of which promotes
bonding of particles of the same species while the other promotes bonding of different species. Then, depending on the
values of the parameters of the system four distinct percolating phases can be found: two gels where only one of the species
is percolated, amixed gelwhere the two species are percolated but neither species percolates by itself, and a bicontinuous gel
where the two species percolate independently, forming two interpenetrating spanning networks [8]. Another interesting
instance, in which the percolation concepts are applied is for analyzing a mixture of liquids, Dougan et al. [9] has shown the
formation of clustering structure of both species for a mixture of methanol and water as a function of concentration.

Returning to RSAmodel, the temperature does not play any relevant role and it is not considered. This model is appropri-
ate for many physical, chemical, and biological processes where themicroscopic steps are irreversible, and where equilibra-
tion is not possible on the time scale of the experiment [4]. However, in numerous systems of both theoretical and practice
importance, where the adsorbed particles are in thermodynamic equilibrium, the spatial distribution of the adsorbatemight
be characterized by using the percolation model [10,11]. In these cases, the temperature governs the phase in the system
and can be an important controlling factor in the percolation process. In this context, Giménez et al. [12,13] introduced a
model in which they studied the percolation properties of the adsorbed phase of interacting monomers on a square lattice.

In this paper, the percolation behavior of an adsorbed binary mixture has been investigated by using Monte Carlo (MC)
simulation and finite-size scaling analysis. For this purpose, a square substrate is exposed to an ideal A–Bmixed-gas phase,
at temperature T and chemical potentials µA and µB. Then, the main percolation properties of the adsorbed monolayer are
obtained regarding different repulsive interactions between the adparticles.

The adsorption thermodynamics of the present model was studied in a recent paper by our group [14]. The calculations
were carried out by combining theoretical modeling and MC simulations in grand canonical ensemble. Two theoretical
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strategies were used: (i) the first, denoted as cluster approximation, is based on exact calculations of configurations on
finite cells; and (ii) the second is a generalization of the classical quasi-chemical approximation in which the adsorbate is a
binary mixture of species A and B. An exhaustive comparative analysis between theoretical and simulation results allowed
us (1) to validate the MC data, and (2) to identify and characterize the most prominent features of the process of adsorption
of mixtures with inter- and intra-species interactions. The present study is a natural continuation of our previous work [14]
and focuses on the percolation properties of the adsorbed monolayer. The paper is organized as follows: in Section 2, the
basic definitions are given along with the general basis of the MC simulation. Finally, results and conclusions are presented
in Section 3.

2. Theory and simulations

The adsorption process is usually analyzed in isothermal experiments where the adsorption isotherm provides the
relevant information [15]. For a mixture of two gases, the adsorbed phase will be composed of particles from both of them
and the arising surface structures (if any) may be studied as the pattern/s resulting from the positions of the particles of a
single or both components.

On the other hand, the central idea of the percolation problem is based on finding theminimumconcentration forwhich a
cluster extends fromone side to the opposite one of the system. The percolation clustermay arise fromeither one component
independently, or as a consequence of the mixture of particles [8].

2.1. Adsorption

The model considered here is a particular case of the Blume–Emery–Griffiths model [16], which is a very general model,
used in a variety of phenomena from liquid helium phase separation to phase transitions in adsorbed films.

The adsorptive surface is represented by a two-dimensional square lattice of M = L × L adsorption sites, with periodic
boundary conditions. The substrate is exposed, at a temperature T , to an ideal gas phase consisting of a binary mixture of A
and B particles with chemical potentialsµA andµB, respectively. Particles can be adsorbed on the lattice with the restriction
of, at most, one particle per site and we consider a nearest-neighbor (NN) interaction energy wxy (x, y = A, B) between
them. The adsorbed phase is then characterized by the Hamiltonian:

H =
1
2

M
i

 
l∈{NN,j}


wAAδci,clδci,1 + wBBδci,clδci,2 + wAB


δci,1δcl,2 + δci,2δcl,1


+ ϵ0

M
i


δci,1 + δci,2


−

M
i


µAδci,1 + µBδci,2


(1)

where ci is the occupation number of the site i (ci = 0 if empty; ci = 1 if occupied by A and ci = 2 if occupied by B);
l ∈ {NN, j} runs on the four NN sites of the site i; the δ’s are Kronecker delta functions and ϵ0 is the interaction energy
between a monomer (type A or B) and a lattice site. In this contribution, the chemical potential of one of the components
is fixed throughout the process (µB = 0), while the other one (µA) is variable, as it is usually assumed in studies of
adsorption of gas mixtures [17–21]. In the actual implementation of the model ϵ0 was set equal to zero, without loss of any
generality.

The adsorptionprocess is simulated through a grand canonical ensembleMCmethod. For a given value of the temperature
T and chemical potentialsµA andµB, an initial configuration of A and B particles adsorbed at random positions is generated.
Then an adsorption–desorption process is started, where a site is chosen at random and an attempt is made to change its
occupancy state with probability given by the Metropolis rule [22]

P = min{1, exp(−1H/kBT )}, (2)

where 1H = Hf −Hi is the difference between the Hamiltonians of the final state and initial states and kB is the Boltzmann
constant. A MC step (MCS) is achieved whenM sites have been tested to change its occupancy state (interested readers are
referred to Ref. [20] for amore complete description of the algorithm to carry out an elementaryMCS). The approximation to
thermodynamical equilibrium is monitored through the fluctuations in the number of the adsorbed particles; this is usually
reached in 106 MCS. For high values of wxy/kBT up to 108 MCS had to be used because fluctuations are greatly enhanced.
After that, the total and partial isotherms are obtained as simple average overm successive configurations:

θ(µA, µB) =
⟨N⟩

M
, θA(µA, µB) =

⟨NA⟩

M
, θB(µA, µB) =

⟨NB⟩

M
, (3)

where N(x,y) is the number of adsorbed particles for species (x, y), N = NA + NB and the brackets mean time average over
them = 106 MC simulations runs.
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a

b

Fig. 1. (a) Adsorption isotherms for the single-gas adsorption of A particles onto a homogeneous surface showing the effect of lateral AA interactions:
circles, wAA/kBT = 0; squares, wAA/kBT = 1; up triangles, wAA/kBT = 2; diamonds, wAA/kBT = 3 and down triangles, wAA/kBT = 4. Right[Left]-top inset:
Typical equilibrium configuration of the adlayer for wAA/kBT = 4 and θ = 0.5 [θ = 0.226]. Solid circles and empty squares represent occupied sites and
vacancies, respectively. Right-bottom inset: Temperature-coverage phase diagram corresponding to a lattice–gas of repulsive monomers (wAA/kBT > 0)
adsorbed on a homogeneous square lattice. (b) Percolation phase diagram, which shows the curve separating the percolating and non-percolating regions
for the data of part (a).

2.2. Percolation

To understand the percolation transition, we shall describe the stages of the percolation process on a lattice of siteswhich
are occupied with probability θ or empty (non-occupied) with probability (1− θ ). Nearest-neighboring occupied sites form
structures called clusters. Quantities relevant to percolation will depend on the concentration of sites and geometry of the
lattice.

When the concentration is low, sites are either isolated or in small clusters of adjacent elements. As θ increases,
the average size of the clusters increases monotonically. When the occupation probability exceeds a critical value (the
percolation threshold θc), a macroscopic, lattice spanning, or an infinite cluster, occupying a finite fraction of the total
number of sites, emerges. The percolation threshold is the concentration of sites forwhich, in an infinite system, a large cluster,
spanning from one side to the opposite of the lattice, emerges. The percolation transition is a geometrical phase transition
where the critical concentration separates a phase of finite clusters (θ < θc) from a phasewhere an infinite cluster is present
(θ > θc). This transition is a second-order phase transition and can be characterized by well-defined critical exponents.

It is well known that it is a quite difficult matter to analytically determine the value of the percolation threshold for
a given lattice [1]. Thus, in most cases, percolation thresholds have to be estimated numerically by means of computer
simulations.

As the scaling theory predicts [23–26], the larger the system size to study, the more accurate the values of the threshold
obtained therefrom. Thus, the finite-size scaling theory give us the basis to achieve the percolation threshold and the critical
exponents of a system with a reasonable accuracy. For this purpose, the probability R = RX

L (θ) [Q = Q X
L (θ)] of finding
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Fig. 2. Mixed-gas adsorption on a square lattice for case I. The adsorption isotherms for A and B particles (symbols) and total isotherms (dashes lines) are
shown.

a percolating cluster, formed by A and B particles [formed by A particles], on a lattice of side L at concentration θ can
be defined [1]. Here, the following definitions can be given according to the meaning of X: (a) RR(D)

L (θ)[Q Q (D)
L (θ)] = the

probability of finding a rightward (downward) percolating cluster; (b) RI
L(θ)[Q I

L (θ)] = the probability of finding a cluster
which percolates both in a rightward and in a downward direction; (c) RU

L (θ) = [Q U
L (θ)] the probability of finding either a

rightward or a downward percolating cluster and (d) RA
L (θ) ≡

1
2


RI
L(θ) + RU

L (θ)


{Q A
L (θ) ≡

1
2


Q I
L (θ) + Q U

L (θ)

}.

In the MC simulations, R = RX
L (θ) [Q = Q X

L (θ)] is determined according to the following procedure:

(1) Set the value of µA/kBT , µB/kBT , wAA/kBT , wBB/kBT and wAB/kBT .
(2) Apply the dynamic described in Section 2.1 until the system reaches equilibrium (typically 106

− 108 MCS).
(3) Generate r = 104 samples in equilibrium.1 To avoid spurious correlations, the spacing between samples is set to 1000

MCS.
(4) Once the set of r is obtained, calculate θ , θA, θB,RI

L(θ),RU
L (θ),RA

L (θ),Q I
L (θ),Q U

L (θ) andQ A
L (θ) as simple averages. In the case

of the probabilities R and Q , the Hoshen and Kopelman algorithm [27] is used to determine the number of percolating
samples.

For each obtained value of θ , the procedure 1–4 is repeated for different lattice sizes, L (L = 16, 32, 64, 128).
The standard theory of finite-size scaling [1,23,26] allows for various efficient routes to estimate θc from MC data. One

of these methods is from the crossover of the different curves of RX (Q X ), corresponding to distinct system sizes. Curves of
RX (Q X ) cross each other in a unique universal point, RX∗

(Q X∗

), which depends on the criterion X used. The abscissa of this
point is the percolation threshold θc [26].

Another alternative way to estimate θc is from the extrapolation of the positions θX
c (L) of the maxima of the slopes of

RX
L (θ) [Q X

L (θ)]. For each criterion one expects that [1],

θX
c (L) = θX

c (∞) + AXL−1/ν (4)

where AX is a non-universal constant. The maximum of the differences between |θU
c (∞) − θA

c (∞)| and |θ I
c(∞) − θA

c (∞)|
gives the error bar for each determination of θc(∞).

3. Results and conclusions

We focus on the case of repulsive lateral interactions, wAA/kBT ≥ 0, wBB/kBT ≥ 0 and/or wAB/kBT ≥ 0, where a rich
variety of structural orderings are observed in the adlayer.

1 As is well known, the relaxation time increases very quickly as the ratio wxy/kBT increases. Consequently, MC simulations for strongly interacting
adsorbates are very time-consuming and may produce artifacts related to non-accurate equilibrium states. To discard this possibility, equilibration times
of the order of 108 MCS were used for values of wxy/kBT higher than 1.5. Under these conditions, the finite-size scaling study was carried out for lattice
sizes of up to L = 128, with an effort reaching almost the limits of our computational capabilities.
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a

b

Fig. 3. (a) The percolation probability as a function of the total coverage θ = θA + θB for non-interacting mixtures of monomers (case I withwAA/kBT = 0)
and different lattice sizes as indicated. Solid and open symbols correspond to A and AB percolation, respectively. In each case, the crossing of the curves
indicates the percolation threshold. (b) Extrapolation of θX

c (L) towards the thermodynamic limit (Eq. (4)) for the cases reported in part (a). Squares, triangles
and circles denote the values of θX

c (L) obtained by using the criteria I , A and U , respectively.

In order to understand the basic phenomenology, we analyze in the first place (Fig. 1(a)) the behavior of the adsorption
isotherms for a single species, different interaction strengths and L = 128. For this purpose, we can consider one of the two
species, A or B, with µA(B)/kBT → −∞, thus we have the adsorption problem corresponding to species B(A).

As expected, the well-known Langmuir isotherm [28], passing through the point (µA/kBT = 0, θA = 1/2) is obtained for
wAA/kBT = 0. The top insets in Fig. 1(a) show two different configurations of the adlayer. In the left-top inset we can see the
resulting surface formed by adsorbed particles as the repulsive interaction between A particles is increased, at zero chemical
potential and coverage asymptotically approaching θ ≈ 0.226. In the right-top inset we can see the c(2×2) ordered surface
structure; this phase appears when the interaction between A particles is more than a critical value wc/kBT ≈ 1.76 (value
of the reduced critical temperature for the order–disorder phase transition occurring in the system) [29].

The complete temperature-coverage phase diagramof the system is shown in the right-bottom inset of Fig. 1(a). Regions I,
II and III correspond to a ‘‘vacancy-rich’’ disordered state, an ordered state [c(2×2) phase], and a ‘‘vacancy-poor’’ disordered
state, respectively [29].

In Fig. 1(b), the percolation phase diagram resulting from the isotherms in Fig. 1(a) is shown. The critical curve begins
at θc = 0.592, for wAA/kBT = 0. In this point, the system is fully equivalent to the random percolation problem. As
wAA/kBT is increased, two regimes can be distinguished: (1) From wAA/kBT = 0 up to wAA/kBT ≈ 1.76, θc increases linearly
with wAA/kBT . Repulsive couplings do not favor the nucleation, and consequently, increase the percolation threshold. This
stage finishes when wAA/kBT reaches the critical value. (2) For wAA/kBT > 1.76, θc remains almost constant as wAA/kBT is
increased.We say ‘‘almost’’, because a slight decrease is observed in the curve separating thepercolating andnon-percolating
regions for wAA/kBT > 3.0. This behavior is associated with a change in the structure of the adlayer, which passes from
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Fig. 4. Temperature-coverage phase diagram for case I: lines with solid circles, A percolation; and lines with open circles, AB percolation. The different
phases are shown schematically in the insets. Black circles, red circles and empty squares represent A particles, B particles and vacancies, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Same as Fig. 4 for case II. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

region III for θ ≈ 0.65 and wAA/kBT < 3.0 to region II (close to the critical curve) for θ ≈ 0.65 and wAA/kBT > 3.0 (see
right-bottom inset in Fig. 1(a)).

We will now analyze the mixture problem. In order to simplify the study of the whole phase space, which includes a
wide range of values of wAA/kBT , wBB/kBT and wAB/kBT , the analysis will be divided into three cases:

case I: wAA/kBT ≥ 0, wAB/kBT = 0 and wBB/kBT = 0;
case II: wBB/kBT ≥ 0, wAA/kBT = 0 and wAB/kBT = 0; and
case III: wAB/kBT ≥ 0, wAA/kBT = 0 and wBB/kBT = 0.
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Fig. 6. Mixed-gas adsorption for case II: wAA/kBT = wAB/kBT = 0 and different values of wBB/kBT as indicated.

Fig. 7. Same as Fig. 4 for case III. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

A similar scheme was used in Ref. [21] to depict the configurational structures that arise in the adsorbed phase. The
cases where two or more interactions are non-zero can be understood as a combination of the three cases described in the
paragraph above.

For case I, total (dashed lines) and partial (lines and symbols) adsorption isotherms are shown in Fig. 2. The lattice size
is L = 128. As µA → −∞ the state of the system is the following: θA = 0 and θB is the equilibrium coverage given by the
Langmuir isotherm, θB = exp(µB/kBT )/[1 + exp(µA/kBT ) + exp(µB/kBT )], being θB = 1/2 for µB = 0. As µA is increased,
the A particles adsorb on the surface and the B particles reach its equilibrium coverage in the rest of the lattice. This results
in a decreasing (increasing) of the B(A) isotherm.

As the interactionwAA/kBT increases, a continuous order–disorder phase transition occurs in the adlayer (plateau region)
[21] and one well-defined and pronounced step appears in the partial isotherms when the interaction wAA/kBT is greater
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b

Fig. 8. Percolation phase diagram corresponding to A (part (a)) and AB (part (b)) particles for wAA/kBT = 0, wAB/kBT ≥ 0 and wBB/kBT ≥ 0. The surface in
gray scale separates percolating and non-percolating regions. Limit curves represent the cases discussed in previous figures: red and green curves, Fig. 5;
and orange and dark yellow curves, Fig. 7. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

than wc/kBT . The repulsive interaction between A particles determines a c(2× 2) ordered phase and the A partial isotherm
presents a plateau at θA = 0.5. On the other hand, the B particles occupy half of the empty sites, and the corresponding B
isotherm presents a plateau at θB = 0.25. This behavior is a consequence of the excluded volume interaction, but it is not
due to energetic interactions (wBB/kBT = wAB/kBT = 0 for all isotherms).

The simplest case that can be considered for a mixture of gases is when all possible energetic interactions between
particles are zero. In this limit, which is analyzed in Fig. 3(a), the only interaction present is due to the excluded volume
effect. The figure shows the curves of RA

L (θ) and Q A
L (θ) for different values of lattice size L. From a first inspection of Fig. 3(a)

it is observed that (a) RA
L (θ) [Q A

L (θ)] curves cross each other in a unique point; (b) those points are located at very well-
defined values in the θ-axes, determining the critical percolation threshold for each case; and (c) the standard percolation
problem is recovered for AB percolation curves giving a percolation threshold ≈0.59 [1].

When the percolation path is through the A particles, the crossing of the corresponding probability curves, Q A
L (θ)’s, shifts

to θc ≈ 0.795. The origin of this effect can be understood as follows. Given that all the interactions between the adparticles
are zero, the problem of percolation corresponding to the A particles is identical to the random percolation problem and an
infinite cluster of A particles appears for θA ≈ 0.59. In these conditions, the B particles occupy 50% of the free sites left by A
particles. Then, θB = (1 − θA)/2 ≈ 0.205 and, consequently, θc = θA + θB ≈ 0.795.

Fig. 3(b) shows the behavior towards the thermodynamic limit of θX
c (L) according to Eq. (4) for the cases presented in

Fig. 3(a) and ν = 4/3 (random percolation). From extrapolation, one obtains θX
c (∞) for the different criteria X = U , I and A.

Combining the three estimates, the final values of θc(∞) can be obtained. In this case, θX
c (∞) = 0.593(1) for R curves and
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Fig. 9. Percolation phase diagram corresponding to A (part (a)) and AB (part (b)) particles for wBB/kBT = 0, wAA/kBT ≥ 0 and wAB/kBT ≥ 0. The surface
in gray scale separates percolating and non-percolating regions. Limit curves represent the cases discussed in previous figures: dark and dark blue curves,
Fig. 4; and orange and dark yellow curves, Fig. 7. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

θX
c (∞) = 0.796(1) for Q curves. These values coincide, within numerical errors, with those calculated from the crossing of

the curves in Fig. 3(a).
On the other hand, if the repulsive interaction between A particles is increased, the connectivity between nearest-

neighbor sites diminishes and the percolation threshold increases, being θc ≈ 0.83 (Q curves) and θc ≈ 0.61 (R curves)
for high values of wAA/kBT . Curves of RX

L (θ) and Q X
L (θ) are not shown here for the sake of space.

The procedure in Fig. 3 was repeated for wAA/kBT ranging between 0 and 4. The results, which are collected in Fig. 4,
represent the temperature-coverage phase diagram of the system for case I. The line with solid (open) circles separates the
percolating and non-percolating regions for A (AB) particle clusters. The different phases are shown schematically in the
insets of Fig. 4.

In case II, the repulsive interaction energy between B particles is varied (wBB/kBT ≥ 0) while the other interaction
energies are kept at zero value (wAA/kBT = wAB/kBT = 0). The resulting phase diagram is shown in Fig. 5. The notation is
as in Fig. 4.

When analyzing the AB percolation from RX
L (θ) (curves not shown here for brevity), it is clear that the percolation

threshold is θc ≈ 0.59. On the other hand, as wBB/kBT is increased, we get θc ≈ 0.74 for A particles (analyzed from the
crossover of the Q X

L (θ) curves). The last value can be understood from the behavior of the partial adsorption isotherms
presented in Fig. 6: as previously discussed, non-interacting A particles require a critical concentration of the order of 0.59
to find a percolating path between two opposite sides of the system. When this situation occurs, the fraction of B particles
on the lattice is θB ≈ 0.15 (see dotted lines in Fig. 6) and θc = θA + θB ≈ 0.74.
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b

Fig. 10. Percolation phase diagram corresponding to A (part (a)) and AB (part (b)) particles for wAB/kBT = 0, wAA/kBT ≥ 0 and wBB/kBT ≥ 0. The surface
in gray scale separates percolating and non-percolating regions. Limit curves represent the cases discussed in previous figures: dark and dark blue curves,
Fig. 4; and red and green curves, Fig. 5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Case III is analyzed in Fig. 7. As it can be observed, the percolation thresholds corresponding to A and AB particles collapse
in a single curve for increasing values of wAB/kBT . This behavior is due to the desorption of B particles produced by the
adsorption of A particles. Namely, B particles desorption is enhanced by both interactions (excluded volume and energetic
repulsion) betweenA and Bparticles, and the total isotherm is composed, almost exclusively, ofAparticles. Then as expected,
the critical curve for AB particles collapses towards the A critical curve for wAB/kBT > 2.

Once we have a clear idea of the behavior of the percolation threshold for both A and AB particles with one non-zero
interaction, we are ready to analyze the more complex case in which two interaction strengths are different from zero. In
this context, Fig. 8 shows the case of non-interacting A particles. Parts (a) and (b) correspond to results obtained for A and
AB percolation, respectively. In both figures, the critical surface separating the percolating and non-percolating regions is
shown. A similar study is presented in Figs. 9 and 10 for wBB/kBT = 0 and wAB/kBT = 0, respectively. As described in
the captions of Figs. 8–10, the highlighted curves that appear at the borders of the critical surfaces correspond to the cases
discussed in Figs. 4, 5 and 7.

In summary, we presented a model to investigate the process of adsorption of a binary mixture of A and B species on
a square lattice and studied the percolating properties of the adsorbed phase. We focused on the case of repulsive lateral
interactions, wAA/kBT ≥ 0, wBB/kBT ≥ 0 and/or wAB/kBT ≥ 0, where a rich variety of structural orderings were observed
in the adlayer. By using Monte Carlo simulation and finite-size scaling theory, we obtained the percolation thresholds for
different values of concentration and temperature. From this analysis, a critical curve in the θ − T space was addressed. In
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each case, the line separating the percolating and non-percolating regions was explained in terms of simple considerations
related to the interactions present in the problem.
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