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Abstract The majority of atomic-scale friction models in

which sliding is proposed to occur over the atomic-scale

energy corrugation at the sliding interface assume a simple

sinusoidal potential. An analysis of these models shows

that the energy barrier is reduced by the imposition of an

external force F, becoming zero at a critical force defined

as F*. It was first suggested by Prandtl that the energy

barrier approaches a limiting value with a force depen-

dence that is proportional to F� � Fð Þ3=2. In order to

explore the effects of the shape of the energy potential on

the sliding behavior, this model is analyzed for constant-

force sliding with a non-sinusoidal potential of the form

sinn px
a

� �
, where n is an even integer C2. The same

asymptotic dependence is found as suggested by Prandtl,

where the proportionality constant depends on the shape of

the potential. These results are used to calculate the

velocity and temperature dependences of sliding friction

for constant-force sliding over non-sinusoidal surface

potentials.

Keywords Sliding friction � Prandtl–Tomlinson model �
Velocity dependence � Temperature dependence

1 Introduction

The first analysis of the influence of an external force on

the energy barrier of a thermally activated process was

performed in 1928 by Prandtl [1] to examine the inelastic

stress–strain behavior of materials. Prandtl also indicated

that the model could be applied equally well to friction.

Tomlinson later pointed out that a surface sliding potential

could arise from the atomic-scale potential corrugation [2],

and this friction model is now known as the Prandtl–

Tomlinson (PT) model. The PT model analyzes the effect

of an external compliant force, which is coupled through a

spring to a simple periodic sinusoidal potential on the

energy barrier height between adjacent minima. With the

introduction of the atomic force microscope (AFM) for

friction measurements [3, 4], it was realized that the PT

model could be directly applied to AFM experiments, and

it has been widely used to model velocity and temperature

dependences of nanoscale sliding friction [5–11].

Similar concepts were used in 1936 by Eyring to model

viscosity [12, 13] using transition state theory [14] with

constant-force sliding by considering liquid flow as a uni-

molecular reaction in which the elementary process con-

sists of a molecule in the fluid passing from one

equilibrium position to another over an energy barrier

under the influence of a constant shear force, where again

the sliding potential is considered as a simple periodic

function. Eyring assumed that the rate constant k(F) is

given by kðFÞ ¼ k0e
Fd
kBT , where k0 is the rate constant for the

process in the absence of an external force, F is the lateral

force, kB is the Boltzmann constant and T the absolute

temperature. This model essentially assumes that the shape

of the energy profile is not modified by the imposition of an

external force. Here, an external force F exerted on the
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system to displace it a distance x reduces the activation

barrier by Fx. When x = d, the distance from the initial

minimum to the first maximum (the transition state), the

energy barrier decreases to zero to yield a force-dependent

energy barrier given by DEðFÞ ¼ E0 � Fd to give the

above rate equation. This approach has the advantage that

the analysis is independent of the energy barrier shape.

Similar models have been applied to describe

mechanochemical reaction rates in the so-called Bell model

[15]. Efforts have been made to take account of the influ-

ence of the potential shape in the extended Bell model [16].

This analysis separately expands the potential energy curve

as Taylor series about the initial and transitions state,

resulting in a quadratic force correction to the model:
vTS�vIS

2
F2, where vTS and vIS are the mechanical compli-

ances (the inverse of the force constants) at the transition

and initial states, respectively. Since the initial and tran-

sitions states are modeled separately, the theory does not

capture the behavior as the activation barrier becomes

small. However, because of its simplicity, approaches

similar to that taken in the Bell model have been used to

study a wide range of tribological behavior for constant

force rather than compliant sliding, including rubber [17,

18] and mica friction [19], friction modifiers [20], the

friction of monolayers of fatty acid soaps in glass/mica

contacts [21], fracture [22], and to describe dissolution [23]

and nanoscale wear rates measured in an AFM [24–28].

The similarity between these models has recently been

discussed in detail [29].

While Prandtl’s work explores the linear response at low

force, he also derives asymptotic solutions at large forces

by analyzing the force–distance curve as the end of the

compliant spring moves a distance x0 to reduce the height

of the energy barrier to zero. By considering the shape of

the force–distance curve as x approaches x0, it is shown that

the energy barrier DE(x) varies as a function of spring

position x as DEðxÞ / x� x0ð Þ3=2. Designating the force at

x = x0 to be F* and assuming that the force is dominated

by the motion of the end of the spring gives

DEðFÞ ¼ 1
b F� � Fð Þ3=2, where the proportionality constant

b depends on the shape and height of the energy barrier;

this approach has been used to model sliding in AFM [5, 8,

30].

The influence of the shape of the energy barrier on

frictional behavior of the PT model has been analyzed

using kinetic Monte Carlo simulations [10, 31] and the

master equation method [32]. However, since, as indicated

above, constant-force sliding models are more prevalent

than those for compliant sliding, in this paper, we explore

the asymptotic behavior as F approaches F* for constant-

force sliding as a function of the shape of the potential

using a model potential of the form sinn px
a

� �
. This type of

surface potential has been previously used to fit AFM

friction results on mica, providing much more accurate fits

to experiment than the classical sinusoidal potential [30].

Here, we derive analytical expressions for the lateral force

due to these non-sinusoidal potentials, which complement

the previous work done using Monte Carlo simulations.

The derivation is carried through to the point where the

presented equations can be used to characterize the velocity

and temperature dependences of friction. A similar analysis

has already been carried out for a simple sinusoidal

potential under rigid sliding conditions [29].

2 Results and Discussion

2.1 Sliding Energy Barrier

We analyze the variation in barrier height as a function of

force by assuming constant-force sliding with a force F. In

this case, the potential due to the external force is given by

V(x) = -Fx, where x is a distance along the surface. We

consider sliding over a periodic, non-sinusoidal potential

sinn(px/a) which yields peaked structures for even integer

values of n� 2. Figure 1 illustrates how the sharpness of

the potential is determined by the value of the parameter n.

Prandtl demonstrated that, in general, the energy barrier

varies as DEðFÞ ¼ 1
b F� � Fð Þ3=2 where F* is a critical

force at which the barrier is reduced to zero. The goal here

is to show that similar behavior occurs for constant-force

sliding and to calculate the proportionality constant b for
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Fig. 1 The shape of the non-sinusoidal periodic potential is deter-

mined by the exponent n
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sliding potentials with different shapes. We write the

combined potential at some constant force F as:

V x;Fð Þ ¼ E0 sin
n px

a

� �
� Fx ð1Þ

where E0 is the amplitude of the sliding potential, and a the

periodicity.

The imposition of the external force lowers the energy

barrier between adjacent stable positions, and the turning

points at some external force F are calculated by differ-

entiating Eq. (1), so that:

dV x;Fð Þ
dx

¼ npE0

a
sinðn�1Þ px

a

� �
cos

px
a

� �
� F ¼ 0 ð2aÞ

The force required to lower the barrier height (DE) to
zero defines the critical force F* which occurs at a position

x*:

npE0

a
sinðn�1Þ px�

a

� �
cos

px�

a

� �
¼ F� ð2bÞ

Furthermore, the inflection point at the critical position

x* satisfies:

o2V

ox2

����
F�
¼ np2E0

a2

n� 1ð Þ sinðn�2Þ px�

a

� �
cos2

px�

a

� �
� sinn

px�

a

� �	 

¼ 0

ð3aÞ

yielding an equation for x* as:

ðn� 1Þ sinðn�2Þ px�

a

� �
cos2

px�

a

� �
¼ sinn

px�

a

� �
ð3bÞ

This can be solved to give sin px�
a

� �
¼

ffiffiffiffiffiffi
n�1
n

q
; and

cos px�
a

� �
¼

ffiffi
1
n

q
; and therefore x� ¼ a

p a cos
1

n
1
2

� �
.

Substituting into Eq. (2b) gives:

F� ¼ npE0

a

n� 1

n

� �n=2
1

n� 1

� �1=2
ð4Þ

In order to study the asymptotic behavior of DE as it

approaches zero, we perform a Taylor series expansion of

Eq. (1) around (x*, F*), obtaining:

V x� x�;F � F�ð Þ ¼ E0

n� 1

n

� �n=2

1� p3

3a3
n2

n� 1ð Þ1=2
x� x�ð Þ3þ � � �

" #

þ x F� � Fð Þ � x�F�

ð5Þ

Figure 2 compares Eq. (1) (black dashed line) with Eq. (5)

(blue solid line) as a function of F for a system with typical

values of n = 8, a = 1 9 10-9 m, E0 = 1 9 10-20 J, and

therefore F* = 5.5683 9 10-11 N and the expansion in

Eq. (5) is reasonable for small deviations from F*.

The height of the energy barrier DE is calculated as a

function of F from the turning points of Eq. (5) from which

the position of the maximum and minimum that define

DE can be calculated as follows:

xmin ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3

E0p3
n

n� 1

� �n=2 n� 1ð Þ1=2

n2
F� � Fð Þ

s

þ x�

ð6aÞ

and

xmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3

E0p3
n

n� 1

� �n=2 n� 1ð Þ1=2

n2
F� � Fð Þ

s

þ x�: ð6bÞ

Substituting into Eq. (5) to obtain the values of the

potential at the corresponding turning points, and taking the

difference to calculate the barrier height gives:

DE ¼ 4a

3p
ffiffiffiffiffiffiffiffi
nF�

p F� � Fð Þ
3
2 ð7Þ

so that:

b ¼ 3p
4a

nF�ð Þ
1
2: ð8Þ

Thus, the combined potential shows identical asymp-

totic behavior for rigid sliding with a non-sinusoidal

potential as with the classical PT model. The proportion-

ality constant b depends on the sharpness of the potential

(n); a sharper potential has a higher value of b. This can

also be written in terms of the curvature at the potential

maximum (transition state), where vTS ¼ 1
n
, so that:

b ¼ 3p
4a

ffiffiffiffiffi
F�

vTS

q
. The plots in Fig. 3 compare exact numerical

solutions (black dashed line) with those predicted by

Eq. (7) (red solid line) for different values of n.

As expected, the agreement is good as DE approaches

zero but deviates from the exact solution as DE increases.

Note that there is no significant difference in this com-

parison between n = 8 and n = 16, suggesting that the

value of the parameter n does not significantly influence the

accuracy of this approach. We also observed that as n in-

creases, the height of the energy barrier decreases more

slowly with increasing force.

2.2 Lateral Force and Sliding Velocity

2.2.1 Transition Rates

In a contact with a sliding velocity v, the force F adjusts to

lower the activation barrier such that the transition rate

R increases to enable the system to transit the barrier at this
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sliding velocity. If the periodicity along the sliding direc-

tion is a, then:

v ¼ Ra ð9Þ

For a barrier height DEðFÞ under the influence of the

external force F that decreases as the force increases, then

at some temperature T, the transition rate is given by:

Rf ¼ A exp �DEðFÞ
kBT

� �
l ð10Þ

where Rf represents the forward transition rate and A is a pre-

exponential factor (transition attempt frequency). The vari-

able l was introduced by Prandtl to capture the population

density in the initial state [1]. For the shear of a contacting

interface of a liquid, essentially all of the minima are occu-

pied, so that l * 1. In the case of a nanoscale contact, where

a is the sliding distance from one minimum to the next and

l = 1 (single contact), substituting into Eq. (9) gives:

v ¼ aA exp �DEðFÞ
kBT

� �
ð11Þ

Note that if the activation energy in the absence of an

external force, E0, is small (a few times kBT), the system

could diffuse back and forth between the adjacent minima

in the absence of an external force, although the net motion

would be zero. However, the possibility of backward

transitions would be reflected in an increase in the lateral

force to maintain the contact sliding at a certain velocity. In

this case, Eq. (9) is modified to: v = (Rf - Rb)a, where Rf

and Rb are the forward and backward rates, respectively.

2.2.2 Forward Transitions

Assuming that only forward transitions take place gives:

DEðFÞ ¼ kBT ln
v�

v

� �
ð12Þ

where v* = Aa, and significant velocity dependences will

only be seen for v\ v*. Explicit solutions depend on the

form of DEðFÞ. For DE ¼ 4a
3p

ffiffiffiffiffiffi
nF�

p F� � Fð Þ
3
2 this gives:

Fig. 2 Comparison of Eq. (1) (black dashed line) and Eq. (5) (blue solid line) at different values of F for a system with n = 8, a = 1 9 10-9 m

and E0 = 1 9 10-20 J. This indicates there is very good agreement between the two as the energy barrier approaches zero (Color figure online)

21 Page 4 of 9 Tribol Lett (2015) 60:21

123



F ¼ F� � 3p
ffiffiffiffiffiffiffiffi
nF�

p
kBT

4a

� �2=3
ln

v�

v

� �� �2=3
ð13aÞ

and

1

bkBT
F� � Fð Þ3=2¼ ln

v�

v

� �
: ð13bÞ

While Eq. (13b) is the same as the commonly reported

PT model for a sinusoidal potential, in this expression, the

sharpness of the non-sinusoidal potential (n) is captured by

b ¼ 3p
4a

ffiffiffiffiffiffiffiffi
F�n

p
.

2.2.3 Forward and Backward Transitions

If backward transitions are taken into account, and

assuming that the backward attempt frequency is also A,

then Rb ¼ A exp � DEbðFÞ
kBT

� �
, where DEb corresponds to the

energy barrier height for the backward transitions. Due to

the shape of the overall potential V(x, F) (Eq. 1), DEb can

be calculated as:

DEb ¼ DEf þ Fa: ð14Þ

An illustration of the energy barriers for forward and

backward transitions is given in Fig. 4. With this picture,

the rate becomes:

Rb ¼ A exp �DEfðFÞ þ Fa

kBT

� �
ð15Þ

and

v ¼ Rf � Rbð Þa

¼ aA exp �DEfðFÞ
kBT

� �
1� exp � Fa

kBT

� �	 

ð16aÞ

so that,

DEfðFÞ
kBT

¼ ln
v�

v

� �
þ ln 1� exp � Fa

kBT

� �	 

: ð16bÞ

Fig. 3 Variation of the energy barrier with force obtained from Eq. (7) (red solid line) and the exact solution (black dashed line), which shows

that the agreement between the two curves improves as the energy barrier approaches zero (Color figure online)
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Once again, for DEfðFÞ ¼ 4a
3p

ffiffiffiffiffiffi
nF�

p F� � Fð Þ
3
2, this gives:

4a

3p
ffiffiffiffiffiffiffiffi
nF�

p
kBT

F� � Fð Þ
3
2¼ ln

v�

v

� �
þ ln 1� exp � Fa

kBT

� �	 


ð17aÞ

lnðvÞ ¼ ln v�ð Þ þ ln 1� exp � Fa

kBT

� �	 


� 4a

3p
ffiffiffiffiffiffiffiffi
nF�

p
kBT

F� � Fð Þ
3
2 ð17bÞ

This expression describes the velocity- and temperature-

dependent lateral force associated with a non-sinusoidal

potential of sharpness n.

2.3 Validation and Experimental Fit Example

In the previous sections, expressions for the lateral force

applicable to any non-sinusoidal potential of the form

sinn(x) were derived, where n is a measure of the sharpness

of the potential. The use of these expressions is now

demonstrated for a sliding contact with n = 4, a = 1 nm,

E0 = 1 9 10-20 J, and A = 10,000 Hz. The parameter

n = 4 is chosen to describe a surface energy profile with

moderate sharpness (see Fig. 1). The lattice constant

(a) and energy barrier height (E0) are of the order of typical

metals and similar to values used in typical PT models [33,

34]. The transition attempt frequency (A) is chosen to be

consistent with the order of magnitude of this parameter

obtained by fitting the PT model to experimental friction

versus sliding speed data [30]. The predicted relationship

between velocity and lateral force for this system at dif-

ferent temperatures, assuming only forward (Eq. 13b) or

forward and backward (Eq. 17b) transitions, is shown in

Fig. 5. In order to corroborate the validity of these equa-

tions, Fig. 5 also shows the exact numerical solutions.

It can be observed that at low temperatures, neglecting

the reverse transitions has only a small influence on the

calculated sliding force, while, at higher sliding tempera-

tures, this effect becomes quite large at low lateral forces.

Note that, in all cases, there is excellent agreement with the

exact solution when both forward and backward transitions

are taken into account.

We can now analyze the effect of the sharpness of the

potential on friction. Figure 6 shows the prediction of the

model with both forward and backward transitions at

T = 298 K for the same conditions as in Fig. 5 with dif-

ferent values of n. At low velocities, the three solutions are

nearly identical. However, as the velocity increases, the

model predictions diverge and indicate that friction will

increase more slowly with velocity with sharper potential

surfaces (larger n). This is consistent with the slower

decrease in the height of the energy barrier with force

shown in Fig. 3. This complements a recent study that

showed the shape of the potential surface can affect tran-

sitions between thermal and a thermal friction regimes

[35].

Now that the derivation of the proposed equations has

been validated, Eq. (17b) is used to fit experimentally

measured lateral force versus sliding velocity data obtained

by AFM on a NaCl (001) surface under ultra-high vacuum

conditions [36], to evaluate how close to sinusoidal the

sliding potential is for this system. The authors were able to

qualitatively describe the observed behavior by referring to

the PT model but did not perform any fits to the experi-

mental results. It should be noted that AFM experiments

are usually not thought of as constant-force sliding sce-

narios. However, if the ratio between the tip–sample

interaction and the elastic energy stored in the cantilever,

which under the PT model is defined as c = 2p2E0/kLa
2, is

much greater than 1 (for example when using cantilevers

with very low force constants), it is reasonable to assume

that the variations in lateral force due to the deformation of

the cantilever are small. Therefore, this can be approxi-

mated by constant-force sliding. In addition, if this is the

case, the approximation should improve at relatively low

sliding velocities, that is, away from the point at which

friction becomes independent of sliding velocity, which

seems to be the case of the results reported by Gnecco et al.

[32].

Shown in Fig. 7 is the comparison between the experi-

mental data for the velocity dependence (ln(v)) of the lat-

eral force (FL) on a NaCl surface at normal loads of 0.44

(?) and 0.65 nN (9) [36], and the fits using Eq. (17b)

(blue lines). The fits were performed at T = 298 K, fixing

the value of a at 0.47 nm, and having E0 as a free

parameter to account for possible changes in this value as a

function of normal load in each case, while the values of f0
and n were tuned to obtained the best fit to both data sets as

Fig. 4 Illustration of the energy barriers for forward and backward

transitions
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Fig. 5 Relationship between sliding speed and lateral force at

different temperatures predicted by the model assuming only forward

(red circles) and both forward and backward (blue triangles)

transitions, and the exact solution (black squares) for a non-sinusoidal

potential with n = 4 (Color figure online)

Fig. 6 Effect of the potential sharpness n on the rate of increase in

friction with velocity predicted by the model with forward and

backward transitions

Fig. 7 Comparison between the AFM experimental data obtained by

Gnecco et al. [36] on a NaCl surface at a normal load of 0.65 (9) and

0.44 nN (?), and the fits obtained with Eq. (17b) (blue lines) (Color

figure online)
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a whole. This fitting procedure leads to values of E0 of 0.59

and 0.70 eV for normal loads of 0.44 and 0.65 nN,

respectively, and a value of 1 9 107 Hz for f0 and n = 2.

Note that these quantities are well within the normal

experimental ranges found in AFM experiments. In addi-

tion, since the surface consists of a NaCl (001) crystal, it is

expected to be well simulated by a not very sharp surface

potential, so that n = 2 is also a reasonable fitting result.

3 Conclusion

An analytical solution is obtained for atomic-scale, con-

stant-force sliding for a non-sinusoidal potential to gauge

the influence of the shape of the potential on the variation

in energy barrier with force; the validity of this solution is

corroborated by the exact numerical solution. It is shown

that the asymptotic behavior as the force approaches a

critical value F* varies as DEðFÞ ¼ 1
b F� � Fð Þ3=2 as

originally proposed by Prandtl. The value of the propor-

tionality constant is found to vary as 1=
ffiffiffiffiffiffiffi
vTS

p
, where vTS

is the curvature at the potential maximum and

F� ¼ npE0

a
n�1
n

� �n=2 1
n�1

� �1=2
. The formula for DE(F) is used

to calculate the velocity dependence of the friction force.

The sharpness of the potential is found to affect the rate

of increase in friction with velocity, particularly at fast

velocities. The equation derived from the proposed model

is then used to successfully fit one example of AFM

experimental friction data. This analysis sets the stage for

similar treatments with compliant sliding used in the

atomic force microscope.
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