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Abstract An inexact restoration derivative-free filter method for nonlinear programming is1

introduced in this paper. Each iteration is composed of a restoration phase, which reduces2

a measure of infeasibility, and an optimization phase, which reduces the objective function.3

The restoration phase is solved using a derivative-free method for solving underdetermined4

nonlinear systems with bound constraints, developed previously by the authors. An alternative5

for solving the optimization phase is considered. Theoretical convergence results and some6

preliminary numerical experiments are presented.7
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Mathematics Subject Classification 65K05 · 90C30 · 90C5610

1 Introduction11

In this paper we shall be concerned with the nonlinear programming problem12

minimize f (x)

subject to c(x) = 0
(1)13
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where the functions f : R
n → R, c : R

n → R
m are continuously differentiable but their14

derivatives are not available. We denote by Jc(.) the Jacobian matrix of c and we consider15

the function h that measures the constraint infeasibility in each point x ∈ R
n , h(x) = ‖c(x)‖16

where ‖.‖ denotes the Euclidean norm. Such a kind of optimization problems encompasses17

many real-world problems arising in different fields like, e.g. computational mathematics,18

physics and engineering, in which it is necessary to minimize functions whose derivatives are19

not available (see e.g. Alexandrov and Hussaini 1997; Conn et al. 2009; Kolda et al. 2003).20

Unconstrained techniques based on local explorations, line searches or quadratic models21

have been suitably adapted to box-constrained and linearly constrained derivative-free opti-22

mization (Arouxét et al. 2011; Conn et al. 1997; Custodio and Vicente 2007; Kolda et al.23

2006; Lewis and Torczon 1999, 2000; Powell 2006, 2009). Problems with more general con-24

straints are more difficult because they need to obtain optimality and feasibility controlling25

the number of function evaluations of the objective function and the nonlinear constraints.26

Derivative-free methods for more general constraints were addressed by means of augmented27

Lagrangian approaches in Diniz-Ehrhardt et al. (2011), Lewis and Torczon (2002) and Lewis28

and Torczon (2010).29

Modern inexact restoration (IR) methods for smooth constrained optimization proceed in30

two phases (Gonzaga et al. 2004; Martínez 2001; Martínez and Pilotta 2000, 2005). In the31

restoration phase, feasibility is improved without evaluations of the objective function at all.32

In the optimization phase, the objective function or a Lagrangian function is minimized. One33

of the more attractive features of the IR method is that the theory allows us to use any efficient34

algorithm to perform each phase. Optimality and feasibility can be combined using penalty35

functions, augmented Lagrangians or can be treated more independently. Inexact restoration36

algorithms described by Martínez (2001) and by Martínez and Pilotta (2000, 2005), measure37

the progress by a merit function. Gonzaga et al. (2004) have proposed an inexact restoration38

algorithm which uses a filter strategy for evaluating candidate points. This idea was proposed1 39

by Fletcher and Leyffer (2002) in other contexts.40

A recent article (Bueno et al. 2013) uses the IR method for solving a nonlinear derivative-41

free optimization problem where the derivatives of the constraints are available, but the42

derivatives of the objective function are not. In this case, the second phase must be solved43

using derivative-free methods. An algorithm introduced by Kolda et al. (2006) for linearly44

constrained derivative-free optimization is employed for that purpose.45

In this paper we propose a derivative-free method, based on the inexact restoration46

approach introduced in Gonzaga et al. (2004). There the authors define a globally convergent47

filter method for nonlinear programming considering available the derivatives of the objective48

function and the constraints. That filter method belongs to the class of methods that treat f49

and h as two independent objectives. Each iteration proceeds in two phases: the restoration or50

feasibility phase in which feasibility must be improved without using the objective function51

and the optimization phase in which the objective function on a tangent approximation to the52

constraints must be minimized. As mentioned in Gonzaga et al. (2004), the filter algorithms53

define a forbidden region by memorizing the pairs ( f (xk), h(xk)) from well chosen former54

iterations, avoiding points dominated by those by using the usual Pareto domination rule:55

“x dominates y if and only if f (y) ≥ f (x) and h(y) ≥ h(x)”. For bibliography on filter56

methods see for example (Fletcher et al. 2002; Fletcher and Leyffer 2002; Gonzaga et al.57

2004) and the references therein.58

The algorithm developed in this work is based on models built by multivariate interpolation59

of the objective and the constraint functions (Custodio and Vicente 2007), which is one of60

the main differences with Gonzaga et al. (2004).61
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An inexact restoration derivative-free filter method. . .

The restoration phase must solve an underdetermined nonlinear system with bound con-62

straints. In our implementation we performed this phase using the derivative-free method63

developed in Echebest et al. (2012).64

On the other hand, the optimization phase must solve a derivative-free optimization prob-65

lem with linear constraints. We shall use a linear constrained trust-region algorithm in which66

the derivative of the objective function is approximated by a model obtained by linear inter-67

polation.68

This paper is organized as follows. In Sect. 2 we present the hypotheses, concepts and69

some results that are fundamental throughout the work. Also we define the Derivative-Free70

Filter algorithm (DFF) for solving (1). In Sect. 3 we present the internal algorithms used71

in DFF and we show that they satisfy certain conditions that will be used in the analysis of72

the convergence. In Sect. 4 we show the global convergence results. In Sect. 5 we describe73

implementation details and we show some numerical experiments. Finally, Sect. 6 is devoted74

to conclusions and lines for future research.75

Notation76

• ‖.‖ denotes the Euclidean norm.77

• Given two non-negative functions g1, g2 : X → R, X ⊂ R
n , we denote g1(x) =78

O(g2(x)) (or equivalently g2(x) = Ω(g1(x))) in Γ ⊂ X if there exists M > 0 such that79

g1(x) ≤ Mg2(x) for all x ∈ Γ .80

2 Derivative-free filter algorithm81

We shall develop an algorithm which generates sequences {xk}, {zk} in R
n and in order to82

obtain our global convergence we shall assume the following hypotheses.83

General hypotheses84

(H1) The iterates xk and zk remain in a convex compact domain X ⊂ R
n .85

(H2) The functions f , ci for i = 1, . . . , m are continuously differentiable in an open set86

containing X .87

(H3) The functions ∇ f , ∇ci for i = 1, . . . , m are Lipschitz continuous in an open set88

containing X with constants L1, L2 > 0, respectively:89

‖∇ f (x) − ∇ f (y)‖ ≤ L1‖x − y‖90

‖∇ci (x) − ∇ci (y)‖ ≤ L2‖x − y‖, for i = 1, . . . , m91

for all x, y in the open set containing X .92

Before going further into details of the algorithm, we first introduce some concepts and93

results of multivariate polynomial interpolation models of the objective function and con-94

straints that we make use throughout and that can be found to a more extent in Conn et al.95

(2009).96

Each interpolation set Y = {y0, y1, . . . , yn} ⊂ R
n , which is contained in the ball97

B(y0,∆(Y )) centered at y0 and with radius ∆(Y ) = max1≤i≤n ‖yi − y0‖, is “poised”98

for linear interpolation, i.e., the matrix of directions S = [y1 − y0 y2 − y0 . . . yn − y0]T is99

nonsingular. The definition of poisedness is independent of the basis for the space of linear100

polynomials of degree 1. Hence, if Y is poised for the natural basis then it is poised for any101

other basis chosen (Conn et al. 2009, Ch. 2).102

The simplex gradient of f at y0 is defined by ∇s f (y0) = S−1δ f (Y ) where δ f (Y ) =103

( f (y1) − f (y0), f (y2) − f (y0), . . . , f (yn) − f (y0))T.104
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If we consider m f (x) = f (y0) + gT
f (x − y0) as the linear interpolating model of f (x)105

on Y then we have that g f = ∇s f (y0) (Conn et al. 2009). Therefore, the simplex gradient106

of f is closely related to linear multivariate polynomial interpolation.107

The geometrical properties of Y determine the quality of the corresponding g f as an108

approximation to the exact gradient of the objective function. We are interested in the quality109

of m f (x) and g f in the ball B(y0,∆(Y )).110

The definition of poisedness gives a threshold to the difference between the functions and111

their interpolation models. Then, for all x ∈ B(y0,∆(Y )), considering the scaled matrix112

S̄ = S
∆(Y )

, we have that113

| f (x) − m f (x)| ≤ κe f ∆
2(Y ), (2)114

‖∇ f (x) − ∇m f (x)‖ ≤ κeg∆(Y ), (3)115

where κeg = L1(1 +
√

n
2

‖S̄−1‖) and κe f = κeg + L1
2

, which are given in Theorem 2.11 and116

Theorem 2.12 in Conn et al. (2009).117

Similarly, under the previous hypotheses, if we consider for all j = 1, . . . , m, mc j
(x) =118

c j (y0) + gT
c j

(x − y0) as the linear interpolating model of c j (x) on Y then we have that119

gc j
= ∇sc j (y0) and the following error bounds120

|c j (x) − mc j
(x)| ≤ κec∆

2(Y ), (4)121

‖∇c j (x) − ∇mc j
(x)‖ ≤ κegc∆(Y ), (5)122

where κegc = L2(1 +
√

n
2

‖S̄−1‖) and κec = κegc + L2
2

.123

If we consider as an approximation of Jc(y) the matrix A(y), whose j th row is the124

transpose of ∇mc j
(y) then we have that125

‖Jc(y) − A(y)‖ ≤ κeJc∆(Y ), (6)126

where κeJc =
√

m κegc .127

We assume that it is possible to maintain the constants κe f , κeg and κeJc uniformly bounded128

along the iterative process of our algorithm (Conn et al. 2009, Ch. 3 and 6).129

Given an iterate zk we consider the following hypothesis130

(H4) The simplex gradient used to approximate the objective function gradient satisfies the131

error bound: ‖∇ f (zk) − ∇s f (zk)‖ ≤ keg∆
k
f where ∆k

f is the radius of the ball that132

contains the interpolation points.133

The simplex derivatives used to approximate the true Jacobian satisfy the error bound:134

‖Jc(z
k) − A(zk)‖ ≤ keJc∆

k
c where ∆k

c is the radius of the ball that contains the135

interpolation points.136

The global convergence result of the method in Gonzaga et al. (2004) is obtained without137

discussing details of the algorithms used in the internal phases. The authors proved that their138

algorithm produces feasible points x satisfying139

lim inf
x→x

‖PT (x)(x − ∇ f (x)) − x‖ = 0, (7)140

where PT (z)(w) is the orthogonal projection of w ∈ R
n onto the closed set141

T (z) = {x ∈ R
n : Jc(z)(x − z) = 0}142

that is a linearization of the set {x ∈ R
n : c(x) = c(z)} at the point z.143
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An inexact restoration derivative-free filter method. . .

The direction PT (z)(z − ∇ f (z)) − z appears as a sequential optimality condition in the144

Approximate Gradient Projected condition defined by Martínez and Svaiter (2003).145

In this paper we address nonlinear problems in which the derivatives of the involved146

functions are not available. When this is the case we cannot compute in an exact form the set147

T (z) and the gradient of the objective function.148

Thus, in this context, we will be able to prove that our derivative-free filter algorithm149

generates a sequence {xk} which has a feasible limit point x ∈ R
n , x = limk∈K xk for some150

infinite subset K ⊂ N, satisfying151

lim
k∈K

‖dc(xk)‖ = 0, (8)152

where dc(z) = PL(z)(z − ∇s f (z)) − z and L(z) = {x ∈ R
n : A(z)(x − z) = 0}.153

This feasible point x will be called quasi-stationary throughout this work.154

Now, following the ideas in Gonzaga et al. (2004), we present the inexact restoration155

derivative-free filter algorithm with no specification of the internal algorithms.156

This algorithm constructs a sequence F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ · · · of filter sets composed157

of pairs ( f j , h j ) ∈ R
2. In the following, we also mention the sets of forbidden points,158

Fk ⊂ R
n , Fk = {x ∈ R

n : f (x) ≥ f j , h(x) ≥ h j , for some( f j , h j ) ∈ Fk}, which are159

formally defined in each step of algorithm for clarity, but are never actually constructed.160

Each iteration starts with a filter and the corresponding forbidden region.161

Given an iterate xk , the filter slack at xk is defined by162

Hk = min{1, min{h j : ( f j , h j ) ∈ Fk, f j ≤ f (xk)}}. (9)163

Observe that, as it was made in Gonzaga et al. (2004), at the beginning of each iteration,164

the pair ( f (xk) − αh(xk), h(xk) − αh(xk)) is temporarily introduced in the filter. After165

the complete successful iteration this entry will become permanent in the filter only if the166

iteration does not produce a decrease in f .167

In Martínez (2001), under suitable assumptions, Martínez has shown that a point that168

satisfies the feasibility phase requirements exists. Considering this, if h(xk) 
= 0, it is plausible169

to believe that a point zk satisfying h(zk) < (1 − α)h(xk) and ‖zk − xk‖ ≤ βh(xk) could be170

found, for example, by a Broyden-like method to solve the nonlinear system defined by the171

constraints.172

In order to accept zk , it is necessary to check if zk /∈ F k . Since the pair ( f (zk), h(zk)) is173

not dominated by ( f̃ , h̃), it is only necessary to verify that zk /∈ Fk . Since xk /∈ Fk , Fk is174

closed and the restored point has bounded distance from xk , it is reasonable to believe that175

the algorithm has possibilities to complete the restoration phase. However, we do not have176

guaranties that such point would be found, and so the stopping criterion in Step 2 is essential.177

Furthermore, when h(xk) = 0 it is necessary to find xk+1 satisfying f (xk+1) < f (xk), to178

fulfill the condition that xk+1 /∈ F k . Since we are not working with the true derivatives, the179

computed direction dc(z
k) could not be a descent direction of f in zk over L(zk), although it180

is not null. This can happen because the simplex gradients are not good approximations of the181

true gradients. Consequently, the procedure used in the optimization phase may not be able182

to find a point xT such that f (xT ) < f (zk). If zk 
= xk , as zk /∈ F k , it is possible to accept183

xT = zk and xk+1 = zk . But when zk = xk and the algorithm cannot find a point xT such184

that f (xT ) < f (zk), we propose to restart the optimization phase recomputing the simplex185

gradient of f and the matrix Ak with the new radiuses α∆k
f and α∆k

c of the interpolation186

points.187

The following lemma gives conditions for which dc(z
k) is a descent direction of f in zk

188

over L(zk).189
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Lemma 1 Given ε > 0, zk ∈ R
n , if ‖dc(z

k)‖ > ε and ‖∇ f (zk) − ∇s f (zk)‖ < ε
4

then190

‖zk − PL(zk )(z
k − ∇ f (zk))‖ > 3

4
ε, (10)191

∇T f (zk) dc(z
k) < − 1

4
‖dc(z

k)‖2. (11)192

Proof Since the projection PL(zk ) is non-expansive,193

‖PL(zk )(z
k − ∇ f (zk)) − PL(zk )(z

k − ∇s f (zk))‖ ≤ ‖∇ f (zk) − ∇s f (zk)‖,194

then it follows that195

‖zk − PL(zk )(z
k − ∇s f (zk))‖≤‖zk − PL(zk )(z

k − ∇ f (zk))‖+‖∇ f (zk) − ∇s f (zk)‖. (12)196

Then we have that197

‖zk − PL(zk )(z
k − ∇ f (zk))‖ ≥ ‖zk − PL(zk )(z

k − ∇s f (zk))‖ − ‖∇ f (zk) − ∇s f (zk)‖198

>
3

4
ε > 0,199

as we wanted to prove.200

Since ∇T f (zk)dc(z
k) = (∇ f (zk) − ∇s f (zk))T dc(z

k) + ∇T
s f (zk)dc(z

k), then201

∇T f (zk) dc(z
k) ≤ ‖dc(z

k)‖ ‖∇ f (zk) − ∇s f (zk)‖ + ∇T
s f (zk) dc(z

k).202

Therefore, considering203

∇T
s f (zk) dc(z

k) ≤ −
‖dc(z

k)‖2

2
, (13)204

which is obtained by a similar form to one of Martínez and Pilotta (2000, Sec. 2.6, page 140)205

replacing ∇ f (zk) by ∇s f (zk), we obtain that206

∇T f (zk) dc(z
k) ≤ ‖dc(z

k)‖2

(
‖∇ f (zk) − ∇s f (zk)‖

‖dc(zk)‖
−

1

2

)
.207

Hence, we get ∇T f (zk) dc(z
k) < ‖dc(z

k)‖2( 1
4

− 1
2
) = − 1

4
‖dc(z

k)‖2. Therefore, under the208

hypotheses given, dc(z
k) is a descent direction of f in zk . ⊓⊔209

Remark 1 Under the hypotheses of the previous lemma, if zk is not in F k , which is a closed210

set, then there must exist ∆ > 0 and t > 0 such that if t‖dc(z
k)‖ < ∆ then zk + tdc(z

k)211

does not fall into the region F k and f (zk + tdc(z
k)) < f (zk). Similarly when h(xk) = 0, by212

construction zk = xk and zk ∈ F k . In this case, since zk /∈ Fk , which is a closed set, there213

exist ∆ > 0 and t > 0 such that if t‖dc(z
k)‖ < ∆ then zk + tdc(z

k) does not fall into the214

region Fk . Furthermore, since f (zk + tdc(z
k)) < f (zk) it obtains that zk + tdc(z

k) /∈ F k .215

Lemma 2 Algorithm 1 is well defined.216

Proof If the method used in the restoration phase is not able to find a point zk satisfying the217

required conditions then the Algorithm 1 stops.218

In the optimization phase, when zk 
= xk there always exists xT /∈ F k such that f (xT ) ≤219

f (zk) since zk /∈ F k and then it is possible to accept xT = zk .220
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An inexact restoration derivative-free filter method. . .

221

222

When xk is feasible, zk = xk , if it is possible to find xT with f (xT ) < f (zk) then xk+1 is223

defined. If that is not possible then the algorithm restarts the optimization phase with smaller224

∆k
f and ∆k

c , with the aim of improving the approximation of the gradients of f and ci , for225

i = 1, . . . , m. In this case, in a finite number of iterations the radiuses ∆k
f and ∆k

c will226

become sufficiently small and if ‖dc(z
k)‖ is large enough, by Lemma 1 and Remark 1, it is227

possible to obtain xT /∈ F k such that f (xT ) < f (xk) and then xk+1 is defined. Otherwise,228

if ‖dc(z
k)‖ < ε f and max{∆k

f ,∆
k
c} < εI then the algorithm finishes satisfying the finite229

termination criterion. ⊓⊔230

Remark 2 When h(xk) > 0, in the previous lemma we have used the possibility to accept231

xk+1 = zk . When this happens an infinite number of iterations a feasible limit point is232

obtained. Until this moment, the internal algorithms have not been given. In the following233

section, we will study the characteristics of the limit points using the properties of the internal234

algorithms.235

As it was mentioned in Gonzaga et al. (2004) there are some facts that follow directly236

from the construction of the algorithm:237
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Fact 1. Given k ∈ N, xk+p /∈ Fk+1 for all p ≥ 1.238

Fact 2. Given k ∈ N, at least one of the following two situations must occur:239

1. h(xk+1) < (1 − α)h(xk).240

2. f (xk+1) < f (xk) − αh(xk).241

Fact 3. Given k ∈ N, h j > 0 for all j ∈ N such that ( f j , h j ) ∈ Fk . Consequently Hk > 0242

for all k ∈ N.243

Remark 3 By definition of Hk , Hk ≤ 1. Therefore, when xk is in a neighborhood of a feasible244

point, assuming h(xk) < 1, if Hk = 1 then h(xk) ≤ Hk holds. If Hk < 1 then there exists a245

h j < 1 such that ( f j , h j ) ∈ Fk , f j ≤ f (xk), such that Hk = h j . In this case, since xk /∈ Fk246

and f (xk) ≥ f j , it must be h(xk) < h j . Hence, if xk is in a neighborhood of a feasible point247

then h(xk) ≤ Hk holds.248

3 Internal algorithms249

Inexact restoration methodology gives the possibility of using different methods to solve250

each phase. In this section, we describe the algorithms that we use in each phase. We will251

also show that they verify the conditions required to obtain global convergence of DFF.252

3.1 Restoration phase253

We use the BCDF-QNB algorithm (Echebest et al. 2012) in the restoration phase of the254

DFF algorithm. BCDF-QNB (Box-Constrained Derivative-Free Quasi Newton), based on the255

Broyden update formula, is a derivative-free method for solving underdetermined nonlinear256

systems with bound constraints.257

Given an iterate xk , in Step 2 of DFF we apply BCDF-QNB starting from the initial258

point y0 = xk , until it finds a new point zk /∈ F k satisfying the descent condition h(zk) <259

(1 − α)h(xk) and ‖zk − xk‖ ≤ βh(xk) for fixed parameters 0 < α < 1, β > 0.260

BCDF-QNB generates a sequence {y j }, for j = 0, 1, 2, . . ., with y j ∈ Ωk , being Ωk =261

{y ∈ R
n : ‖y − xk‖∞ ≤ β√

n
h(xk)}. At each iterate y j , this algorithm computes a direction262

d j , considering two possibilities: in a first attempt, as the solution of the constrained linear263

system264

B j d + c(y j ) = 0 and y j + d ∈ Ωk, (14)265

if this is possible. Otherwise, the direction is computed as an approximate solution of the266

problem267

miny j +d ∈Ωk
‖B j d + c(y j )‖ (15)268

where B j is the matrix defined as:269

B j = B j−1 +
(w j − B j−1s j )(s j )T

‖s j‖2
(16)270

where w j = c(y j ) − c(y j−1), s j = y j − y j−1.271

Once the current direction d j is computed, the line search algorithm looks for a step length272

λ j ≤ 1 such that273

h(y j + λ j d j )
2 ≤ max

0≤i≤M−1
h(y j−i )2 + η j − γ λ2

j‖d j‖2 (17)274
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275

276

where M is a positive integer, 0 < γ < 1 and
∑∞

j=0 η j = η < ∞, η j > 0. This procedure is277

a combination of the well-known nonmonotone line search strategy for unconstrained opti-278

mization introduced by Grippo et al. (1986) with the Li–Fukushima derivative-free line search279

scheme in Li and Fukushima (2000). The combined strategy produces a robust nonmonotone280

derivative-free line search that takes into account the advantages of both schemes. Under281

suitable conditions we have established in Echebest et al. (2012) the global convergence282

results for the BCDF-QNB method.283

We describe the application of BCDF-QNB for solving the Restoration Phase.284

The matrix W0 is an approximation of Jc(x0), which is obtained by finite differences. The285

initial matrix Wk , k > 0, is the updated Broyden matrix of Ak−1, where Ak−1 is the matrix286

defined at zk−1 in the optimization phase.287

Remark 4 Since {y j } ⊂ Ωk , the obtained zk satisfies the condition ‖zk − xk‖ ≤ βh(xk),288

β > 0.289

As a result, more formally, the procedure generates iterates that verify the following290

condition.291

(C1) Restoration step condition: At all iterations k ∈ N, the restoration step satisfies292

‖zk − xk‖ = O(h(xk)). (18)293

Using (C1) and that ∇ f is bounded in X , it follows that294

| f (zk) − f (xk)| = O(‖zk − xk‖) = O(h(xk)). (19)295

123

Journal: 40314 Article No.: 0253 TYPESET DISK LE CP Disp.:2015/7/3 Pages: 26 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

N. Echebest et al.

3.2 Optimization phase296

Given zk ∈ X , generated in the restoration phase, Step 3.3 of DFF must find xk+1 ∈ L(zk)297

such that f (xk+1) ≤ f (zk) and xk+1 /∈ F k employing a derivative-free method.298

We shall describe a linear trust region method and then we show that the resulting step299

satisfies a special condition needed for obtaining convergence.300

At each iterate zk , the trust region algorithm associated to zk uses the linear model301

mk(x) = f (zk) + ∇T
s f (zk)(x − zk)302

where the simplex gradient of the objective function is considered.303

The trust region step uses a radius ∆ > 0 and solves the problem304

minimize mk(x)

subject to x ∈ L(zk)

‖x − zk‖ ≤ ∆.

305

As the model is linear we know that the solution of this problem is a point zk + d(zk,∆)306

such that307

d(zk,∆) = ∆
dc(z

k)

‖dc(zk)‖
(20)308

if dc(z
k) 
= 0, where dc(z

k) is the projected gradient direction defined by PL(zk )(z
k −309

∇s f (zk)) − zk .310

We define the predicted reduction produced by the step d(zk,∆) as311

pred(zk,∆) = mk(z
k) − mk(z

k + d(zk,∆)) (21)312

and the actual reduction of f as313

ared(zk,∆) = f (zk) − f (zk + d(zk,∆)). (22)314

The step d(zk,∆) is only accepted if the sufficient decrease condition is satisfied, i.e,315

ared(zk,∆) > η pred(zk,∆), (23)316

for a given η ∈ (0, 1).317

Since pred(zk,∆) = −∇T
s f (zk)d(zk,∆) = −∇T

s f (zk)
dc(z

k )

‖dc(zk )‖∆, considering (13), we318

get319

pred(zk,∆) ≥
∆

2
‖dc(z

k)‖. (24)320

We briefly describe the linear trust region method for solving the optimization phase.321

322
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323

The procedure terminates in a finite number of steps with f (x+) < f (zk) or with x+ = zk .324

In particular, it finishes in the first iteration when ‖dc(z
k)‖ = 0. If it finishes with x+ = zk

325

and zk = xk , when xk is feasible, then it is not possible to define xT /∈ F k . Hence it returns326

without success and so ∆k
f and ∆k

c are reduced in Algorithm 1, which means that better327

models are built. In other cases successfully returns with xT = x+.328

Now we study the optimality step near a feasible non-quasi-stationary limit point x ∈ X .329

Lemma 3 Let x ∈ X be a feasible non-quasi-stationary limit point. Then there exists a330

neighborhood Ṽ of x, ∆̃ > 0 and a constant c̃ > 0 such that for any zk ∈ Ṽ and for any331

∆ ∈ (0, ∆̃),332

ared(zk,∆) > η pred(zk,∆) ≥ ηc̃∆.333

Proof As x is a non-quasi-stationary limit point, there exists a neighborhood Ṽ such that for334

zk ∈ Ṽ , ‖dc(z
k)‖ ≥ ε̃ > 0 for all k ≥ k0.335

Since f is continuously differentiable and ∇ f is Lipschitz continuous, we know that336

ared(zk,∆) = f (zk) − f (zk + d(zk,∆)) ≥ (−∇ f (zk))Td(zk,∆) − L1∆
2

337

= (−∇ f (zk) + ∇s f (zk))Td(zk,∆) − (∇s f (zk))Td(zk,∆) − L1∆
2.338

In particular, if ‖dc(z
k)‖ ≥ ε̃, using (24) we have that −∇T

s f (zk)d(zk,∆) = pred(zk,∆) ≥339

∆
2
‖dc(z

k)‖ ≥ ∆
2
ε̃. Then, considering340

pred(zk,∆) = η(−∇T
s f (zk)d(zk,∆)) + (1 − η)(−∇T

s f (zk)d(zk,∆)),341

it obtains pred(zk,∆) ≥ η(−∇T
s f (zk)d(zk,∆)) + (1 − η)∆

2
ε̃.342

Hence343

ared(zk,∆) ≥ ηpred(zk,∆) + (1 − η)
∆

2
ε̃ + (−∇T f (zk) + ∇T

s f (zk))d(zk,∆) − L1∆
2.344

By (H4), we have ‖ − ∇T f (zk) + ∇T
s f (zk)‖ ≤ keg∆

k
f . Since ∆k

f ≤ δk and δk → 0, when345

k goes to infinity, there exists k1 ≥ k0 such that for k ≥ k1, keg∆
k
f <

(1−η)
4

ε̃. Then,346

ared(zk,∆) > ηpred(zk,∆) −
(1 − η)

4
ε̃‖d(zk,∆)‖ + (1 − η)

∆

2
ε̃ − L1∆

2
347

≥ ηpred(zk,∆) −
(1 − η)

4
ε̃∆ + (1 − η)

∆

2
ε̃ − L1∆

2.348

Hence, ared(zk,∆) > η pred(zk,∆) + (1 − η)∆
4
ε̃ − L1∆

2. Therefore if ∆ < ∆̃ = (1−η)
4L1

ε̃349

we obtain that ared(zk,∆) > η pred(zk,∆) and pred(zk,∆) ≥ ∆
2
‖dc(z

k)‖ ≥ c̃∆ where350

c̃ = ε̃
2

, as we wanted to prove. ⊓⊔351

Remark 5 In the previous lemma we have seen that if zk, the point found in restoration352

phase, is in the neighborhood of a non-quasi-stationary feasible point, then it is possible to353

find a step d(zk,∆) by (20) such that f (zk + d(zk,∆)) < f (zk). Furthermore, when zk
354

is not in F k , which is a closed set, then there must be a ∆ ≤ ∆̃ for which zk + d(zk,∆)355

does not fall into the forbidden region F k . Similarly when h(xk) = 0, by construction356

zk = xk and zk ∈ F k . By Lemma 3 as f (zk + d(zk,∆)) < f (zk) for all ∆ ∈ (0, ∆̃),357

zk + d(zk,∆) /∈ {x ∈ R
n : f (x) ≥ f (zk), h(x) > 0}. Then considering that zk /∈ Fk ,358

which is a closed set, we get a similar result to the case when zk is not in F k . Hence, under359

the hypothesis of Lemma 3, Algorithm 3 finds a point x+ /∈ F k and then defines xT = x+.360
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Lemma 4 Suppose that the matrix Ak is computed as an approximation of Jc(z
k) by simplex361

derivatives using an interpolation radius ∆k
c . Then if zk + d ∈ L(zk),362

|h(zk + d) − h(zk)| ≤ κeJc∆
k
c‖d‖ + O(‖d‖2). (25)363

Proof Since zk + d ∈ L(zk), Akd = 0, considering the general hypotheses we have that364

‖c(zk + d) − c(zk) − Jc(z
k)d‖ ≤

√
m L2‖d‖2. Then ‖c(zk + d) − c(zk)‖ ≤ ‖(Jc(z

k) −365

Ak)d‖ +
√

m L2‖d‖2.366

Hence, |‖c(zk + d)‖ − ‖c(zk)‖| ≤ ‖c(zk + d) − c(zk)‖ ≤ ‖(Jc(z
k) − Ak)‖‖d‖ +367 √

m L2‖d‖2. Therefore, considering (6), |h(zk + d) − h(zk)| ≤ κeJc∆
k
c‖d‖ +

√
m L2‖d‖2,368

as we wanted to prove. ⊓⊔369

The bound in (25) is O(‖d‖) because we are not using true derivatives. A similar bound370

appears in Gonzaga et al. (2004), section 4.3, where the authors proposed a simplified tan-371

gential step.372

Under the hypotheses of Lemmas 3 and 4 and the condition (C1) it can be established that373

the proposed procedure generates iterates that verify the following condition.374

(C2) Optimality step condition: Given a feasible non-quasi-stationary point x ∈ X ,375

there exists a neighborhood V of x such that for any iterate xk ∈ V ,376

f (zk) − f (xk+1) = Ω(
√

Hk). (26)377

Lemma 5 Let x ∈ X be a feasible non-quasi-stationary limit point. Let assume that (C1)378

and the hypothesis of Lemma 4 hold. Then there exists a neighborhood V of x such that if379

xk ∈ V then380

f (zk) − f (xk+1) = Ω(
√

Hk),381

where xk+1 = xT , xT is computed by Algorithm 3.382

Proof Let {xk}k∈K a subsequence such that lim
k∈K

xk = x .383

By (C1) ‖xk − zk‖ = O(h(xk)), as h(xk) tends to zero, it follows that limk∈K zk = x .384

Let Ṽ ⊂ X and ∆̃ > 0 be the neighborhood of x and the radius given by Lemma 3, such385

that for any zk ∈ Ṽ , k ∈ K and for any ∆ ∈ (0, ∆̃), ared(zk,∆) > η pred(zk,∆) ≥ ηc̃∆.386

Algorithm 3 starts with a radius ∆ ≥ ∆min and computes d(zk,∆ j ), ∆ j = 2− j∆ for387

j = 0, 1, . . ., until zk + d(zk,∆ j ) /∈ F k and ared(zk,∆ j ) > η pred(zk,∆ j ). Then, define388

∆k = ∆ j .389

Let us define ∆̂ as the first ∆ j such that390

ared(zk,∆ j ) > η pred(zk,∆ j ), and (27)391

zk + d(zk,∆ j ) /∈ F k or f (zk + d(zk,∆ j )) ≥ f̃ , (28)392

where ( f̃ , h̃) = ( f (xk) − αh(xk), (1 − α)h(xk)) is the temporary entry in the filter.393

Let us denote d̂ = d(zk, ∆̂) and x̂ = zk + d̂ . Note that ∆̂ ≥ ∆k , and ∆̂ > ∆k happens394

only when f (̂x) ≥ f̃ .395

Observe that, from Lemma 4, for a fixed ∆ we have that there is a constant κeJc∆
k
c > 0396

such that397

|h(zk + d(zk,∆)) − h(zk)| ≤ κeJc∆
k
c‖d(zk,∆)‖ +

√
m L2‖d(zk,∆)‖2.398

By Remark 3 we know that if xk is in a neighborhood of a feasible point then h(xk) ≤ Hk .399

So, considering that ‖d(zk,∆)‖ ≤ ∆ and ∆k
c ≤ βmin{max{h(xk), Hk}, δk} we have that400

|h(zk + d(zk,∆)) − h(zk)| ≤ κeJcβ Hk∆ +
√

m L2∆
2. (29)401
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Let us consider ∆̄ such that ∆̄ ≤
α

4βκeJc

and ∆̄ <
∆̃

2
.402

(i) Assume that ∆̂ ≥ ∆̄. Then, by (24),403

pred(zk, ∆̂) ≥
∆̂

2
‖dc(z

k)‖ ≥
ε̃

2
∆̂.404

By considering c̃ = ε̃
2

as in the proof of Lemma 3 we have that405

pred(zk, ∆̂) ≥ c̃∆̂ ≥ c̃∆̄.406

By definition of ∆̂, (27) holds, then407

f (zk) − f (̂x) > ηpred(zk, ∆̂) ≥ ηc̃∆̄ = Ω(1).408

Hence, since Hk ≤ 1, it follows409

f (zk) − f (̂x) = Ω(
√

Hk).410

(ii) Assume that ∆̂ < ∆̄. Then 2∆̂ < 2∆̄ < ∆̃ and 2∆̂ does not verify (28). By Lemma 3,411

ared(zk, d(zk, 2∆̂)) > ηpred(zk, d(zk, 2∆̂))412

and, by (28) it follows that zk + d(zk, 2∆̂) ∈ F k and f (zk + d(zk, 2∆̂)) < f̃ . Conse-413

quently by definition of Hk , we must have h(zk + d(zk, 2∆̂)) ≥ Hk .414

By construction, h(zk) < (1 − α)h(xk) ≤ (1 − α)Hk . Therefore,415

h(zk + d(zk, 2∆̂)) − h(zk) ≥ αHk .416

Then, using (29)417

αHk ≤ h(zk + d(zk, 2∆̂)) − h(zk) ≤ κeJcβ Hk2∆̂ + 4
√

m L2∆̂
2,418

we obtain419

Hk ≤
2β

α
κeJc Hk∆̂ + O(∆̂ 2) ≤

1

2
Hk + O(∆̂ 2).420

Hence421

1

2
Hk = O(∆̂ 2) or ∆̂ = Ω(

√
Hk).422

Using Lemma 3 with ∆̂ < ∆̄ < ∆̃,423

f (zk) − f (̂x) = ared(zk, ∆̂) ≥ ηc̃∆̂ = ηc̃Ω(
√

Hk). (30)424

Thus, for both cases, we have that f (zk) − f (̂x) = Ω(
√

Hk). Then the step d̂ satisfies425

the conditions in the Lemma.426

To finish the proof, we must show that for large k ∈ K , f (̂x) < f̃ which implies x̂ /∈ F k427

and thus x̂ = xk+1. From (30) there is a positive constant M such that428

f (zk) − f (̂x) ≥ M
√

Hk429

and430

f (̂x) ≤ f (zk) − M
√

Hk .431
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From (19) there is a positive constant N such that432

f (zk) ≤ f (xk) + Nh(xk).433

Then, combining the last two inequalities we have that434

f (̂x) ≤ f (xk) + Nh(xk) − M
√

Hk ≤ f (xk) + Nh(xk) − M
√

h(xk)435

= f (xk) −
√

h(xk)(M − N
√

h(xk))436

and, for large k ∈ K such that M − N
√

h(xk) > α
√

h(xk), which means that
√

h(xk) <437

M
N+α

, we have that f (̂x) < f (xk) − αh(xk) = f̃ , completing the proof. ⊓⊔438

4 Convergence results439

In this section, based on conditions (C1), (C2) and considering the general hypotheses we440

will show the global convergence of DFF to a quasi-stationary point.441

As it was done in Gonzaga et al. (2004), it can be shown that (C1) and (C2) imply the442

following condition.443

(C3) Given a feasible non-quasi-stationary point x ∈ X , there exists a neighborhood V444

of x such that for any iterate xk ∈ V ,445

f (xk) − f (xk+1) = Ω(
√

Hk) (31)446

where Hk is the filter slack at xk defined in (9).447

The difference between the conditions (C2)–(C3) and the analogous in Gonzaga et al.448

(2004) is that here they are defined in neighborhood of a non-quasi-stationary point while449

the others are in a neighborhood of a non-stationary point.450

Lemma 6 (C1) and (C2) imply (C3).451

Proof Let x be a feasible non-quasi-stationary point and let V1 be the neighborhood defined452

by (C2). Since ‖zk − xk‖ = O(h(xk)) and x is a feasible point there exists a neighborhood453

V2 ⊂ V1 of x such that for xk ∈ V2, zk ∈ V1. Consider an iterate xk ∈ V2. By (19) there is a454

positive constant N such that | f (zk)− f (xk)| ≤ Nh(xk) and f (xk)− f (zk) ≥ −Nh(xk). By455

(C2) there is a positive constant M such that f (zk)− f (xk+1) ≥ M
√

Hk . Then, considering456

that h(xk) ≤ Hk , we obtain457

f (xk) − f (xk+1) = f (xk) − f (zk) + f (zk) − f (xk+1) ≥ M
√

Hk − Nh(xk)458

= M
√

Hk − N
√

h(xk)
√

h(xk) ≥ M
√

Hk − N
√

Hk

√
h(xk).459

Thus,460

f (xk) − f (xk+1) ≥ (M − N
√

h(xk))
√

Hk .461

By continuity of h at the feasible point x , there exists a neighborhood V ⊂ V2 such that, for any462

x ∈ V ,
√

h(x) ≤ 0.5 M
N

. Therefore, for any iterate xk ∈ V , f (xk) − f (xk+1) ≥ 0.5M
√

Hk ,463

completing the proof. ⊓⊔464

The following lemmas are adaptations of Lemma 2.5 and Lemma 2.6 in Gonzaga et al.465

(2004) for the definition of quasi-stationary point for the derivative-free case. Such results are466

obtained considering the validity of the (C3) condition. We state them here for completeness.467

468
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Lemma 7 Let x ∈ X be a non-quasi-stationary limit point. Then there exist k ∈ N and a469

neighborhood V of x such that whenever k > k and xk ∈ V , the iteration k is an f -iteration.470

Lemma 8 Suppose that {xk}k∈N has no quasi-stationary accumulation point. Then for k471

sufficiently large, all iterations are f -iterations.472

Finally, we can obtain the following main theorem. The proof of this theorem follows473

straightforward from Gonzaga et al. (2004).474

Theorem 1 The sequence {xk}k∈N has a quasi-stationary accumulation point.475

4.1 Convergence to a Karush–Khun–Tucker point476

From the previous section we know that the sequence {xk}k∈N generated by the DFF algorithm477

has a quasi-stationary limit point x . Then there exists K ⊂ N such that limk∈K xk = x .478

Furthermore, by (C1), we have that lim
k∈K

zk = x and consequently479

lim
k∈K

‖PL(zk )(z
k − ∇s f (zk)) − zk‖ = 0. (32)480

In this section, we will prove that, using the linear independence constraint qualification481

(LICQ) (Bertsekas 1999), x is a Karush–Kuhn–Tucker (KKT) point of (1).482

The following Lemma shows that (32) still holds when we replace ∇s f (zk) by ∇ f (zk)483

but maintaining the projection onto L(zk).484

Lemma 9 Let {xk}k∈N be a sequence generated by the DFF algorithm. Then there exists485

K ⊂ N such that486

lim
k∈K

‖PL(zk )(z
k − ∇ f (zk)) − zk‖ = 0. (33)487

Proof From condition (H4),488

‖∇ f (zk) − ∇s f (zk)‖ ≤ keg∆
k
f ≤ kegδk, (34)489

where the sequence {δk} tends to zero. Then considering490

‖zk − PL(zk )(z
k −∇ f (zk))‖=‖zk − PL(zk )(z

k − ∇ f (zk) − ∇s f (zk) + ∇s f (zk))‖ (35)491

and using (12) we have that492

‖zk − PL(zk )(z
k − ∇ f (zk))‖ ≤ ‖zk − PL(zk )(z

k − ∇s f (zk))‖ + ‖∇ f (zk) − ∇s f (zk)‖.493

Therefore, using (32) and (34) and taking limit when k goes to infinite, k ∈ K , we have494

(33) as we wanted to prove. ⊓⊔495

The main difference between the condition (7) and the condition (32) is that in the last496

one just estimations of the true derivatives are used.497

In Gonzaga et al. (2004, Lemma 1.1) the authors prove that condition (7), together with498

the Mangasarian–Fromovitz constraint qualification (Bertsekas 1999), is equivalent to the499

KKT conditions.500

We are able to prove that if a quasi-stationary point of the sequence generated by the501

algorithm verifies the Linear Independence constraint qualification then this point is a KKT502

point of the problem (1).503

Theorem 2 Let {xk}k∈N be a sequence generated by the DFF algorithm and x a quasi-504

stationary accumulation point of {xk} that satisfies the Linear Independence constraint505

qualification. Then x is a KKT point of (1).506
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Proof Since x is a quasi-stationary accumulation point of {xk}, then there exists K ⊂ N507

such that lim
k∈K

xk = x .508

Let z̃k = PL(zk )(z
k − ∇ f (zk)), then by definition z̃k is the solution of the problem509

min ‖z − (zk − ∇ f (zk))‖2

subject to Ak(z − zk) = 0.
(36)510

Since x is a quasi-stationary accumulation point and using the previous lemma we have that511

lim
k∈K

(̃zk − zk) = 0.512

Since the feasible set of (36) is defined by linear constraints we know that there exists µk ∈ R
m

513

such that514

−(̃zk − (zk − ∇ f (zk))) = AT
k µk

515

Ak (̃z
k − zk) = 0.516

Then517

zk − z̃k = ∇ f (zk) +
m∑

i=1

µk
i ak

i518

where ak
i denotes the ith column of AT

k . By Carathéodory’s theorem (see for example Bert-519

sekas 1999, page 689), for each k ∈ K there exist Ik ⊂ {1, . . . , m} and {µk} ⊂ R
m such520

that521

zk − z̃k = ∇ f (zk) +
∑

i∈Ik

µk
i ak

i522

where the set {ak
i }i∈Ik

is linearly independent.523

Since the number of possible sets Ik is finite, then there exists K1 ⊂ K such that for all524

k ∈ K1,525

Ik = I ⊂ {1, . . . , m}526

and527

zk − z̃k = ∇ f (zk) +
∑

i∈I

µk
i ak

i (37)528

where the set {ak
i }i∈I is linearly independent.529

If {µk} is not bounded, let Mk = ‖µk‖∞. Then lim
k∈K1

Mk = ∞ and we may take an530

appropriate subsequence such that lim
k∈K2

µk

Mk

= µ 
= 0, where K2 ⊂ K1. Then531

zk − z̃k

Mk

=
∇ f (zk)

Mk

+
∑

i∈I

µk
i

Mk

ak
i . (38)532

Thus using (H4) and taking limit in (38) when k goes to infinite, k ∈ K2, we obtain that533

∑

i∈I

µi∇ci (x) = 0534
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which contradicts the Linear Independence constraint qualification. So {µk} is bounded and535

there exists K3 ⊂ K1 such that lim
k∈K3

µk = µ. Then using (H4) and taking limit in (37) when536

k goes to infinite, k ∈ K3, we obtain that537

∇ f (x) +
∑

i∈I

µi∇ci (x) = 0.538

Hence, x is a KKT point of (1). ⊓⊔539

5 Numerical experiments540

In this section, we present some preliminary computational results obtained with a Fortran 77541

implementation of the DFF algorithm. These experiments were run on a personal computer542

with INTEL(R) Core (TM) 2 Duo CPU E8400 at 3.00 GHz and 3.23 GB of RAM.543

As it is usual in derivative-free optimization articles we are interested in the number of544

function evaluations needed for satisfying the stopping criteria.545

5.1 Details on the implementation of the DFF algorithm546

We have considered two versions of DFF: DFF1 and DFF2. The only difference between547

them is the form to compute the matrix Ak . In DFF1 it is computed by simplex derivatives548

as was described in Algorithm 1 and used in the theoretical results. In DFF2, once zk is549

computed in the restoration phase, we consider a new Broyden matrix by updating the last550

one computed in that process, which is used as the matrix Ak .551

In our experiments the parameters used in DFF1 and DFF2 are α = 0.1, β = 100,552

ε f = 10−6 and εI = 10−6.553

In this implementation we declare convergence, if breakdown does not occur at the restora-554

tion phase, when h(xk) ≤ ε f , max{∆k
f ,∆

k
c} ≤ εI and ‖dc(z

k)‖ ≤ ε f .555

In the implementation of the optimization phase we use the subroutine DLSVRR of556

the IMSL Fortran Numerical Libraries, which is based on the LINPACK routine SSVDC557

(Dongarra et al. 1979), for computing the singular value decomposition (USV) of the matrix558

Ak to obtain the projection of zk − ∇s f (zk) onto L(zk).559

Step 3 of DFF requires the calculation of the simplex gradients of c j , for j = 1, . . . m,560

which requires to select a set of interpolation points. In the first iteration we construct the561

set Y 0
c = {z0, y1

c , . . . , yn
c } for obtaining the models mc j

(x) = c j (z
0) + ∇sc j (z

0)T(x −562

z0), j = 1, . . . , m, generating the matrix A0, as an approximation of Jc(z
0). We consider563

yi
c − z0 = ρ0 ei and the corresponding values c j (yi

c), for i = 1, . . . , n and j = 1, . . . , m,564

ρ0 < β max{δ0, h(x0)}.565

Also, it requires to compute the model m f (x) = f (zk) + ∇s f (zk)T(x − zk). In the first566

iteration, we used the vectors of the matrix V of the decomposition USV of A0 to obtain567

the model m f (x) = f (z0) + ∇s f (z0)T(x − z0), considering the set Y 0
f = {z0, y1

f , . . . , yn
f },568

where yi
f = z0 + ρ0 vi and f (yi

f ), for i = 1, . . . , n.569

In the following iterations Y k
c and Y k

f are updated, adding the new zk as the center of them570

and eliminating a point yt , the farthest from the center, trying to maintain the independence571

of directions. In this preliminary implementation, in some iterations the interpolation sets are572

newly constructed, while in others they are updated from the previous ones. The construction573

takes place in the first iteration and whenever it is not possible to preserve the independence of574
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the directions easily. To check the independence of the directions we use a similar algorithm575

to the one proposed in Gratton et al. (2011).576

The parameters used in BCDF-QNB are the same used in Echebest et al. (2012).577

Finally, the parameters used in Algorithm 3 are the following: η = 0.1, ∆min = 0.5 and578

tol = 10−16.579

5.2 Test problems580

We have used a set of nonlinear programming problems defined in Hock and Schittkowski581

(1981). Also, we have considered one problem which was used firstly in Gonzaga et al.582

(2004) and in our previous paper (Echebest et al. 2012) where we introduced the basic583

ideas of the actual algorithm. The selected problems from Hock and Schittkowski (1981)584

are those that have equality constraints. Also, we have considered some problems from585

Hock and Schittkowski (1981) with inequality constraints. In these problems the inequality586

constraints have been replaced by equality constraints since they are active at the solu-587

tion.588

In Table 1 we show the data of the problems. The number of variables ranges from 2 to589

10 and the number of equality constraints from 1 to 4. Initial points were the same as in the590

cited references.591

5.3 Numerical results592

In Table 2 we show the results obtained taking into account the number of iterations (Iter), the593

number of objective function evaluations (ObjEval), the number of constraints evaluations594

(ConstEval), the final value f (xend) and the final value of the infeasibility h(xend).595

We can notice that the DFF1 version has done fewer iterations than the DFF2 version596

in 70 % of the problems. We believe that this behavior is due to the fact that DFF1 uses a597

better approximation of Jc(z
k) in many iterations, and as consequence the initial updated598

matrix in the restoration phase is better. When we consider h(xend) as a measure of the599

performance of the algorithms we can see that DFF1 outperforms DFF2 in 70 % of the600

problems.601

From the results of test problems we can conclude that the restoration algorithm was602

successful in almost all iterations of all the problems. The only exception was the problem603

HS 56 for DFF2.604

For algorithmic comparison we use performance profile described in Dolan and Moré605

(2002) and data profile for derivative-free optimization presented in Moré and Wild (2009).606

The performance profile of a solver s is defined as the fraction of problems where the607

performance ratio is at most α, that is, ρs(α) = 1
|P| size{p ∈ P : rp,s ≤ α}, where rp,s =608

tp,s

{mintp,s :s∈S } , tp,s is the number of function evaluations required to satisfy the convergence609

test, P is the set of problems and |P| denotes the cardinality of P .610

We are also interested in the percentage of problems that can be solved, according to the611

convergence test mentioned in Sect. 5.1, by a solver s with a particular number of function612

evaluations. The percentage of problems that can be solved with α function evaluations is613

computed by ds(α) = 1
|P| size{p ∈ P : tp,s ≤ α}.614

As it was mentioned in Moré and Wild (2009), the definition of ds is independent of the615

number of variables of the problem p ∈ P . However, we know that the number of function616

evaluations grows when the number of variables grows. We thus consider the data profile617

of a solver s by ds(α) = 1
|P| size{p ∈ P : tp,s

n+1
≤ α}, where n is the number of variables618
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Table 1 Data of the problems

Problem n m Problem n m Problem n m

HS 6 of Hock and

Schittkowski

(1981)

2 1 HS 39 of Hock

and

Schittkowski

(1981)

4 2 HS 60 of Hock

and

Schittkowski

(1981)

3 1

HS 7 of Hock and

Schittkowski

(1981)

2 1 HS 40 of Hock

and

Schittkowski

(1981)

4 3 HS 61 of Hock

and

Schittkowski

(1981)

3 2

HS 8 of Hock and

Schittkowski

(1981)

2 2 HS 42 of Hock

and

Schittkowski

(1981)

4 2 HS 63 of Hock

and

Schittkowski

(1981)

3 2

HS 9 of Hock and

Schittkowski

(1981)

2 1 HS 43 of Hock

and

Schittkowski

(1981)

4 3 HS 77 of Hock

and

Schittkowski

(1981)

5 2

HS 14 of Hock

and

Schittkowski

(1981)

2 2 HS 46 of Hock

and

Schittkowski

(1981)

5 2 HS 78 of Hock

and

Schittkowski

(1981)

5 3

HS 22 of Hock

and

Schittkowski

(1981)

2 2 HS 47 of Hock

and

Schittkowski

(1981)

5 3 HS 79 of Hock

and

Schittkowski

(1981)

5 3

HS 26 of Hock

and

Schittkowski

(1981)

3 1 HS 48 of Hock

and

Schittkowski

(1981)

5 2 HS 80 of Hock

and

Schittkowski

(1981)

5 3

HS 27 of Hock

and

Schittkowski

(1981)

3 1 HS 52 of Hock

and

Schittkowski

(1981)

5 3 HS 81 of Hock

and

Schittkowski

(1981)

5 3

HS 29 of Hock

and

Schittkowski

(1981)

3 1 HS 53 of Hock

and

Schittkowski

(1981)

5 3 HS 111 of Hock

and

Schittkowski

(1981)

10 3

HS 35 of Hock

and

Schittkowski

(1981)

3 1 HS 56 of Hock

and

Schittkowski

(1981)

7 4 Example of

Gonzaga et al.

(2004)

2 1

in p ∈ P . The value of ds(α) can be interpreted as the percentage of problems that can619

be solved with the equivalent of α simplex gradient estimates, considering that n + 1 is620

the number of evaluations needed to compute a one-sided finite-difference estimate of the621

gradient (Moré and Wild 2009).622

We analyze separately the number of objective function evaluations (ObjEval) and the623

number of constraints evaluations (ConstEval).624

In the following figures we compare DFF1 and DFF2 using the number of objective625

function evaluations as a measure of the performance.626
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Fig. 1 Performance profile:

objective function evaluations
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Fig. 2 Data profiles for the comparison between DFF1 and DFF2: objective function evaluations

In the performance profile of Fig. 1, we can notice that DFF1 expended less objec-627

tive function evaluations in more than 80 % of the problems, while DFF2 expended less628

objective function evaluations in approximately 20 % of the problems. The performance629

difference between DFF1 and DFF2 is approximately 20 % when the performance ratio is630

2.631

The data profile of Fig. 2a shows that DFF1 solves the largest percentage of problems for632

all sizes of the number of objective function evaluations. We can observe that DFF1 solves633

80 % of problems with 200 evaluations while DFF2 solves approximately 70 %. The biggest634

difference is 30 % and it happens when the number of function evaluations is approximately635

180. We believe that this behavior is due to the fact that DFF1 uses a better approximation636

of Jc(z
k) in many iterations as well as it makes fewer iterations.637

Figure 2b shows that DFF1 solves the largest percentage of problems for all sizes of the638

number of simplex gradient estimates (ObjEval/(n + 1)). With 60 evaluations DFF1 solves639
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Fig. 3 Performance profile:

constraints evaluations
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Fig. 4 Data profiles for the comparison between DFF1 and DFF2: constraints evaluations

100 % of the problems while DFF2 requires 100 evaluations to solve all of them. The biggest640

difference between DFF1 and DFF2 happens when the number of function evaluations is641

approximately 30 % and in this case DFF1 solves 80 % of the problems while DFF2 solves642

approximately 50 % of them.643

In the following figures we compare DFF1 and DFF2 using the number of constraints644

evaluations as a measure of the performance.645

In the performance profile of Fig. 3 we can notice that DFF2 expended less constraints646

function evaluations in approximately 80 % of the problems while DFF1 expended less647

constraints function evaluations in more than 20 %.648

In Fig. 4a the data profile shows that DFF2 solves the largest percentage of problems649

for all sizes of the number of constraints evaluations. We believe that this result is asso-650

ciated to the fact that DFF2 does not require new constraints evaluations to define the651

matrix Ak because it updates the last matrix used in the restoration phase. With 400 eval-652
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uations DFF2 solves all the problems, while DFF1 needs 800 evaluations to solve all of653

them.654

Figure 4b shows that DFF2 solves the largest percentage of problems for all sizes of the655

number of simplex gradient estimates (ConstEval/(n +1)). With 70 evaluations DFF2 solves656

almost 100 % of the problems, while DFF1 solves approximately 90 % of the problems.657

The biggest difference between DFF1 and DFF2 happens when the number of constraints658

evaluations is 20 % and in this case DFF2 solves 60 % of the problems while DFF1 solves659

approximately 40 % of them.660

Taking into account the performance and data profiles, we believe that better results661

can be obtained developing another alternative that combines DFF1 and DFF2 imple-662

mentations. That could be made considering the DFF2 implementation, computing Ak663

by simplex gradients after a fix number of iterations. In addition, in the application664

of BCDF-QNB in the restoration phase, we could replace the use of finite differ-665

ences to compute Bk by the use of simplex gradients. That will be a subject of future666

study.667

6 Conclusions668

We have presented an inexact restoration filter algorithm for equality constrained nonlinear669

programming without using derivatives. The main contribution of the paper is to extend the670

theory of a filter-based optimization method to the derivative-free context, but future research671

about numerical behavior of the algorithm is still necessary to understand if there exists a class672

of problems that would be better solved with the DFF algorithm than with other benchmark673

DF algorithm.674

From the theoretical point of view, under suitable conditions, we were able to prove global675

convergence to quasi-stationary points. Furthermore, we have shown that if a quasi-stationary676

accumulation point satisfies the Linear Independence constraint qualification then this point677

is a KKT point of (1).678

From the practical point of view, two versions of the proposed algorithm were implemented679

and tested considering a set of small-scale problems. The main difference between the two680

versions is the way in which an approximation of the true Jacobian Jc(z
k) is computed. Two681

main aspects can be taken into account from the numerical experiments:682

1. They suggest plausible the use of Quasi Newton for computing the Jacobian approxima-683

tions and this will be one of the subject of forthcoming research.684

2. The implemented algorithms behave as expected; however, it will be desirable to test the685

execution of the algorithm with a more challenging set of problems. Also, we would like686

to compare the performance of the tested algorithms with other derivative-free algorithms687

defined for solving the same problem.688

pgAs the method proposed is the type of inexact restoration, different alternatives can be689

studied in order to solve the two phases. In particular, to solve the optimality phase, we690

would like to define a derivative-free algorithm based on a quadratic model, instead of a691

linear one. In this case the use of quadratics models must be consistent with the theory,692

especially with the condition (C2), in order to preserve the convergence.693
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