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Abstract

Version 1.5 of the computer program TNT completely integrates landmark data into phylogenetic analysis. Landmark data
consist of coordinates (in two or three dimensions) for the terminal taxa; TNT reconstructs shapes for the internal nodes such
that the difference between ancestor and descendant shapes for all tree branches sums up to a minimum; this sum is used as tree
score. Landmark data can be analysed alone or in combination with standard characters; all the applicable commands and
options in TNT can be used transparently after reading a landmark data set. The program continues implementing all the types
of analyses in former versions, including discrete and continuous characters (which can now be read at any scale, and automati-
cally rescaled by TNT). Using algorithms described in this paper, searches for landmark data can be made tens to hundreds of
times faster than it was possible before (from T to 3T times faster, where T is the number of taxa), thus making phylogenetic
analysis of landmarks feasible even on standard personal computers.
© The Willi Hennig Society 2016.

Since the first non-beta release of TNT in 2003 (see
Goloboff et al., 2004; Giribet, 2005; Hovenkamp,
2004; Meier and Ali, 2005), the program continued
being improved on several fronts. Most of the general
options for a full phylogenetic analysis were already
present by 2008, when the program was made freely
available, subsidized by the Willi Hennig Society
(Goloboff et al., 2008). Many options and facilities for
specific types of analyses or calculations have contin-
ued being added to the program after 2008, such as
the option to incorporate and automatically test tax-
onomies (Goloboff and Catalano, 2012), the extension
of implied weighting to take into account missing
entries and average amounts of homoplasy in sets of
characters (Goloboff, 2013), new search routines for
difficult data sets (Goloboff, 2014, 2015), or the imple-
mentation of algorithms to identify wildcard taxa
(Goloboff and Szumik, 2015).

Other programs compete with TNT for the analysis
of sequence data (especially POY: Wheeler et al., 2015;
RaxML: Stamatakis, 2014; MrBayes: Ronquist et al.,
2012) and are widely used. However, no other program
includes TNT’s array of options for morphological
data sets, in terms of optimality criteria, analytical
options, diagnostic facilities and data types. In this last
sense, one of the most important recent additions to
the program has been the incorporation of a new type
of character: landmark configurations in the original
form of two- or three-dimensional (2D, 3D) coordi-
nates. The approach was first described by Catalano
et al. (2009, 2010), who discussed the rationale for
the method under the parsimony criterion. Although
there had been attempts to use data from geometric
morphometrics in a phylogenetic context (Rohlf, 2002;
Lockwood et al., 2004; Gonz�alez-Jos�e et al., 2008;
Klingenberg and Gidaszewski, 2010), the method of
Catalano et al. (2010) is the only one that establishes a
clear, well-justified bridge between geometric morpho-
metrics and conventional parsimony analysis. In other
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types of characters, evaluating a tree requires identify-
ing the optimal ancestral conditions, those conditions
that minimize the amount of difference across all
branches of the tree (e.g. Farris, 1983, 2008). In exactly
the same way, the ancestral conditions for a single
landmark will be the positions (coordinates) such that
the amount of difference across all branches of the tree
is minimal; these will be found independently for each
of the points forming a configuration, thus indirectly
determining an ancestral shape. The measure of differ-
ence to minimize is, as in the optimization of additive
characters (Farris, 1970), the lineal, physical distance
between points (i.e. the square root of the sum of the
squared differences in the two or three axes; note that
this distance is immune to rotations or translations of
the system of coordinates). Finding the optimal ances-
tral coordinates for a given tree is a difficult problem,
akin to the problem of Steiner trees (Brazil et al.,
2014), a well-known computationally difficult problem.
Evaluating tree-scores or finding optimal ancestral con-
ditions is also a difficult problem in other criteria for
phylogenetic evaluation, such as maximum likelihood
or unaligned sequences (as discussed by, for example,
Swofford et al., 1996; Wheeler, 1996), for which only
heuristic algorithms exist. Goloboff and Catalano
(2011) proposed algorithms to estimate ancestral land-
mark coordinates, which were implemented and tested
in TNT. These algorithms are heuristic, but in practice
produce good approximations.
The implementation of landmark characters in

TNT, however, was still rather incomplete. It was pos-
sible to evaluate any given tree using the algorithms of
Goloboff and Catalano (2011), and in combination
with the scripting language of TNT (as described in,
for example, Goloboff et al., 2008: 783–785) it was
possible to do tree searches (e.g. Catalano et al., 2015;
Perrard et al., 2015). However, these searches were
very limited, for two reasons. First, many of the rear-
rangement and search methods included in TNT for
other types of characters are too involved to be easily
emulated with scripts; scripts only allow basic search
algorithms such as random addition sequence Wagner
trees (RAS) and branch-swapping. Second, and even
worse, using scripts required that every tree be evalu-
ated anew, which is equivalent to doing a tree search
using a full down-pass optimization in a standard
character to evaluate each tree rearrangement
attempted. Successful tree-search algorithms require
that the scores of the rearrangements to a tree are cal-
culated without doing a full optimization (an issue dis-
cussed by Goloboff, 2015: 211–213; and papers cited
therein, for standard characters). Goloboff and Cata-
lano (2011: 50) had already noted that in the case of
landmarks even simple data sets could require days of
CPU time when using scripts, and stressed the need
for faster tree-search algorithms implemented natively.

These problems have now been overcome, with
much faster methods (described in this paper) for
approximating tree scores during searches. These
methods are between T to 3T times faster (where T is
the number of taxa) than the methods previously used.
Thus, essentially all the search options previously
available in TNT (see Goloboff et al., 2008; Goloboff,
2014) for other types of characters can now be applied
to landmark characters as well. These additions,
together with recent improvements and additions in
recent years, are deemed important enough to warrant
switching from version 1.1 (since 2006) to version 1.5.
Analysis of both continuous (which no longer require
to be input in a scale of 0–65, and can be automati-
cally rescaled by TNT) and discrete characters contin-
ues to be possible, and landmark data are easily
incorporated into matrices of standard characters. For
the basic commands and options available in the pro-
gram, the reader is referred to Goloboff et al. (2008).
This paper focuses on the methods used to quickly
estimate tree scores for landmarks during searches,
and on the general implementation of these methods
in TNT, to facilitate using these new options in the
best possible way.

Importing/exporting landmarks

TNT can now import files in the TPS format (http://
life.bio.sunysb.edu/morph/soft-tps.html), one of the
most widely used formats in geometric morphometrics.
Typical TPS files contain only landmark configura-
tions from a single structure, because geometric mor-
phometric studies usually deal with the shape of a
single structure at a time. For inferring phylogenies,
however, it is necessary to consider as much evidence
as possible, and TNT easily allows combining several
TPS files into one TNT data file. With the dmerge
command (or with the menu option File/MergeImport/

ImportTPS Files), each configuration is placed in a
block of its own, and the corresponding character is
automatically named as the source file containing the
configuration.
TPS files will most commonly contain configurations

aligned by the least-squares Procrustes method (Rohlf,
1990; Rohlf and Slice, 1990). As discussed by Catalano
et al. (2010), other types of alignments may be more
appropriate for phylogenetic analysis, especially those
minimizing linear distances (see Larsen, 2008). TNT
therefore allows the pairwise realigning of configura-
tions against a specified reference taxon, using either
RFTRA (Siegel and Benson, 1982; Rohlf and Slice,
1990) or an algorithm that minimizes linear distances
heuristically (by translating and rotating shapes); these
options are available with the command lmrealign, or
the menu choice Data/EditData/LandmarkAlignment.
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The method for aligning landmark configurations
taking into account the structure of a tree (Catalano
and Goloboff, 2012) can be used to further increase
the fit of configurations to the final tree produced by a
search based on a static alignment (tree searches in
TNT can only be done for the static, fixed alignments).
These tree-based alignments were previously available
only for 2D data, but version 1.5 incorporates the
same approach also for landmarks in 3D. Note that
for data sets with multiple configurations, scores
before and after the tree alignment are guaranteed to
improve only when the factors (to make different con-
figurations comparable) are fixed (defined by the user),
as the automatic factors may otherwise change after
alignment (producing an apparently larger score, even
if the alignment better fits the tree structure).
The new command lmbox allows saving simple dia-

grams of the ancestral configurations; Fig. 1 is an
example, for the pelvis in the common ancestor of hyae-
nids in a tree for Mart�ın-Serra et al.’s (2014) data set.
The export command also allows saving the coordinates
in TPS format, including the shapes reconstructed for
the internal nodes of trees, for better graphics or for
more detailed analyses with specific programs.

Tree searches: general approach

The core of most search algorithms is in branch-swap-
ping. The rearrangements during branch-swapping are
generated by clipping a clade off the main tree, and
reinserting it back (possibly rerooted) at the available
locations. For standard characters (categorical and
one-dimensional: continuous, additive, non-additive or
step-matrix characters), both the lengths for each char-
acter in the subtrees and the length increment produced
by reinserting the clipped clade can be calculated exactly
with very little work. In the case of landmark characters,
as discussed above, the tree scores cannot be calculated
exactly, even for a single tree.
The new version of TNT uses, in the case of land-

marks, a first estimation of the length increment pro-

duced by reinserting the clipped clade, approximate
and based on a looser (less precise) estimation than
the one used for calculating the score of an entire tree.
For increasing numbers of taxa, this estimation uses
(for each landmark) an approximately constant time,
as it is based on considering only the positions of the
points delimiting the branches to be reconnected.
These quick initial calculations may overestimate

tree length, thus leading to rejection of rearrangements
that should in fact be accepted. This is prevented by
leaving some margin for errors—trees are rejected only
when their estimated score exceeds that of the best
trees by a certain factor. To improve precision and
provide coherence, when this quick estimation indi-
cates that a rearrangement may be preferable to the
best tree found so far, the tree length is recalculated
by means of a full optimization with the more inten-
sive algorithms described by Goloboff and Catalano
(2011). In this way, the scores reported during the
search are always the same scores obtained with a
recalculation (anew) after the search finishes (e.g. if the
trees resulting from the search are saved to a file and
subsequently read into TNT in a new session). The
implementation in TNT takes special precautions to
ensure that the scores calculated during and after the
search are (for the same parameters) identical; the
details are explained in Appendix 1.
To the extent that the quick initial calculation allows

rejecting many rearrangements without the need to use
the more intensive algorithms, the search will be
speeded up.
For all the descriptions that follow, keep in mind

that tree-length calculations during searches only con-
sider binary trees.

Quick estimation of tree-scores during searches with

four-point Steiner trees (FPSTs)

The algorithms described by Goloboff and Catalano
(2011) to approximate optimal positions for the ances-
tral landmarks on a given tree are based on two

Fig. 1. Example of image saved as SVG file, for an ancestral node, reconstructed for a 3D landmark configuration, shown with different rota-
tions and tilts.
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stages: first, using a grid to calculate the costs at a ser-
ies of possible fixed positions at the ancestral nodes
(as in a Sankoff optimization; for details see Goloboff
and Catalano, 2011), and second, iteratively calculat-
ing Fermat points for each internal node. Although
the second stage is iterative and must possibly cycle
through all or most of the internal nodes several times,
it takes a much shorter time than the first. The initial
calculations are akin to optimizing a Sankoff character
with possibly hundreds of states; the times required for
Sankoff optimization increase with S2 or more, where
S is the number of states (Clemente et al., 2009 pro-
posed algorithms for Sankoff optimization that use
less time than S2, but these algorithms have not been
implemented in the present version of TNT). The ini-
tial, grid-based calculations can be improved by using
nested grids, in which a smaller grid is created around
the region where the point is located by the first initial
grid (see Goloboff and Catalano, 2011).
For a faster approximation to the differences in

score that will result from joining the two subtrees
during branch-swapping, TNT uses the distances
between the optimal positions of the points delimiting
the branches to be connected, as illustrated in Fig. 2,
with a method based on FPSTs. Consider the case
where two branches are to be connected; these
branches are delimited by nodes A–D. Let dij be the
distance between the point position (for the landmark
in question) at node i and the point at node j [i.e.
((ix–jx)

2 + (iy–jy)
2)1/2 in the case of 2D, and

((ix–jx)
2 + (iy–jy)

2 + (iz–jz)
2)1/2 in the case of 3D]. The

points for the landmark must be positioned, in both
subtrees, such that the sum ∑dn,ancestor for all the tree
nodes n that have an ancestor (i.e. excluding the nodes

marked as r in Fig. 2 from the calculation) is mini-
mum. The connection of the two branches will require
creating two new nodes, x and y, and the length incre-
ment resulting from joining the two branches can be
approximated as the length of the Steiner tree given
the topology ((AB)(CD)), where coordinates for points
A–D are fixed, minus the length of the originally exist-
ing branches joining A with B, and C with D. More
precisely, the resulting length increment can be esti-
mated as dL = L2–L1, where L1 = dAB+dCD, and
L2 = dAx+dBx+dxy+dCy+dDy (after the positions for
points x and y that minimize L2 are calculated).
The length increment thus calculated is of course

not exact, because points beyond A–D may require
repositioning once the two subtrees are connected, but
it is a good approximation, and it can be calculated
very quickly, with constant time for each landmark.
Note that when one of the two subtrees is a single
taxon, or one of the descendant nodes (A or D) is a
terminal with a missing entry, the problem reduces to
a three-point (instead of a four-point) Steiner tree,
which is simpler (the coordinates of the middle point
can be found exactly with Torricelli’s geometric calcu-
lations). If both A and D have missing entries then the
problem reduces to a two-point problem, and the
length increase is simply dL = dBC (a similar reason-
ing applies when one of the two subtrees is a single
terminal, and the descendant node of the other subtree
has a missing entry for the landmark).
To facilitate calculations, the same FPST process is

used to calculate length decrements when the tree is
split in two. Thus, the rearrangements to be accepted
are those for which the length increment when joining
two branches is smaller than the length decrement
when joining the two branches at the original posi-
tions, or when dLjoin < dLsplit.
As stated above, the points at every node n of the

separate subtrees must be placed such that ∑Ln,ancestor

is minimum. To further save time, those positions are
simply calculated by taking the optimal positions for
the entire tree, and then iteratively recalculating the
Fermat points for all the internal nodes of the two
subtrees after division (recall that the iterative phase
of tree-length calculations takes a much shorter time
than the grid-based phase; see above). Thus, the Sank-
off grid is used only for calculating point positions in
the entire tree or when rechecking length of a good
candidate. The optimal point positions for the entire
tree are buffered separately, copied anew and itera-
tively modified every time the tree is split in two.
When a cycle of tree-division and attempted reinser-
tions results in no improvement and the clipped clade
is to be reinserted back at the original position (and
rooting), nothing needs to be done; if the clipped clade
is reinserted at a different location (or a different root-
ing), then the point positions for the entire tree are

Fig. 2. Method of ‘four-point Steiner trees’, used to approximate
the score during branch swapping. See text for explanation. A simi-
lar method is used to test taxon insertions when building Wagner
trees.
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calculated again first by using a grid, then iteratively
recalculating Fermat points.

Error margin

To prevent the possibility that overestimation of tree
scores with the shortcuts described above rejects some
trees that should have been accepted, a margin of
error can be introduced during the search. Recall that
the trees to be rejected during branch-swapping were
those for which the estimated increase of length when
joining the subtrees was greater than the estimated
decrease when clipping the original tree into two; that
is, when dLjoin > dLsplit. To allow an error margin of
E (where 0 ≤ E ≤ 1), the trees can be rejected only
when (1–E) 9 dLjoin > dLsplit. A tree that passes this
relaxed criterion is considered a good initial candidate
and re-checked with a full optimization to decide
whether the rearrangement is to be accepted. Note that
when E = 1, all the trees are always accepted as good
initial candidates, and (barring minor implementa-
tion details) the times needed to complete a branch-
swapping search are the same as in the scripts that
had to be used in earlier versions of TNT. As the error
margin is decreased, more trees are rejected on the
basis of the initial estimation, and the number of rear-
rangements that the program can examine per unit
time is much larger. The possibility exists, of course,
that some rearrangements that should have been
accepted are rejected. The error margin thus should be
selected carefully. In our experience with numerous
data sets, values of E = 0.15 normally suffice (when
used in conjunction with the incremental Fermat recal-
culations described below) for no good rearrangements
to be missed during the search. Note that this value of
error E is used to multiply the score increase estimated
as dLjoin. An alternative would be to use an absolute
value of error margin (such that a constant quantity is
subtracted from the estimated score), but in our expe-
rience this type of error margin seems much harder to
adjust to useful values for different data sets (espe-
cially when the data sets have different numbers of
landmarks/configurations).
During branch-swapping starting from RAS trees,

the initial stages of the search easily find many rear-
rangements that represent an improvement. During
this stage, therefore, the use of an error margin is
counterproductive, slowing down the program and
making it take longer to achieve comparable lengths.
It is therefore possible to use changing error margins,
such that the error margin increases as the search pro-
gresses; using the highest error margin at the end
decreases the chances that some tree in the TBR (or
SPR) neighbourhood of the final tree will actually be a
better tree. Although branch-swapping is an open-

ended algorithm and it is therefore difficult to predict
how much longer it may take to complete branch-
swapping, a good estimator is obtained by calculating
the proportion of clippings C done to the tree without
having found any better points of reinsertion, relative
to the total number of branches in the tree (for T taxa,
2T–3). Thus, a good estimator of the proportion of
swapping completed is P = C/(2T–3). As P reaches
certain prespecified thresholds, then, the error margin
can be increased. The values of error and the propor-
tions of swapping completed can be set by the user (in
up to five stages). Keep in mind, however, that (i) set-
ting E too high during the initial stages of the search
slows down branch-swapping unnecessarily (because
better rearrangements are still likely to be found dur-
ing these initial stages); and (ii) setting the highest (fi-
nal) value of E too late in the swapping will slow
down the search as it will require that a high propor-
tion of the rearrangements are evaluated twice (first
with the lower error margin, and then again with the
higher). Although there is a lot of variation in the
times needed to complete branch-swapping for switch-
ing to the final error margin at different proportions
of the swapping completed, there are some small
differences that corroborate the reasonings (i) and (ii)
just given. The error margin is set with the lmark err-
marg command; to set several stages, several values
separated by a dash must be specified to indicate the
errors (as percentages, the initial one is always 0 and
needs no specification), followed by a slash and the
percentages of swapping to switch to the next error
margin. As example, in the default settings of TNT,
the error margin increases in three stages, beginning at
E = 0 until P = 0.15, switching to E = 0.05 when
P = 0.15, and to E = 0.15 (its final value) when
P = 0.66. These settings are explicitly specified with
lmark errmarg 5-15/15-66.
When the tree score is rechecked with a full opti-

mization, the estimated score difference dLjoin can be
compared with the actual difference, so that the error
actually produced by the approximation, or observed
error O, is calculated. This comparison, of course,
will be done only for those trees for which
(1–E) 9 dLjoin < dLsplit, and how many cases fulfil this
condition in turn will depend on the value of E. In the
implementation of TNT, O (with mean, range and
standard deviation) can optionally be reported after a
search using branch-swapping concludes, or accessed
with the scripting language of TNT, to fine-tune the
searches with scripts.
As O can be calculated at any stage of the search,

this can also be used to automatically set the error
margin to a value that is defined by the data at hand,
instead of fixed prior to the search. In TNT, it is pos-
sible to set the final error to either a fixed prespecified
value, or the value O for the search so far (whichever
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is largest or smallest, as set by the user). The value O
plus a specified number of standard deviations is used
(of course, the distribution of the error does not need
to be normal, but using the standard deviation is the
simplest approach). To specify the final error margin
as the observed value, the > and < symbols are used
after the last error margin; for example, the largest of
either the default setting (0.15) or O plus 2 standard
deviations is specified as lmark errmarg 5-15 > 2/15-
66. When doing multiple addition sequences, the value
O is recalculated again for each replication, for the
number of cases observed between the initial stages of
branch-swapping (i.e. as soon as the Wagner tree for
the replication is finished) and the proportion P of
swapping completed to switch to the final error mar-
gin. This is generally a conservative choice, because
examination of several data sets suggests that the error
produced by using dLjoin tends to be larger when the
trees are farther from optimal, decreasing towards the
end of the branch-swapping cycle. This difference
seems logical, as different positions for the landmark
points at each node are more likely to be of similar
optimality when the trees fit the data more poorly,
thus making the approximation more error prone.

Mixing standard and landmark characters

In the implementation of TNT, it is possible to com-
bine standard (one-dimensional, discrete or continu-
ous) characters with landmark data. By default, every
configuration is multiplied by a factor such that the
sum of the maximum distances between landmark
points (i.e. akin to the “range” in an additive charac-
ter) equals unity, for each configuration; this can be
changed by the user.
Catalano et al. (2015) and Catalano and Torres (in

press) showed that the quality of phylogenetic analyses
(as measured by congruence with other sources of
data) increases with the number of landmark configu-
rations. That is, just as it has always been held that
standard phylogenetic analyses should include as much
evidence as possible, so should studies using land-
marks.
During branch-swapping, the standard characters

are always evaluated first, for every set of rearrange-
ments, using all the shortcuts and algorithms already
in use in TNT (i.e. with the methods of Goloboff,
1996, 1999, 2015). The increase in length in the stan-
dard characters may allow rejecting many rearrange-
ments without the need to examine the landmark
characters at all; thus, combined matrices can be anal-
ysed faster than matrices with only landmark data.
Note that this will not be the case when doing a full
optimization of the landmark characters—it is unlikely
that many rearrangements can be rejected on the basis

of the discrete characters alone, as the contribution to
the score from each landmark configuration is initially
unknown (zero) in that case, instead of the scores of
the two subtrees (to which only the length increment
resulting from joining the subtrees remains to be
added).
For branch-swapping, the length increments for the

standard and the landmark characters when joining
the two subtrees are calculated separately; the calcula-
tions for standard characters are exact, so the error
margin only applies to the landmark portion (dLjoin)
of the length increase when reuniting subtrees.

Incremental Fermat recalculations (IFRs)

The FPST calculations consider that the position of
points A–D in Fig. 2 (and those beyond) are fixed.
However, global optimality may require that the posi-
tion of those points is changed. It is then possible to
use IFRs, radiating from the branch xy in Fig. 2. For
example, point A will be recalculated as the Fermat
point between x and the two descendants of A; if the
position so calculated for A is different from the origi-
nal one, then the descendants of A (if internal nodes)
are added to the list of nodes to reposition. Likewise,
point C will be recalculated as the Fermat point
between y, the left descendant of C, and the ancestor
of C. This IFR process can be repeated, branching
from the union point a specified maximum number of
branches (if no limit is set, then this is the same as the
phase of iterative improvement of Goloboff and Cata-
lano, 2011: 45), a given number of cycles. In TNT, the
default is branching up to five nodes away from union
point, with up to two cycles of improvement (this can
be changed with the lmark refine command, or from
the menu option Settings/Landmarks/BranchSwap-

ping). Given that the optimal positioning of all the
landmark points can only be achieved by globally con-
sidering all the points, the iterative process (which con-
siders only one internal node at a time) can get
trapped in local optima (for examples and discussion,
see Goloboff and Catalano, 2011), but the tree scores
are usually improved relative to FPSTs.
By applying IFRs and improving the score calcu-

lated by the FPST method, it is often possible to make
acceptable (for re-checking with a full optimization)
trees that would otherwise be rejected. The IFR is not
as costly as a full optimization (of which the initial
grid part is the slowest), but it does require more cal-
culations than the simple FPST. The IFR process is
then applied only to those rearrangements that exceed
the current bound by a small margin, rejecting those
rearrangements for which (1–2E) 9 dLjoin > dLsplit

(when E = 0, the IFR process is never used in TNT).
Given that trees that are marginally worse than the
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best trees found so far are examined in more detail
with the IFR, then it is possible to use lower values of
E without increasing much the risk of incorrectly
rejecting some rearrangements that should be accepted,
thus producing a net speed gain.

Wagner trees

As is well known, the local optima common during
branch-swapping become even more acute in the case
of Wagner trees. Wagner trees decide the position of
each taxon to be added to the growing subtree on the
basis of only part of the evidence—only the states of
the taxa added so far are considered (Goloboff, 2014:
126–127, provides extreme examples of the possible
consequences of this). Given this situation, the posi-
tions of each landmark point are determined, after
addition of each taxon, with only an iterative recalcu-
lation of Fermat points for each internal node in the
tree (i.e. avoiding the use of the time-consuming Sank-
off grid). This may produce positions which are farther
from optimal than the position that would be obtained
if the tree is reoptimized in full. This full reoptimiza-
tion after every taxon insertion can be done optionally
in TNT. However, the influence that this has on the
final result is minimal, and the resulting Wagner trees
have no noticeable differences in score when only the
iterative Fermat recalculations are done after addition
of each taxon. Evidently, the imprecision that comes
from considering only part of the terminal taxa is
more important than the imprecision in determining
point locations with a faster method. In the data sets
we have examined (from 39 to 160 taxa) fully reopti-
mizing the tree after addition of each taxon makes cal-
culation of Wagner trees 5–15 times slower. As the
Wagner trees are normally intended only to provide
an acceptable initial point for further branch-swapping
during searches, the faster approach is preferred as the
default.

Tree-collapsing

When zero-length branches are to be eliminated,
those landmarks for which the ancestor and descen-
dant points have the same position (after re-checking
tree scores with a full optimization) are considered to
not be supported by the landmark in question. The
most likely situation where this may happen is when
the triangle formed by the descendants and the ances-
tor of the node in question has an angle of 120° or
more, in which case the middle node will have the
same position as the point corresponding to that angle.
However, recall that the optimization identifies unique
(hopefully optimal) positions for each landmark point,

not being able to identify ambiguity (Goloboff and
Catalano, 2011: 47). Thus, while the branches elimi-
nated by collapsing will normally be branches that are
indeed unsupported, other unsupported branches in
the tree may not be identified as such. A consequence
of this is that the different collapsing “rules” based on
optimization [e.g. those discussed by Swofford and
Begle (1993) and Coddington and Scharff (1994)],
while still applicable in theory to the problem, make
no difference in practice—no branch can be supported
“ambiguously” by a method of landmark optimization
that cannot identify ambiguity. The tree that results
from collapsing branches based on individual recon-
structions will necessarily be of the same score as the
original binary tree (any difference in score between
the two trees will arise from a failure to find optimal
landmark positions for one or both trees, which is pos-
sible given the heuristic nature of the algorithms for
optimization). Of course, given that landmark coordi-
nates are usually measured with some degree of preci-
sion, and all taxa included in an analysis have slightly
different coordinates for all the landmark points, it is
unlikely that many branches will appear as unsup-
ported by all landmarks, so that collapsing zero-length
branches for landmark data normally eliminates no
(or very few) branches.
TNT also implements the option of collapsing trees

based on branch-swapping (as in Goloboff and Farris,
2002), and this is implemented for landmark data in
the same way as for standard characters: for any rear-
rangement that produces a tree of the same score (or
within the score difference specified with the command
subopt or the menu option Analyze/Suboptimal), all
the nodes between the two positions of the moved
clade are marked to be collapsed. If a relative fit dif-
ference is specified, this is optionally calculated for the
individual landmarks or for whole configurations, as
discussed below in the section on resampling and Bre-
mer supports. To avoid problems arising from almost
exact ties in optimality, TNT considers scores that are
within 10�10 units to be identical (this minimum differ-
ence is also used for determining “equally” optimal
trees).

Terminal points and taxon deactivation

The grid for the initial phase of the optimization
can be enlarged by adding the positions of terminal
points to the grid (see Goloboff and Catalano, 2011:
44); this is the default setting of TNT (set with the
lmark termpoints option). In the implementation of
TNT, when some taxa are deactivated, the grid will
still contain the points for inactive taxa. This increases
the chances of finding better locations for the points.
A consequence of this is that physically eliminating
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some taxa from the matrix (e.g. by editing the file and
deleting them) is not equivalent to leaving them in the
matrix and deactivating them—the physical elimina-
tion may produce slightly worse scores.

Resampling and relative Bremer supports

Each landmark configuration is considered, in TNT,
to constitute a “character”. However, the individual
landmarks of a given configuration may have some
“internal” conflict or incongruence.1 This raises the
question of what units to consider for the purpose of
measuring group supports: the individual landmarks
or the entire configurations. In TNT, these two possi-
ble ways to measure group supports for landmarks are
determined with the confsample option of the lmark
command (or with the menu options Settings/Land-

marks/GeneralOptions).
In the case of resampling, either the entire

configuration or the individual landmarks can be resam-
pled—whether the resampling is done with standard
bootstrapping (Felsenstein, 1985), independent-removal
jacknifing (Farris et al., 1996), Poisson bootstrapping
or symmetric resampling (Goloboff et al., 2003). Of
course, when only one or a few landmark configurations
are being considered in the analysis, conflict can be eval-
uated meaningfully only by considering the individual
landmarks.
For searching the resampled data sets, it is advisable

to relax the search parameters (as in Farris et al.,
1996), especially for large data sets. For example, in the
case of the Prevosti_2012 data set (150 taxa; see Table 1
and Appendix 2), setting TBR to reconnect/reroot no
more than six nodes away from original position, using
an initial error margin of E = 0, and switching to
E = 0.05 when P = 0.50 (with the commands bbreak:
limit 6; lmark errmarg 5/50), the searches proceed about
five times faster than with the default parameters (relax-
ing rigour, of course), thus making it possible to com-
plete 100 pseudoreplicates in about 8 h.
The absolute (Bremer, 1994) and relative (Goloboff

and Farris, 2002) Bremer supports are calculated for
landmarks in exactly the same way as for standard
characters. That is, either (i) the user must search for
trees that are suboptimal by a prespecified difference in
score, then summarize the results, or (ii) TBR-swapping
can be used to record the minimum degree of subopti-
mality (absolute or relative) to lose each group in the
tree, without the need to actually save multiple subopti-
mal trees. The relative Bremer supports are based on

calculating relative fit differences (RFD) between the
optimal and the suboptimal tree, defined as RFD =
(F–C)/F. For standard characters, F is the sum of step
differences between the two trees, for the characters
that fit the optimal tree better, and C is the sum of step
differences for the characters that fit the suboptimal
tree better. In the case of landmarks, the quantities F
and C can be calculated either with the differences of fit
in individual landmarks, or in the entire configurations
(as in resampling, calculating relative Bremer supports
for whole configurations is meaningful only when
several configurations are included in the matrix).
When implied weighting is in effect, the quantities F
and C are determined from differences in score instead
of differences in raw numbers of steps (see below, in
section on Implied Weights, for details on how the
score is measured under extended implied weights).

Sectorial search, tree-fusing, ratchet and drifting

The previous sections discuss details of the imple-
mentation of branch-swapping and Wagner trees,
which constitute the core for the search algorithms.
The new version of TNT also implements the other
search algorithms that were already available for stan-
dard characters.
Sectorial searches (Goloboff, 1999) for standard

characters are based on creating new terminal taxa or
hypothetical taxonomic units (HTUs), based on the
state sets calculated during the down pass of the opti-
mization. Given that this takes into account ambiguity,
it has the great advantage that all the score differences
between trees for the reduced data set must match
exactly the score differences for the entire data set (see
Goloboff and Pol, 2007); thus, finding a reduced tree
which (for the reduced data set) is X steps shorter than
the original resolution guarantees that grafting the new
solution into the entire tree will be X steps shorter for
the entire data set. In the case of (symmetric) Sankoff
characters, the extra cost of every possible state (see
Goloboff, 1998) during the down pass must be consid-
ered in addition to the optimal states. Given that the
optimization for landmark data does not identify ambi-
guity or suboptimality, it is not possible to create
HTUs such that the score differences between the
reduced data set match those for the entire data set.
The same is true of auto-weighted optimization
(Goloboff, 1997) and asymmetric Sankoff characters.
For those characters, as well as for landmark charac-
ters, the sectorial searches are implemented in TNT by
using constraints, such that the sector chosen is left
unconstrained, and a constraint of monophyly for all
the other groups in the tree is in effect. This produces
the same effect as a sectorial search, improving the tree
one sector at a time. However, it is not as time-efficient

1

Recall that two characters are said to be congruent when they

can both be free of homoplasy on some tree(s), and that “homo-

plasy” for a landmark is defined as the observed length minus the

minimum possible length on any tree.
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as the actual creation of reduced data sets used for
standard characters (which allows much faster opti-
mizations, by virtue of internally using reduced trees
with fewer nodes and eliminating the characters that
are not informative for the reduced data set).
Similar considerations apply to tree-fusing (Goloboff,

1999). In the case of standard characters, the scores
resulting from mixing parts of two trees can be deduced
quickly with incremental down-pass optimizations (as
in Gladstein, 1997). That is not possible for landmark
characters. TNT therefore uses the expediency, for
landmark characters, of simply doing a full optimiza-
tion for the mixed trees (for simplicity, when the data
set contains some landmark characters, the full opti-
mization is also used for the standard characters).
Although tree-fusing often exchanges only a few sub-
trees and therefore does not take as much time as a ran-
dom addition sequence plus branch-swapping, the
increase in efficiency by using tree-fusing for landmark
data will not be as dramatic as for standard characters.
In addition, data sets with only one or a few landmark
configurations and no standard characters tend to be
poorly structured, so that the final results of searches
using different starting points tend to be rather differ-
ent, and not very useful for tree-fusing. This relative
lack of structure suggests that the alternative algo-
rithms for tree-hybridization described by Goloboff
(2014) might perhaps be more useful for landmark
data, but no strict comparisons of the effectiveness of
those newer algorithms have been carried out yet.

In the case of ratchet (Nixon, 1999) and tree-drifting
(Goloboff, 1999), the reweighting and the calculations
of relative fit differences (respectively) to produce the
perturbed search can be done either for the entire con-
figurations or for the individual landmarks (see previ-
ous section). Given that landmark data tend to be
poorly structured, using strong perturbation factors
(e.g. a high probability of reweighting, in the case of
ratchet, or a high probability of acceptance, in the case
of drifting; accepting a large number of substitutions
to the tree during the perturbation phase, in either
case) tends to produce perturbed trees that are too far
from optimal, so that the subsequent search phase can
be almost as long as a search that starts from an RAS
Wagner tree. Thus, it is advisable to set those factors
to more conservative values in such a way that the
trees resulting from the perturbation phase are only
slightly less optimal than the previous trees (e.g. by
increasing xfactor for the drift command, or increasing
the “rejection factor” for the menu option Analyze/

NewTechSearch/DriftSettings, and setting the percent-
age of swapping to the tree to interrupt the perturba-
tion phase to a lower number).

Implied weighting, standard and extended

Implied weighting for landmarks is available in
TNT, with the default weighting function, with differ-
ent values of concavity k (see Goloboff, 1993). As in

Table 1
Analysis of RAS+TBR-swapping (command mult = rep 1 hold 1). All data sets were run with random seed 1 and default settings. Columns:
taxa; number of landmark configurations; number of individual landmarks; maximum dimensions of landmarks; number of rearrangements
examined to complete the search (“Rearrangs”); number of changes to the Wagner tree made during branch-swapping (“Substs”); total search
time used (in seconds); proportion of the search time used in rechecking scores with a full optimization (“Recheck”).

Dataset Taxa Confs Lands Dim Rearrangs. Substs. Time Recheck

Pierce_2008 24 1 65 2 18 160 28 25.13 0.26
Claverie_2013 25 3 88 2 21 943 18 39.00 0.21
Rios_landmarks 25 6 60 2 17 671 17 25.41 0.35
Foth_2012 31 1 21 2 33 282 30 18.03 0.36
Astua_2009 32 1 14 2 48 354 49 14.23 0.26
Outomuro_2013 32 2 23 2 33 886 27 18.66 0.34
Piras_2012 32 1 50 2 59 836 46 62.36 0.22
Abe_2012 34 1 19 2 68 096 43 28.00 0.21
Rios_combined 34 6(+89) 60 2 56 726 32 10.38 0.83
Alvarez_2013 39 4 90 2 69 823 33 141.53 0.20
Stubbs_2013 53 1 74 2 252 624 62 387.09 0.18
Franklin_2014 59 1 15 2 349 603 71 115.25 0.18
Montero 61 5 124 2 353 106 55 1319.06 0.31
Vera_Candiotti_2009 108 1 24 2 1 819 189 156 940.36 0.15
Prevosti_2012 151 1 29 2 6 632 950 243 4226.84 0.17
Klingenberg_2013 160 1 11 2 6 515 829 228 1715.94 0.21
GJ_GR 9 14 476 3 405 0 17.30 0.82
AP_APV_2013 24 2 56 3 12 033 24 198.63 0.93
Almecija_2015 26 1 23 3 15 661 21 109.31 0.92
Aristide_2013 29 1 35 3 21 796 30 135.16 0.91
Baab_2014 33 1 39 3 52 784 45 253.94 0.88
Mart�ın-Serra_2014 46 6 104 3 174 607 36 1609.59 0.80
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the case of continuous/Sankoff characters, no user-
defined weighting functions are available for landmark
characters. Extended implied weighting (Goloboff,
2013) is also available; the only limitation is that sets
for weighting based on average homoplasy must
include either landmark or standard characters; no set
can combine both types of characters.2

The method of implied weighting is based on consid-
ering the amounts of homoplasy for the different char-
acters, and this makes it necessary to calculate (for
every individual landmark) the best score that the
landmark could have on any tree. This comes down to
calculating a euclidean Steiner tree for the landmark, a
problem long known (e.g. since Karp, 1972) to be
complete.
To avoid that, for landmarks, the former implemen-

tation of implied weighting (i.e. prior to version 1.5)
used as the minimum possible the sum S of distances
between the three terminal taxa A, B, C, and their
Fermat point, with the three terminal taxa chosen so
that S is maximum; no tree including all taxa can have
a length smaller than this value S. This value S, how-
ever, may be too small to be achievable by any single
tree containing all the terminal taxa and will thus lead
to overestimating the homoplasy (and not necessarily
by the same factor in all landmarks). Given that the
new version of TNT contains search algorithms, and
that these seem rather effective in finding Steiner trees
for a single landmark (a much easier task than finding
the tree that minimizes the sum of displacements for
all landmarks taken together, because for a single
landmark there is no incongruence), the option to cal-
culate the minimum for each landmark by searching
was added to the program. This option is available
with the lmark usmin =! command (or with Settings/

Landmarks/General Options, in the Windows version),
and the values produced can be saved to a file and
subsequently read into the program (so that the min-
ima do not need to be calculated again every time the
data set is loaded in memory). To save the minima
(once calculated) to a file called minima.txt that can be
subsequently read by TNT you need to first open a
log file, then save the minima (by calling lmark usmin
with no further arguments) and then close the log file:
log minima.txt; lmark usmin; log/;
The minimum values calculated in this way will

allow much more precise evaluations of homoplasy for
the landmark characters.
It is possible to weight either using the homoplasy

of individual landmarks or that of entire configura-

tions (i.e. giving all landmarks in a configuration the
same weight). In the current version of TNT (unlike
the previous version), to weight one or more configu-
rations by the total homoplasy of the component land-
marks, a set of configurations for uniform weighting
under extended implied weighting (Goloboff, 2013)
must be defined, with the xpiwe[command, for each
landmark character to be weighted with the total
homoplasy in the configuration (note that this differs
from the case of standard characters, for which defin-
ing one-character sets for weighting with average
homoplasy produces no difference in results). When a
group includes more than one landmark configuration,
the average homoplasy for all the configurations is
used.
When sets for uniform weighting have been defined,

the relative Bremer supports are calculated by consid-
ering the relative contributions of each landmark or
configuration to the total score of the (set of) configu-
ration(s). This is the same way in which relative Bre-
mer supports are treated for discrete characters, by
considering the proportional amount of homoplasy of
the character relative to the homoplasy of the entire
set. Then, if the total homoplasy for the set is H and
the score is S, the score contribution by an individual
landmark will be S 9 hland/H (where hland is the
homoplasy of the individual landmark). If the user
chooses to consider differences in fit between entire
configurations, the contribution of an individual con-
figuration within the set will be instead S 9 hconfig/H
(obviously this makes a difference only for weighting
sets comprising more than a single configuration).
Either way, the differences in score contributions for
the different landmarks/configurations are what is used
to calculate the relative fit differences between the trees
compared.
Another problem that must be considered for

implied weighting is scaling: the amounts of homo-
plasy are calculated as differences in the original units
of measurement. Therefore, changing the units of mea-
surements may affect the results for implied weighting.
This differs from the default treatment of landmarks
under prior weights, which rescales each configuration
to unity (i.e. using factors to multiply the differences
such that the maximum pairwise distances between
two taxa for all the landmarks in a configuration sums
up to one). Mongiardino Koch et al. (2014) showed
that, although the use of implied weighting decreases
the effect of differences in scaling (as first proposed by
Goloboff et al., 2006), the use of a uniform scaling is
more effective at making the contributions of different
characters more even. Thus, for weighting landmark
data, it is advisable to use a uniform scaling of the
landmarks (e.g. the command lmark rescale =*; will
automatically rescale all landmark configurations to
unity; see help lmark for details or other options).

2

This limitation arises from the need to keep length increments

(during branch swapping) for standard and landmark characters sep-

arate, given that only the latter require re-checking with a full opti-

mization, and these length increments would have to be tracked

separately for each set of characters, for each rearrangement.
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A further complication is that, when weighting land-
marks individually, the score for each landmark is
multiplied by the inverse of the number of landmarks
in the configuration (see Goloboff and Catalano, 2011:
47). As a consequence, the expected results are not
always easily intuited. Figure 3 shows two data sets,
each with two conflicting configurations (separated by
“|”). Real examples will of course always have configu-
rations with three or more landmarks; the example has
only one or two, to make it easier to visualize; this
does not affect the way in which the score calculations
are done. Also, it is unlikely that real examples will
have different landmarks in a configuration sharing
some identical coordinates; again, this does not affect
the phylogenetic calculations, and is used for simplicity
of visualization. In data set 1, the first configuration
supports one of the alternative trees (tree 1) with each
of its landmarks; in data set 2, only half the landmarks
support tree 1. The second configuration of both data
sets, instead, supports tree 2 with each of its land-
marks. Weighting landmarks individually or weighting
configurations, in the original scale or rescaling using
the default landmark factors, leads to prefer either tree
1, 2 or both. The decision to weight landmarks or con-

figurations may well depend on what the configuration
represents, or how the landmarks were chosen—a data
set may well comprise some configurations best
weighted globally, and some for which the individual
landmarks are weighted.

Empirical evaluation and results

Branch-swapping

The exact time gain resulting from application of
the FPST/IFR shortcuts is hard to calculate. Given
one landmark, the time needed to calculate the FPST
for each rearrangement is roughly constant on the
number of taxa; but a proportion of the rearrange-
ments will appear to improve the score, requiring a full
optimization of the resulting tree. The number of rear-
rangements that require a full optimization will vary
with data sets, and with the error margin. Note that
the number of rearrangements examined per second,
or the number of rearrangements until a search (e.g. a
Wagner tree plus TBR) is completed, may not be
strictly comparable between searches using FPST/IFR

Fig. 3. Example of behaviour under implied weighting for two data sets (1 and 2), when either individual landmarks or entire configurations are
weighted (using rescaling with default factors, to make sums of maximum point distances for each configuration equivalent). The score of each
landmark (and the total) is indicated for each tree. Depending on whether individual landmarks or configurations are weighted, and whether
landmarks are rescaled or not, different trees are selected as optimal. The command to set weighting for entire configurations is xpiwe=; xpiwe
[0; xpiwe [1; the weighting for individual landmarks (the default) is set with xpiwe–;. Rescaling with current factors (the default, if none defined)
is achieved by typing lmark rescale =*; (this cannot be undone, except by re-reading the data set into memory).
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and searches that use a full optimization for each rear-
rangement—some of the rearrangements rejected dur-
ing the FPST/IFR search may actually be acceptable
using a full optimization, thus biasing the comparison.
And, when the error margin used varies during the
search (as explained in the section on “Error margin”),
the likelihood of a rearrangement being incorrectly
rejected changes during the search (lowest at the end).
The time gain, therefore, cannot be easily predicted
from theory, but must instead be observed in practical
examples. This is difficult, especially because searches
when the shortcuts are not used take so much time as
to make strict comparisons prohibitive. A variety of
2D and 3D landmark data sets, with numbers of taxa
ranging from nine to 160 (average 48), and number of
landmarks from 11 to 476 (average 68), was used to
compare the speed of rearrangement evaluation during
searches with the speed of full optimizations (see
Appendix 2 for the sources of the data sets), to obtain
an approximation to the expected speed ratios. Com-
paring only the speeds of rearrangement evaluation
may slightly overestimate the actual ratio of the times
needed for an entire search done with both
approaches, but probably not by more than 10 or
15%. All the optimization and search parameters used
are the default ones (i.e. grids of 6 9 6 in the case of
2D, and 6 9 6 9 6 in the case of 3D, nested once with
a window of 1, adding terminal points to the grid;

error margin starting at 0, switching to 0.05 and 0.15
when the proportion of swapping reaches 15 and 66%,
respectively). The results are shown in Tables 1 and 2.
For actual data sets, only a relatively low proportion
of rearrangements require a full optimization, with
clear differences for 2D and 3D cases in the propor-
tion of search time used in rechecking scores with a
full optimization. For 2D, from 0.15 to 0.36 of the
search time (see Table 1) is used in rechecking scores;
the exception is the combined data set (Rios_com-
bined), for which the proportion of time used in
rechecking is 0.83 (this is not because the rechecking
uses more time, but instead because the shortcuts for
quick evaluation during searches use much less, as
explained under “Mixing standard and landmark char-
acters”). In the case of 3D, the proportion of time
used in rechecking scores is much larger, from 0.80 to
0.93 of the total search time; this is because the time
for FPST/IFR remains more or less the same, but for
the full optimization the time used in the initial calcu-
lation of the Sankoff grid is much more important.
The proportion of moves examined during a search
that require rechecking is rather low, with only small
differences between 2D and 3D, and decreases with
the number of taxa. Thus, in practice, the time saved
by applying the FPST/IFR method increases with
number of taxa faster than linearly (Fig. 4A,B).
Although the speed ratio increases more or less

Table 2
Other results for the runs of Table 1. Columns: number of trees evaluated per second during the search (“Speed(search)”); observed error, calcu-
lated when rechecking scores with a full optimization (“Error”); number of rearrangements that had to be rechecked with a full optimization
(“Cases”); number of rearrangements per second examined with a full optimization per rearrangement (“Speed(full)”); ratio of speeds of rear-
rangement evaluation between an FPST/IFR search and a search using a full optimization to evaluate each rearrangement (“Ratio”); ratio of
speeds divided by the number of taxa (“Ratio/Taxa”); ratio between the number of rearrangements examined during the search and the number
of rearrangements that had to be rechecked with a full optimization (“Rearr/Cases”).

Dataset Speed (search) Error Cases Speed (full) Ratio Ratio/Taxa Rearr/Cases

Pierce_2008 722.79 7.90 � 0.70 171 30.77 23.49 0.98 106.20
Claverie_2013 562.64 6.07 � 0.58 132 18.03 31.20 1.25 166.23
Rios_landmarks 695.54 6.71 � 0.72 256 30.33 22.93 0.92 69.03
Foth_2012 1845.72 5.80 � 0.50 379 62.15 29.70 0.96 87.82
Astua_2009 3397.08 9.21 � 0.76 277 87.64 38.76 1.21 174.56
Outomuro_2013 1816.26 6.95 � 0.32 344 58.21 31.20 0.98 98.51
Piras_2012 959.53 7.21 � 0.45 298 25.20 38.07 1.19 200.79
Abe_2012 2432.00 5.88 � 0.38 334 65.32 37.23 1.10 203.88
Rios_combined 5467.57 –7.29 �3.01 133 19.28 283.66 8.34 426.51
Alvarez_2013 493.34 8.33 � 0.41 265 10.53 46.87 1.20 263.48
Stubbs_2013 652.62 10.10 � 0.47 494 8.08 80.76 1.52 511.38
Franklin_2014 3033.43 2.71 � 0.62 590 31.53 96.22 1.63 592.55
Montero 267.69 3.22 � 0.20 1508 3.76 71.15 1.17 234.16
Vera_Candiotti_2009 1934.57 8.77 � 0.49 977 8.05 240.31 2.23 1862.02
Prevosti_2012 1569.24 7.57 � 0.25 1988 3.12 503.63 3.34 3336.49
Klingenberg_2013 3797.24 4.81 � 0.18 2530 7.53 504.35 3.15 2575.43
GJ_GR 23.41 7.02 � 0.43 59 4.17 5.61 0.62 6.86
AP_APV_2013 60.58 7.28 � 0.34 313 1.83 33.07 1.38 38.44
Almecija_2015 143.27 5.33 � 0.27 414 4.34 33.00 1.27 37.83
Aristide_2013 161.27 7.50 � 0.48 264 2.39 67.48 2.33 82.56
Baab_2014 207.86 6.46 � 0.52 377 1.89 110.00 3.33 140.01
Mart�ın-Serra_2014 108.48 4.37 � 0.16 581 0.48 227.65 4.95 300.53
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regularly with taxa, the best predictor for the speed
ratio between FPST/IFR and a full optimization seems
to be the proportion of moves examined during the
search that need to be rechecked with a full optimiza-
tion, which for the landmark-only data sets show an
almost perfectly linear relationship (Fig. 4C,D) for
both 2D (R2 = 0.964 when the combined data set is
excluded) and 3D (R2 = 0.999). The difference in slope
between 2D and 3D arises because of the differences
in relative times needed for FPST/IFR and full opti-
mization. In the end, the net result of applying the
shortcut is that (for the cases with over 30 taxa),
searches for T terminal taxa take between roughly T
and 3T times faster than if using a full optimization,
with one exception in the Martin-Serra_2014 data set
(where the search is almost 5T times faster than if
using a full optimization). For the largest cases exam-

ined (151–160 taxa), searches with the FPST/IFR are
expected to be about 500 times faster than searches
using a full optimization. The case of the combined
data set (Rios_combined) shows that, when combined
with standard characters, the gain in time by applying
the shortcuts described here is even more significant,
making searches 8T times faster than if using a full
optimization.

Comparison of other search algorithms

Wagner trees and branch swapping are only the
basic search algorithms; Table 3 shows the results of
running more elaborate search algorithms in six of the
most difficult data sets. As discussed above, the imple-
mentation of those algorithms cannot match the effi-
ciency attainable with standard characters, but the

Fig. 4. Graphs showing the efficiency of the FPST/IFR shortcuts, for both 2D (left, A, C), and 3D (right, B, D). (A,B) Ratio between speed of
rearrangement evaluation using the shortcuts and using a full optimization, as a function of the number of taxa. (C,D) Ratio between speed of
rearrangement evaluation using the shortcuts and using a full optimization, as a function of the proportion of branch-swapping moves that need
to be re-checked with a full optimization during swapping. For 2D data, the square indicates the data set combining landmark and standard
characters. See text for additional discussion.
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results are still clearly improved. Applying random
sectorial searches (RSSs) to the results of RAS+TBR
produced additional improvements in score, more
often so in the largest data sets (Klingenberg_2013 and
Prevosti_2012, in 56–90% of the runs). Adding a sec-
torial search takes, on average, 60% longer than the
RAS+TBR alone. The effectiveness of tree-drifting
seems similar to that of sectorial search in medium-
sized data sets, but inferior in the two largest data sets
(producing slightly worse average scores; see Table 3).
The xmult command runs (by default) five replications
of RAS+TBR+RSS, and then submits those results to
tree-fusing. For all but the easiest data sets
(Alvarez_2013 and Claverie_2013), the average scores
produced by xmult are better than the average scores
by any of the other routines, and it produces a larger
number of the hits to the best known scores for each
data set (except for Prevosti_2012). The xmult com-
mand takes about ten times longer than a single plain
RAS+TBR, but it still runs in a reasonable amount of
time (3–8 h, for the data sets with 160 and 151 taxa,
respectively—the latter has fewer taxa, but has almost
three times as many landmarks).

Conclusion

The possibility of automatically importing data files
in the TPS format into TNT greatly facilitates phylo-
genetic analyses of landmark data. The new search
algorithms incorporated into TNT are effective for the
analysis of landmark data sets, both in isolation or
combined with standard characters. These algorithms
make phylogenetic analyses with landmarks possible
on standard personal computers, reliably finding opti-
mal or near-optimal trees even for relatively large-sized
landmark data sets.
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Appendix 1

Re-checking of tree-scores

Given that the length calculations during the search are approxi-
mate, it is necessary to recalculate tree scores in full before storing
trees in the memory buffer. A problem that arises in this case is
that the algorithms for length calculation are order-dependent, with
regard both to how ambiguous optimizations are resolved during
the initial grid estimation, and to the sequence with which the iter-
ative Fermat calculations are done (see Goloboff and Catalano,
2011: 47). First, when the initial grid estimation for point locations
produces two or more equally optimal locations, one is chosen at
random. For each replication, searches may use different random
seeds for producing lists of random sequences. Thus, a separate
random number generator was added to TNT, such that the land-
mark optimization uses a random number generator with the same
seed throughout the search. In addition, the random number gener-
ator for choosing ambiguous point locations is re-initialized for
each landmark—otherwise, the score for one individual landmark
will depend on which landmarks were optimized before. A more
serious complication for obtaining identical scores is that during
searches TNT, because it allows the user to select different taxon
sets or outgroups, internally creates reduced trees and renumbers
taxa so that the outgroup is always taxon 0. An example is shown
in Fig. 5, which shows the node numberings for a tree with only
seven out of ten taxa active during normal operation of the pro-
gram (e.g. for character mapping, Fig. 5A), and the internal repre-
sentation that is used by TNT during a search when terminal
taxon 2 is chosen as the outgroup (numbering in Fig. 5B). Termi-
nal taxa are renumbered, for the search, between 0 and the number
of active taxa, A, minus 1 (0–6, in the example); the root node
receives a number A, and the remaining internal nodes are num-
bered between A+1 and 2A–2 (8–12, in the example). With this
renumbering, listing the terminal taxa can go between 0 and A–1,
without the need to consider whether a given terminal taxon (e.g.
the terminal taxon originally numbered as 4) is included in the tree
or not; additionally, taxon 0 is always sister to all the rest of taxa
(also facilitating some operations to the tree). This renumbering is
important for standard characters, for which length calculations are
very fast, so that the manipulations to the trees themselves may
proportionally occupy a significant amount of time (especially for
very large numbers of taxa). The renumbering is perhaps not espe-
cially significant for landmark searches (where length calculations
are very time consuming relative to the time required for tree
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manipulations), but since TNT allows combining discrete and land-
mark characters, and all the code was already structured around
this approach, it seemed best to preserve the existing implementa-
tion, reuse as much existing code as possible, and let landmark
searches handle possibly reduced trees, with nodes renumbered.

To obtain identical scores for both numberings systems, TNT
effects the iterative Fermat calculations following the sequence of a
list for tree-traversing. For many trees, however, lists for tree-traver-
sing are not unique; in Fig. 5C, for example, the lists 11, 10, 12, 9, 8
and 11, 10, 9, 8, 12 are (in addition to the list shown in the figure)
equally valid lists for an up-pass. In the implementation of TNT, the
algorithms to make lists for tree-traversing (down- and up-pass)
guarantee that the resulting lists always place equivalent nodes at the
same position in tree-traversing lists, regardless of node renumbering
during searches. Trees are internally stored by TNT as ancestor-lists,
where the ancestor anci for each node i is specified. To facilitate
searches and optimizations TNT also uses lists of descendants; in the
case of searches, only binary trees are relevant, and these require
specifying only a left and right descendant for each node, as two sep-
arate lists, ‘ and r. Thus, in Fig. 5C, ‘13 = 12, and r13 = 15. The
arrays ‘ and r are filled in such a way that a left/right correspon-
dence is obtained from the tree numbering for both optimizations
and searches. The algorithm to obtain this equivalence is as follows:

1) initialize a counter ni of the number of descendants assigned
to each internal node i to 0.

2) set p to the first (or the next) terminal taxon, starting from
the lowest-numbered taxon. Set i = ancp. Go to 3.

3) If ni = 0, then set ‘i = p, and ni = 1. Otherwise (if ni = 1),
set ri = p and ni = 2. Go to 4.

4) If ni = 1 and i 6¼ root, set p = i, i = anci, and go to 3.
Otherwise (if ni = 2 or i = root), go to 2.

Given that only one terminal taxon can be designated as out-
group, there can be no more than one switch in taxon sequence in
the reduced numbering system used during searches. Given that this
switch will always involve the first split of the tree, the only node for
which the left and right descendants may be switched for the reduced
trees is the root of the tree (which always gets the same position in
any tree-traversing list anyway); all the other nodes will necessarily
have equivalent assignments of left and right descendants. Note that
this way to obtain lists of left and right descendants will produce the
same result regardless of the actual numbering of the internal nodes
of the tree; switching the numbering for any two internal nodes in
the trees does not alter the result (i.e. the result only depends on the
sequence of the terminal taxa). This is advantageous for the tree
searches, because it avoids the need to use a system for numbering
internal nodes in such a way that equivalent nodes have the same
number in identical trees (that system may be needed at some later
point of the search, to compare whether tree topologies are equiva-
lent, but is not needed for only rechecking tree score).

Once left and right descendants of each internal node have been
assigned, the list L for node-traversing is filled with the following
algorithm:

1) initialize L0 = root, number of filled cells in the list to f = 1,
and number of visited nodes to v = 0. Go to 2.

2) set i = Lv, and then v = v + 1. Go to 3.
3) if ‘i is an internal node, then set Lf = ‘i, and f = f+1. If ri is

an internal node, then set Lf = ri, and f = f+1. If v < f, then go
back to 2. If v = f, stop.

After this process, the list L will be filled with f values, corre-
sponding to all the internal nodes (the first one always being the
root). Enumerating from L0 to Lf–1 produces an up-pass, and enu-
merating from Lf–1 to L0 a down-pass. In the algorithm, given that
the left descendant is always added to the list of nodes to traverse
before the right descendant (and given the equivalence in left and
right descendants that results from the previous algorithm), the list
to visit the nodes in an up-pass will always have equivalent nodes in
exactly the same sequence, as shown in Fig. 5C and D. This tree-tra-
versing list L is used to determine the sequence with which Fermat
points are recalculated for the internal nodes of the tree, during both
searches and normal operation of the program. This guarantees that
recalculating tree scores will produce the same scores as had been
calculated during the search (unless of course the random seed, or
the parameters for the heuristic estimation of point locations, are
changed by the user). The only aspect in which the calculation of
tree scores is not replicated exactly during the search is when adding
the lengths of each tree branch. The lengths of the branches them-
selves are calculated in the same way, but the addition to produce
the final score may use a different ordering during the search (e.g.
starting from the branch marked with an asterisk in Fig. 5A and B),
which might conceivably produce (given that floating point opera-
tions are not necessarily exact) slightly different final numbers. These
differences should be several orders of magnitude smaller than the
differences that could arise from the factors discussed above, not
noticeable to users.

Appendix 2

Source for the data sets used in the empirical

comparisons

Abe_2012. – Abe, F. R. & Lieberman, B. S. (2012). Quantifying
morphological change during an evolutionary radiation of Devonian
trilobites. Paleobiology, 38, 292-307. Data from Dryad Digital
Repository. http://dx.doi.org/10.5061/dryad.40r16 m35.

Almecija_2015. – Alm�ecija, S., Orr, C. M., Tocheri, M. W., Patel,
B. A. & Jungers, W. L. (2015). Exploring phylogenetic and func-

Fig. 5. Comparison between the numbering systems used during
normal operations (e.g. optimization, score calculations, ancestral
reconstructions) and during tree-searches. See text for discussion.
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tional signals in complex morphologies: the hamate of extantanthro-
poids as a test-case study. The Anatomical Record, 298, 212–229.

Alvarez_2013. – Three data sets combined:
�Alvarez, A. & Perez, S. I. (2013). Two- versus three-dimensional

morphometric approaches in macroevolution: insight from the
mandible of caviomorph rodents. Evolutionary Biology, 40, 150–157.

�Alvarez, A., Ercoli, M. D. & Prevosti, F. J. (2013a). Locomotion
in some small to medium-sized mammals: a geometric morphometric
analysis of the penultimate lumbar vertebra, pelvis and hindlimbs.
Zoology, 116, 356–371.

�Alvarez, A., Perez, S. I. & Verzi, D. H. (2013b). Ecological and
phylogenetic dimensions of cranial shape diversification in South
American caviomorph rodents (Rodentia: Hystricomorpha). Biologi-
cal Journal of the Linnean Society, 110, 898–913. Data from Dryad
Digital Repository. http://dx.doi.org/10.5061/dryad.qg67c.

Aristide_2013. – Aristide, L., Rosenberger, A. L., Tejedor, M. F.
& Perez, S. I. (2013). Modeling lineage and phenotypic diversifica-
tion in the New World monkey (Platyrrhini, Primates) radiation.
Molecular Phylogenetics and Evolution, 82, 375–385.

Astua_2009. – Ast�ua, D. (2009). Evolution of scapula size and
shape in didelphid marsupials (Didelphimorphia: Didelphidae). Evo-
lution, 63, 2438–2456.

Baab_2014. – Baab, K. L., Perry, J. M. G., Rohlf, F. J. & Jun-
gers, W. L. (2014). Phylogenetic, ecological, and allometric corre-
lates of cranial shape in Malagasy lemuriforms. Evolution, 68,
1450–1468.

Claverie_2013. – Claverie, T. & Patek, S. N. (2013). Modularity
and rates of evolutionary change in a power-amplified prey capture
system. Evolution, 67, 3191–3207. Data from Dryad Digital Reposi-
tory. http://dx.doi.org/10.5061/dryad.67p55.

Foth_2012. – Foth, C., Brusatte, S. L. & Butler, R. J. (2012). Do
different disparity proxies converge on a common signal? Insights
from the cranial morphometrics and evolutionary history of Ptero-
sauria (Diapsida: Archosauria). Journal of Evolutionary Biology, 25,
904–915. Data from Dryad Digital Repository. http://dx.doi.org/
10.5061/dryad.4nr4cf37.

Franklin_2014. – Franklin, O., Palmer, C. & Dyke, D. (2014).
Pectoral fin morphology of Batoid fishes (Chondrichthyes: Batoidea):
explaining phylogenetic variation with geometric morphometrics.
Journal of Morphology, 275, 1173–1186.

GJ_GR. – The composite of two data sets:

G�omez-Robles, A., Berm�udez de Castro, J. M., Arsuaga, J. L., Car-
bonell, E. & Polly, P. D. (2013). No known hominin species matches
the expected dental morphology of the last common ancestor of Nean-
derthals and modern humans. Proceedings of the National Academy
of Sciences of the United States of America, 110, 18196–18201.

Gonz�alez-Jos�e, R., Escapa, I., Neves, W. A., C�uneo, R. & Puccia-
relli, H. M. (2008). Cladistic analysis of continuous modularized
traits provides phylogenetic signals in Homo evolution. Nature, 453,
775–778.

Klingenberg_2013. – Klingenberg, C. P. & Marug�an-Lob�on, J.
(2013). Evolutionary covariation in geometric morphometric data:
analyzing integration, modularity, and allometry in a phylogenetic
context. Systematic Biology, 62, 591–610. Data from Dryad Digital
Repository. http://dx.doi.org/10.5061/dryad.787c0.

Martin-Serra_2014. – Mart�ın-Serra A, Figueirido B, P�erez-Claros
JA, Palmqvist P (2015) Patterns of morphological integration in the
appendicular skeleton of mammalian carnivores. Evolution 69(2):
321–340. Data from Dryad Digital Repository. http://dx.doi.org/
10.5061/dryad.m8440.

Montero. – An unpublished data set for Amphisbaenid genera,
taken from skull photographs by R. Montero and J. Daza (pers.
comm.).

Outomuro_2013. – Outomuro D., Dijkstra K. B., Johansson F.
(2013) Habitat variation and wing coloration affects wing shape evo-
lution in dragonflies. Journal of Evolutionary Biology 26, 1866–
1874. Data from Dryad Digital Repository. http://dx.doi.org/
10.5061/dryad.nh618.

Pierce_2008. – Pierce, S. E., Angielczyk, K. D. & Rayfield, E. J.
(2008). Patterns of morphospace occupation and mechanical perfor-
mance in extant crocodilian skulls: a combined geometric morpho-
metric and finite element modeling approach. Journal of
Morphology, 269, 840–864.

Piras_2012. – Piras, P., Sansalone, G., Teresi, L., Kotsakis, T.,
Colangelo, P. & Loy, A. (2012). Testing convergent and parallel
adaptations in talpids humeral mechanical performance by means of
geometric morphometrics and finite element analysis. Journal of
Morphology, 273, 696–711.

Prevosti_2012. – Prevosti, F. J., Turazzini, G. F., Ercoli, M. D. &
Hingst-Zaher, E. (2012). Mandible shape in marsupial and placental
carnivorous mammals: a morphological comparative study using
geometric morphometrics. Biological Journal of the Linnean Society,
164, 836–855.

Rios_combined and Rios_landmarks. – A matrix for Actinopus spi-
ders (Araneae, Actinopodidae), from R�ıos Tamayo, D. 2015. Estu-
dios de morfolog�ıa comparada en un marco filogen�etico, en ara~nas
del g�enero Actinopus (Mygalomorphae, Actinopodidae). Tesis Doc-
toral, presented to Universidad Nacional de Tucum�an, 2015. The
two versions are with landmarks only, and including 89 standard
characters.

Stubbs_2013. – Stubbs, T. L., Pierce, S. E., Rayfield, E. J. &
Anderson, P. S. L. (2013). Morphological and biomechanical dis-
parity of crocodile-line archosaurs following the end-Triassic
extinction. Proceedings of the Royal Society B, 280, 1–10. Data
from Dryad Digital Repository http://dx.doi.org/10.5061/dryad.
61s1n.

Vera_Candiotti_2009. – Vera-Candioti, M. F. & Altig, R. (2010).
A survey of shape variation in keratinized labial teeth of anuran lar-
vae as related to phylogeny and ecology. Biological Journal of the
Linnean Society, 101, 609–625.
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