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ABSTRACT
Summary: Coarse-grained (CG) models allow long-scale simulations
with a much lower computational cost than that of all-atom (AA)
simulations. However, the absence of atomistic detail impedes
the analysis of specific atomic interactions that are determinant in
most interesting biomolecular processes. In order to study these
phenomena, it is necessary to reconstruct the atomistic structure from
the CG representation. This structure can be analyzed by itself or be
used as an onset for atomistic molecular dynamics simulations. In this
work we present a computer program that accurately reconstructs the
atomistic structure from CG models from the force field developed
in (Hills et al., 2010), using a simple geometrical algorithm.
Availability: The software is free and available online at
http://www.ic.fcen.uba.ar/cg2aa/cg2aa.py
Contact: lula@qi.fcen.uba.ar
Supplementary information: More detail on the algorithm is
available as online-only supplementary information at the journal’s
web site. Also, a tutorial and an example can be found at
http://www.ic.fcen.uba.ar/cg2aa/cg2aa.html

1 INTRODUCTION
In the context of molecular dynamics, coarse grain (CG) models
define particles by grouping several atoms into one bead. This
process reduces the number of particles used to describe the system,
allowing longer scale (either temporal, spatial or both) simulations
in exchange of detail (Saunders and Voth, 2013). Furthermore,
the possibility of reconstructing (or backmapping) the atomistic
structure from the CG representation allows a multiscale approach.
Although a perfect reconstruction is mathematically impossible,
approximate reconstructions can be obtained (Heath et al., 2007;
Rzepiela et al., 2010; Wassenaar et al., 2014; Darré et al., 2015). For
instance, in (Wassenaar et al., 2014), authors construct a complete
backmap for the Martini model (Monticelli et al., 2008). This
reconstruction is remarkably accurate for the protein backbone and
quite good on the side chains.

The backmapping algorithm presented here was developed for
the CG model developed in (Hills et al., 2010). As in the Martini
force field, this model represents the backbone with one bead.
Nevertheless, this bead is located in the position of the Cα atom
instead of the center of mass of the residues backbone atoms.
The side chains are modeled with 1 to 4 beads, depending on the
complexity of the aminoacid. The backbone reconstruction scheme
presented in this work can be applied to any model that represents

the backbone with a bead at the Cα. Of course, side chains
reconstructions strongly depend on number and positions of the
beads of each CG model but the same approach can be implemented
in other models (see Fig. S4 for a Martini CG model example). We
also include in our program a backmapping of a CG model for the
heme group, which was obtained using a similar approach as the one
used to obtain standard CG aminoacids in (Hills et al., 2010).

In summary, this tool allows backmapping of CG structures in an
accurate manner. Also, due to the simplicity of the algorithm, it can
be easily expanded to other particular molecules or chemical groups,
such as cofactors and ligands (e.g. the heme group).

2 METHODS
The algorithm is implemented in Python, foreseeking maximum portability.
Numerical calculations are performed with the NumPy library, a nowadays
standard in any python-enabled system. The software usage is very simple
by invoking the program from the command line.

The algorithm works as follows. First, we reconstruct backbone atoms
positions from the known Cα positions. In (Wassenaar et al., 2014)
the authors claim that the C=O vector of the i-th amino acid points

approximately in the direction of the cross product of the vectors
−−→
Ci

αC
i+2
α

and
−−→
Ci

αC
i+1
α . We propose a weaker assumption: This cross product lies

inside the peptide bond plane (see Fig. 1a). Since this plane contains both
Ci

α and Ci+1
α , the positions of the atoms between them are completely

determined. More precisely, we place the Ci, Oi and Ni+1 atoms at
distances given by the Amber force field (Duan et al., 2003) and the angles
reported in (Tozzini et al., 2006) (see Supplementary Information (SI) for
details). This gives an accurate reconstruction, except at the N- and C-
terminals.

(a) (b)

Fig. 1. (a) Three consecutive Cα’s and the corresponding cross product.
This vector and the C=O bond have different directions. (b) In this example,
the backmapped structure (cyan) is compared the original (green).
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Having placed the backbone atoms, the position of the Cβ (if present)
is defined by the tetrahedral arrangement of the atoms bonding the Cα.
Now, knowing the coordinates of the Cα atoms and, having stated the Cβ

positions, we guess the remaining positions of the side chain sequentially.
The program computes them as follows. The already determined atoms
impose geometric constrains on the positions of the ones yet to place. As
expected, the guess is strongly determined by the position of the bead in
question. For example, in this model most aminoacids have a bead defined
by the Cβ , the Cγ and the neighboring hydrogen atoms. In that case, the first
step of the side chain reconstruction is to place the Cγ , given the positions
of the Cα and Cβ . Since the vector

−−→
CβCγ points approximately in the

direction of the bead, we chose to place the atom at a typical distance for
this bond, in a way that it forms a tetrahedral angle and pointing as close as
possible in that direction. The process continues atom by atom, taking into
account the geometrical information of the aminoacid beads For instance,
aromatic rings planes can be reconstructed from bead information. For more
details on the backmapping algorithm see SI, particularly, Figs. S1 and S2.

By similar geometric reasoning, the algorithm reconstructs the atom
positions from the CG model of the heme group. This model was obtained
using an analog approach as the one used to obtain standard CG aminoacids
in (Hills et al., 2010). In this particular case, it involves 17 beads, 1 bead
for the Fe atom, 12 on the heme plane and 4 beads for the propionate side
chains. (Fig. S3) The amount of beads used for its description, together with
its simple geometry allows us to give an accurate reconstruction.

The numerical values of all the geometric constraints (i.e. bond
distances, angles and dihedrals values) were taken from the Amber03 Force
Field, (Duan et al., 2003).

In order to refine the internal coordinates of the side chains and since our
motivation is to use the all-atom structure as a starting point of a molecular
dynamics simulation, we include an energy minimization as part of our
standard work flow. Namely, we run a short classical minimization using
the Amber14 package (Case et al., 2015) in implicit solvent. (See SI for
simulation details)

The minimization process is not included as part of this piece of code since
it would severely affect portability and, at the same time, users may prefer
a different simulation context (i.e. force field or software). We are confident
that a user with experience in molecular dynamics simulations will find our
contribution easy and flexible to use and adapt.

As examples, we have selected five different proteins with different
secondary structure elements and variable three-dimensional folds. In all
cases, a CG representation is obtained from the original PDB structures using
an adapted version of the script gently provided by the authors of (Hills et al.,
2010) (see SI for details). Then, we applied the backmapping algorithm to
the CG structure. The backmapped structure was compared to the original
crystal structure. The total root mean square deviation (RMSD) of the
backbone atoms between the backmapped and the crystal structure ranged
from 0.5 Å to 0.8 Å in the analyzed cases. These values were not significantly
modified after minimization. However, in some cases, minimization allowed
to correct small imperfections in the relative position of the side chains with
respect to their direct neighbors. RMSD calculations for each residue show
very small differences for most of the protein structure. Only a few residues
located, as expected, in regions with low secondary structure organization
had higher deviations (see Fig. S4). Two of the selected examples correspond
to heme proteins, in which the performance of the heme group backmap was
also tested (the reconstruction being accurate on the heme plane, with a total
RMSD of 0.61 Å).

In order to test the stability of the obtained structures, we used them as
starting points for molecular dynamics (MD) simulations. More precisely,
after solvation and a short thermalization, a 100-ns molecular dynamics
simulation was performed for two of the considered examples. In all cases
structures remained stable showing an average RMSD with respect to the
original crystal structure of 1 to 2.5 Å for the backbone atoms, and lower
than 3 Å when considering all the protein atoms (Fig. S6). The obtained

trajectories were compared with MD simulations starting from the crystal
structures, calculating the root-mean-square-fluctuation (RMSF) for each
residue in the protein, showing similar results. (Fig. S7) To further test
the backmapping scheme, we backmapped 500 ns a CG-MD trajectory and
calculated the RMSD with respect to the crystal structure. The average
RMSD resulted 3.289 Å for the backbone atoms and 4.085 Å for all the
heavy atoms, which results a reasonable value considering the increased
sampling and the expected deviations from the crystal structure in a CG-MD
simulation (Hills et al., 2010). From this backmapped CG-MD trajectory,
10 equally-spaced snapshots were simulated for 10 ns in explicit solvent.
Interestingly, the RMSF obtained in these trajectories is in good agreement
with the fluctuations observed in atomistic simulations starting from the
corresponding crystal structure, with, again, higher fluctuations. These
results further validate the application of this backmapping methodology for
combining CG and atomistic simulations in a multiscale approach. (Fig. S8)

3 CONCLUSION
We presented an intuitive, portable, fast, free and easy-to-use
method to map CG structures back to AA representation. We have
tested it in several examples by changing protein structures to CG
representation and backmapping them. Examples were selected
in order to test the algorithm for different secondary structure
elements and 3D structure complexity. Both the backbone and total
reconstruction is accurate except, sometimes, at the more flexible
parts of the structure (i.e. ends, loops and long side chains).
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