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Abstract
During the last decades the study of functional morphology received more attention incorporating more detailed 
data corresponding to the internal anatomy that together contribute for a better understanding of the functional 
basis in locomotion. Here we focus on 2 lizard families, Tropiduridae and Liolaemidae, and use information re-
lated to muscle-tendinous and external morphology traits of hind legs. We investigate whether the value of the 
traits analyzed tend to exhibit a reduced phenotypic variation produced by stabilizing selection, and whether 
species showing specialization in their habitat use will also exhibit special morphological features related to it. 
As a result, we identified that evolution of hind limb traits is mainly explained by the Ornstein–Uhlenbeck mod-
el, suggesting stabilizing selection. Liolaemids and tropidurids show clear ecomorphological trends in the vari-
ables considered, with sand lizards presenting the most specialized morphological traits. Some ecomorphologi-
cal trends differ between the 2 lineages, and traits of internal morphology tend to be more flexible than those of 
external morphology, restricting the ability to identify ecomorphs shared between these 2 lineages. Conservative 
traits of external morphology likely explain such restriction, as ecomorphs have been historically defined in oth-
er lizard clades based on variation of external morphology. 
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INTRODUCTION
Organisms move in the environment during prey 

capture, predator escape and territory maintenance, 

and the performance exhibited by an individual when 
performing a given ecological task is intimately related 
to its morphology (Hildebrand 1985; Biewener 2003; 
Polly 2007). Squamata has been a lineage particularly 
well studied in terms of ecomorphological relationships 
due to the outstanding diversity of locomotor modes 
that have allowed lizards to exploit a wide range of 
habitats (for examples, see Losos & Sinervo 1989; 
Losos 1990a,b; Bonine & Garland 1999; Herrel et al. 
2002; Van Damme & Vanhooydonck 2002; Goodman et 



484

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

M. J. Tulli et al.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

© 2016 International Society of Zoological Sciences, Institute of Zoology/
    Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd

al. 2008). 
Evolution of morphological traits in close association 

with ecological parameters has been described in many 
squamate families (Losos 2009), but most of the classi-
cal studies focus on external morphology of the group 
of Caribbean Anolis. These lizards exhibit limb propor-
tions strongly associated with habitat use on each of the 
islands they colonized, where twig anoles moving on 
narrow branches evolved shorter legs (Losos 2009). A 
recent study of 2 species of Anolis (A. valencienni and 
A. sagrei) combined external with muscle anatomy, and 
showed that lizards with longer limbs and heavier gas-
trocnemius muscle run faster than species having an op-
posite conformation (Herrel et al. 2008). The association 
between morphology and ecology is so evident in An-
olis lizards that it is possible to recognize the so-called 
“ecomorphs,” which are defined by Williams (1972, p. 
72) as “species with the same structural habitat/niche, 
similar in morphology and behavior, but not necessarily 
close phylogenetically.” The recognition of ecomorphs 
is mostly based on morphological traits likely associat-
ed with locomotion in different microhabitats (Wege-
ner et al. 2014). However, Herrel et al. (2008) show that 
morphology of the musculoskeletal system is related 
not only to habitat use, but also to the evolution of lo-
comotor performance, suggesting that ecomorph differ-
ences go beyond the external morphological traits. Eco-
morphs seem to not be restricted only to Anolis lizards. 
For example, Grizante et al. (2010) identify associations 
that suggest adaptive changes in foot shape and hind 
limb size involved in the colonization of several habitats 
by Tropiduridae lizards. Although they do not use the 
term “ectomorphs,” some of the associations described 
in their study may actually fit into this definition coined 
by Williams (1972). However, in other lizard groups the 
ecomorph concept is not so easily applicable. For ex-
ample, in iguanian lizards, such as Liolaemidae, Tropi-
duridae and Anolis, Tulli et al. (2009, 2012a,b) do not 
find clear associations between morphology and habi-
tat use. In this lizard group, it was suggested that some 
traits evolved early and then maintained along the evo-
lutionary process (Schulte et al. 2004; Cruz et al. 2009, 
2011; Tulli et al. 2009, 2012a,b), proposing a pattern 
recently synthesized in the “early burst” evolutionary 
model (Harmon et al. 2010). These observations sug-
gest an existing contrast between the strong ecomorpho-
logical associations present in Tropiduridae (Kohlsdorf 
et al. 2001, 2008; Grizante et al. 2010) and the morpho-
logical conservation of Liolaemidae (Cruz et al. 2009, 
2011; Tulli et al. 2009, 2012a,b), a disparity particularly 

unexpected given that the 2 lineages are phylogenetical-
ly relatively close, exhibit similar foraging modes (sit-
and-wait), and have sympatric representatives in several 
geographic areas with similar environments.

In the present study we compile a large database 
composed of hind limb myo-tendinous and external 
morphological traits from species belonging to these 2 
diverse neotropical lizard families (Tropiduridae and Li-
olaemidae), encompassing a wide geographical distri-
bution and broad ecological preferences. We test wheth-
er these apparently highly-contrasting trends emerging 
from previous studies implemented separately for each 
family are confirmed when data are analyzed through an 
ecomorphological analysis applied to the 2 lizard fam-
ilies together. We combine published information with 
new data for habitat use and morphology, and construct 
combined matrices for both lizard families to find the 
evolutionary model that fits our data better. We also in-
vestigate whether the species showing specialization in 
their habitat use also exhibit special morphological fea-
tures related to it. Based on previous results (Abdala et 
al. 2014), we expect to find a conserved morphological 
configuration versatile enough to allow exploitation of 
almost all of the available habitats. 

This work can be considered a starting point for eco-
morphological studies based on internal morphology 
traits that opened a new perspective following other pa-
pers in lizards (Tulli et al. 2012b; Abdala et al. 2014), 
frogs (Gomes et al. 2009; Jorgensen & Reilly 2013; En-
riquez et al. 2015) and rodents (Carrizo et al. 2014a,b). 
In all these papers it has been demonstrated that internal 
morphology plays a main role in the evolution of the lo-
comotor performance and habitat use of tetrapods.

MATERIAL AND METHODS
The dataset analyzed combines ecological informa-

tion compiled from the literature with morphometric 
traits on external morphology and hind limb myo-tendi-
nous anatomy obtained from our examination of lizard 
specimens. Specifically, we dissected the crus and pes 
of 165 adult specimens belonging to 21 species of Li-
olaemidae and 10 species of Tropiduridae lizard fami-
lies. Voucher specimens of the species studied were de-
posited at the Herpetology Collection of the Fundación 
Miguel Lillo, Tucumán, Argentina and Coleção Her-
petológica de Ribeirão Preto (CHRP-USP), at the Uni-
versity of São Paulo, Brazil (Table S1). Species’ choice 
aimed to maximize representation of habitat use and lo-
comotor modes in the sample, as well as phylogenet-
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ic representation of different clades within each family. 
Dissections of the myological and tendinous traits re-
lated to the hind limb and foot (see Abdala et al. 2014) 
were performed under a binocular microscope (Nikon 
SMZ645). Muscle-tendinous variables were measured 
with digital calipers (Mitutoyo CD-15B; ±0.01 mm, Ja-
pan). Species mean values of traits and the number of 
individuals per species used are detailed in the Support-
ing Information (Table S2). 

Morphological data

Here we present an analysis that includes already 
published data. Because of this, we fixed our new data 
collected to datasets constructed for analysis of ped-
al grasping (Abdala et al. 2014) that were based on crus 
and pes traits, for example. Following the protocol of 
Abdala et al. (2014), we included data related to body 
size (snout–vent length [SVL]) and hind limb sections: 
femur and tibia length, width and length of the foot (dis-
tance from the wrist to the end of the digit IV, which 
is the longest digit in these animals), and digit lengths 
of all 5 digits. We also studied the variability between 
muscle and tendon dimensions of the structures directly 
implicated in pedal rotation, plantar flexion, and stabili-
zation of the ankle joint (Russell & Bauer 2008). Mus-
cle and tendon measurements (Fig. 1) are listed on Table 
1. All muscles analyzed exhibit a parallel-fibered ar-
rangement. In addition to length, the maximum width of 
each muscle was also recorded to obtain an estimate of 
the morphometric variation of each muscle as a whole, 

and to permit correlation with aponeurosis and tendon 
dimensions that are associated with these muscles, for 
which we report width and length (Table 1).

Ecological settings

The ecological data considered was based on the rel-
ative use of 5 habitat categories: ground, sand, rocks, 
trunks and branches (Table 2). Because many species 
use more than one habitat type, we followed Grizante et 
al. (2010) and estimated the proportion of substrate us-
age based on the number of individuals of each species 
described in each substrate. Specifically, each habitat 
use category was treated as a continuum based on how 
many individuals were captured in a given substrate in 
the papers checked for gathering ecological informa-
tion on Tropiduridae and Liolaemidae. Thus, we worked 
with a value ranging from 0 (none of the individuals 
sampled in a given substrate type) to 1 (all individuals 
sampled using that substrate type). Almost one-third of 
the species are considered habitat specialists, as 100% 
of the observations were made in a single substrate cate-
gory (Table 2; see species with values equal to 1.00).

Phylogenetic context

Phylogenetic comparative analyses were performed 
using a composite tree (Fig. 2) based on Pyron et al. 
(2013), Frost et al. (2001) and Lobo et al. (2010); the 
last 2 were used to fill the gaps of species not consid-
ered in Pyron et al. (2013). Branch lengths are not avail-
able and our composite tree is based on the topologi-

Figure 1 General scheme of some of the 
muscles and tendons examined for mus-
cle-tendinous traits. a dorsal view, b ven-
tral view.
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cal relationships among species; thus, we used arbitrary 
branch lengths (all branch lengths equal to 1 and branch 
length transformations using the methods of Pagel, Nee 
and Grafen [Grafen 1989; Pagel 1992]). For testing the 
adequacy among the 3 branch lengths (which topolo-
gy and branch lengths better standardized the traits), we 
followed the method of Garland et al. (1992) that con-
sists of plotting the absolute value of each standard-
ized independent contrast versus the square root of the 
sum of its branch lengths, which represents its stan-
dard deviation. For this, we used diagnostic plots of in-
dependent contrasts corresponding to the different trees 
and branch lengths using Mesquite v2.74 (Maddison & 
Maddison 2015) and the PDAP PDTREE v1.15 module 
(Midford et al. 2009). Nee transformations and branch 
length equal to 1 showed the lower number of signifi-
cant trends (2 out of 30 plots), so we deemed the tree 
with Nee branch length transformation method as the 
more appropriate for our study (following Garland et al. 
1992). 

Statistical analysis

Mean values of morphological variables were log10 
transformed prior to analyses to meet requirements of 

Table 1 List of the muscles and tendons of the hind limb examined in this study

Muscles Abbreviations Tendon
Peroneus longus length Pll
Peroneus longus width Plw
Peroneus longus origin tendon length Plol x
Peroneus longus insertion tendon length Plil x
Peroneus brevis length Pbl
Peroneus brevis width Pbw
Peroneus brevis tendon length Pbtl x
Superficial femorotibial aponeurosis length Sfal
Superficial femorotibial aponeurosis width Sfaw
Superficial femoral gastrocnemius length Sfgl
Superficial femoral gastrocnemius width Sfgw
Femorotibial gastrocnemius length Fgl
Femorotibial gastrocnemius width Fgw
Flexor digitorum longus length Fdll
Flexor digitorum longus width Fdlw
Flexor digitorum longus aponeurosis length Fdlal
Flexor digitorum longus aponeurosis width Fdlaw
Digital flexor tendon digit 1 length Dfl1 x
Digital flexor tendon digit 2 length Dfl2 x
Digital flexor tendon digit 3 length Dfl3 x
Digital flexor tendon digit 4 length Dfl4 x
Digital flexor tendon digit 5 length Dfl5 x

Figure 2 Tree topology based on Pyron et al. (2013), Frost et 
al. (2001) and Lobo et al. (2010); the last 2 to include species 
that not considered in Pyron et al. (2013). Numbers indicate 
nodes for a reference.
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normality. Because habitat use is expressed in propor-
tions, ecological data were transformed to the arcsin of 
the square root of each value (Martin & Bateson 1999). 
All statistical analyses were implemented in the R sta-
tistical environment (R Core Development Team 2011). 
Morphological traits need body size correction besides 

the phylogenetic context, so we performed the phylo-
genetic size-correction analysis described by Revell 
(2009). We calculated residuals from least squares re-
gression analyses of morphological traits on body size 
(SVL), while controlling non-independence due to phy-
logeny by using phylo.resid (a module of Phytools for R 

Table 2 Ecological indexes estimated for the habitat used by the selected species (values indicate the proportion of lizards usually 
found in each habitat type)

Species Sand Rock Trunk Branch Ground Literature source
Eurolophosaurus amathites 1.00 0.00 0.00 0.00 0.00 Rodrigues (1984, 1996)
Eurolophosaurus divaricatus 1.00 0.00 0.00 0.00 0.00 Rodrigues (1986)
Liolaemus albiceps 0.00 0.00 0.00 0.02 0.98 Abdala (2007)
Liolaemus bibroni 0.10 0.00 0.00 0.00 0.90 Schulte et al. (2000)
Liolaemus canqueli 0.60 0.00 0.00 0.00 0.40 Personal observation
Liolaemus elongatus 0.00 0.90 0.00 0.00 0.10 Personal observation
Liolaemus escarchadosi 0.00 0.20 0.00 0.00 0.80 Scolaro and Cei (1997)
Liolaemus fitzingerii 0.70 0.00 0.00 0.00 0.30 Personal observation
Liolaemus scrocchii 0.00 0.90 0.00 0.00 0.10 Quinteros et al. (2008)
Liolaemus hatcheri 0.00 0.20 0.00 0.00 0.80 Etheridge (2000)
Liolaemus irregularis 0.00 0.00 0.00 0.00 1.00 Abdala (2007)
Liolaemus kingii 0.00 0.90 0.00 0.00 0.10 Personal observation.
Liolaemus kolengh 0.00 0.40 0.00 0.00 0.60 Abdala and Lobo (2006)
Liolaemus koslowskyi 0.60 0.00 0.00 0.00 0.40 Etheridge (2000)
Liolaemus kriegi 0.00 1.00 0.00 0.00 0.00 Personal observation
Liolaemus olongasta 0.80 0.00 0.00 0.00 0.20 Etheridge (2000)
Liolaemus petrophilus 0.00 1.00 0.00 0.00 0.00 Avila et al. (2004)
Liolaemus poecilochromus 0.00 0.60 0.00 0.00 0.40 Personal observation
Liolaemus riojanus 0.98 0.00 0.00 0.00 0.02 Halloy et al. (1998)
Liolaemus scapularis 0.98 0.00 0.00 0.00 0.02 Halloy et al. (1998)
Liolaemus tenuis 0.00 0.30 0.20 0.20 0.30 Medel et al. (1988)
Liolaemus zullyi 0.00 0.20 0.00 0.00 0.80 Personal observation
Phymaturus ceii 0.00 1.00 0.00 0.00 0.00 Lobo and Quinteros (2005)
Phymaturus spectabilis 0.00 1.00 0.00 0.00 0.00 Lobo and Quinteros (2005)
Tropidurus etheridgei 0.00 0.00 0.50 0.00 0.50 Vitt (1991)
Tropidurus hispidus 0.95 0.03 0.00 0.00 0.02 Rodrigues (1988); Vitt (1995); Vitt et al. (1996); 

Van Sluys et al. (2004)
Tropidurus hygomi 0.90 0.00 0.00 0.10 0.00 Vanzolini and Gomes (1979)
Tropidurus itambere 0.00 1.00 0.00 0.00 0.00 Van Sluys (1993, 1998)
Tropidurus psammonastes 1.00 0.00 0.00 0.00 0.00 Rodrigues (1988, 1996)
Tropidurus semitaeniatus 0.00 1.00 0.00 0.00 0.00 Vitt (1995); Rodrigues (1996)
Tropidurus spinulosus 0.00 0.00 0.97 0.00 0.03 Colli et al. (1992); Vitt (1991)
Tropidurus torquatus 0.45 0.50 0.00 0.05 0.00 Rodrigues (1981, 1988); Araujo (1991); Bergallo 

and Rocha (1993); Rocha and Bergallo (1997)
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developed by Revell 2012). The resultant residuals were 
then used in the subsequent analyses.

To reduce the number of variables and at the same 
time identify correlated evolution among traits, we ran 
a phylogenetically-based principal component analy-
sis of the morphological residual variables using a Vari-
max rotation, implemented with the module Phyl.PCA 
from the Phytools package for R (Revell 2012). From 
these analyses, we obtained the species scores and mor-
phological loadings corresponding to the first 3 princi-
pal components in relation to approximately 72% of ac-
cumulated variance. From the morphological loadings 
we considered those vectors with higher absolute values 
(negative or positive) in order to detect those variables 
that contributed more to each principal component (PC).

Next we studied the evolutionary processes through 
which morphological traits may have evolved in Tropi-
duridae and Liolaemidae, testing phylogenetic evolu-
tionary models to discriminate among 3 different evo-
lutionary hypotheses. In the first model, evolutionary 
change in a trait would result from random fluctuations 
through time (Felsenstein 1988; Harmon et al. 2010), 
with a better fit of the Brownian motion evolutionary 
model (BM). The second model refers to cases when a 
trait varies in relation to an optimum or stabilizing se-
lection to a state for this trait in part of the lineage (But-
ler & King 2004; Harmon et al. 2010); this evolution-
ary model is known as the Ornstein–Uhlenbeck model. 
Finally, the third hypothesis predicts trait changes ear-
ly in the evolutionary tree followed by gradual decelera-
tion of the rate of evolution using the early burst model 
(Harmon et al. 2010). To test which evolutionary model 
better fits each variable, we ran the fitContinuous anal-
ysis using “Geiger” (Harmon et al. 2010) and “ape” 
(Analysis of Phylogenetics and Evolution; Paradis et al. 
2004) packages for R. The command “fitContinuous” 
(implemented in the package Geiger for R, Harmon et 
al. 2010) describes the rate of change of a trait under the 
3 evolutionary models aforementioned, and also pro-
vides an Akaike value to each procedure. Then, the best 
fit among candidate evolutionary models is obtained us-
ing the Akaike information criterion (Burnham & An-
derson 2002; Angilletta 2006). For this purpose, we 
used Akaike weights (wAICc) as a measure of strength 
for each model, indicating the probability that a giv-
en model is the best among a series of candidate models 
(Burnham & Anderson 2002). 

Because species cannot be considered as independent 
data points given their phylogenetic relationships (Har-
vey & Pagel 1991), we estimated Pagel’s phylogenetic 

signal (λ) from the residual errors simultaneously on the 
regression parameters of phylogenetic generalized least 
squares models (PGLS) analyses. These analyses were 
performed in “caper” (Orme et al. 2012) and “ape” (Par-
adis et al. 2004) packages for R. Ecological data giv-
en by arcsin of the proportions of habitat use were en-
tered as independent variables, and models were built 
using either a single habitat variable (e.g. rocks) or by 
one of their possible combinations as determined from 
principal component analysis (e.g. PC~ sand + ground 
+ rocks + trunk + branches), and morphological infor-
mation was entered as dependent variables. In addition, 
we ran PGLS analyses for these morphological traits 
that showed loads higher than 0.65 within each PC and 
the corresponding habitat use. The model’s choice was 
based on the model’s fit using the Akaike information 
criterion as mentioned above. 

RESULTS
Our PC analyses (PCA) from residual values of dif-

ferent morphological variables (muscle-skeletal and ex-
ternal morphology) under phylogenetic analysis show 
that the first 3 PCs account for the 72% of accumulated 
variance. PC1 loads show that peroneus longus insertion 
tendon length (Plil), peroneus brevis tendon length (Pbl), 
superficial femoral gastrocnemius length (Sfgl) and 
flexor digitorum longus aponeurosis length (Fdlal) all 
contributed importantly; all these variables show nega-
tive values (Table 3). In the case of PC2, peroneus lon-
gus origin tendon length (Plol) and femorotibial gastroc-
nemius width (Fgw) were the morphological traits with 
higher loads, the first with negative value and the sec-
ond positive (Table 3). Finally, PC3 show that the high-
est load was achieved by flexor digitorum longus apo-
neurosis length (Fdlal) width with positive load (Table 
3).

Morphological evolution in Tropiduridae and Liolamidae 
seems to have followed different evolutionary processes, 
as the studied traits were not explained by a single 
evolutionary model (Table 4). Some traits had a better fit 
for the Ornstein–Uhlenbeck model of evolution (OU): for 
example, peroneus longus width, peroneus brevis width, 
femorotibial gastrocnemius width, digital flexor tendons 
of digits 3–5, foot length and width (Table 4). The BM 
model, which predicts a random rate of change, better 
explained the evolution of flexor digitorum longus 
length (Fdll), peroneus longus length (Pll), femur length 
(Fel) and tibia length (Til) (Table 4). Unfortunately, 
methodological limitations (species sample size and 
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arbitrary branch lengths) do not allow us to determine 
the number of regimes and mean values of theses 
regimes for the models. None of the morphological 
variables showed a best fit under the early burst 
evolutionary model. Moreover, for some variables 
there was not a single evolutionary model explaining 
the variation, as BM and the OU model (Butler & King 

2004; Harmon et al. 2010)  were equally possible under 
the Akaike criterion (Table 4). 

We tested a total of 155 possible PGLS models, 
from which 9 were considered the most informative 
after the Akaike criterion, and provided evidence for 
associations between morphology and ecology (Table 
S3). These models describe significant slopes for some 

Table 3 Component scores resulting from a principal component analysis (PCA) performed on the morphometric traits

Variables PC1 PC2 PC3
Peroneus longus length −0.227 −0.641 −0.06
Peroneus longus width −0.405 −0.227 −0.095
Peroneus brevis length −0.343 0.667† −0.048
Peroneus longus origin tendon length −0.847† −0.172 0.295
Peroneus longus insertion tendon length −0.435 0.527 0.201
Peroneus brevis width −0.038 0.43 −0.226
Peroneus brevis tendon length −0.732 0.156 −0.61
Sup femorotibial aponeurosis length −0.299 −0.302 −0.174
Sup femorotibial aponeurosis width 0.115 −0.109 −0.522
Femoral gastrocnemius sup length −.798 −0.428 0.371
Femoral gastrocnemius sup width −0.602 −0.629 0.104
Femorotibial gastrocnemius length −0.68 −0.317 0.159
Femorotibial gastrocnemius width 0.161 −0.705† −0.153
Flexor dig longus length −0.559 −0.365 −0.058
Flexor dig longus width −0.341 −0.427 −0.134
Flexor dig longus aponeurosis length −0.841† 0.111 −0.239
Flexor dig longus aponeurosis width −0.185 0.252 0.66
Digital flexor tendon digit 1 length 0.159 −0.413 0.06
Digital flexor tendon digit 2length 0.308 −0.562 0.032
Digital flexor tendon digit 3length 0.357 −0.571 −0.021
Digital flexor tendon digit 4length 0.236 −0.587 −0.129
Digital flexor tendon digit 5length 0.017 −0.546 −0.285
Digit 3 length −0.308 −0.116 −0.004
Digit 4length −0.418 −0.221 −0.197
Digit 5length −0.143 −0.38 −0.016
Foot length −.497 0.473 0.085
Foot width −0.52 0.613 0.177
Femur length 0.353 −0.771† −0.201
Tibia length 0.358 0.827† −0.256
% variance explained 36.03 25.58 9.88
Eigenvalue 0.131 0.03 0.036

All traits were log-transformed, and effects of body size were removed prior to analysis by phylogenetically computing residu-
als from regressions on snout–vent length. †Traits contributing most to each component. The total variance of the data explained by 
these first 3 principal components is 72%.
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of the habitat use variables (Fig. 3; Table 5), as, for 
example, a significant association between PC1 and 
use of sand (Fig. 3a). Sandy lizards tend to have lower 
values for the lengths of peroneus longus insertion 
tendon, peroneus brevis tendon, femoral gastrocnemius 
superficial, femorotibial gastrocnemius, and aponeurosis 
of the flexor digitorum longus (Fig. 3a, Table 3). 
The particular PGLS analysis for the morphological 

traits with loads higher than 0.65 with sand as the 
environmental independent variable showed that 
peroneus longus insertion tendon length and superficial 
femoral gastrocnemius length contributed significantly 
(Plil~sand, λ = 0.472, slope = 0.101, P = 0.019; 
Sfgl~sand, λ = 0, slope = 0.111, P = 0.05), whereas 
the other variables (Pbtl, femorotibial gastrocnemius 
length Fgl, Fdlal; see Table 1) slopes (between 0.024 

Table 4 Values of AICc and log likelihood (LogL) that correspond to the evolutionary models tested (Brownian motion [BM], Orn-
stein–Uhlenbeck [OU] and Early Burst [EB]) for all the morphological variables. wAICc is the weight of the different models. 
BeMo indicates the evolutionary model that best fitted the data based on the wAICc values. 

Morphological 
variables LogL AICc wAICc LogL AICc wAICc LogL AICc wAICc BeMo

Pll 53.91 −103.39 0.627† 53.92 −100.99 0.188 53.91 −100.95 0.185 BM
Plw 46.17 −87.93 0.212 48.62 −90.37 0.725† 46.17 −85.48 0.063 OU
Plol 12.15 −19.88 0.447† 13.31 −19.76 0.421† 12.15 −17.44 0.132 BM-OU
Plil 14.63 −24.84 0.345† 16.34 −25.82 0.555† 14.63 −22.39 0.1 BM-OU
Pbl 48.03 −91.65 0.288 50.03 −93.2 0.627† 48.03 −89.2 0.085 OU
Pbw 51.51 −98.61 0.541† 52.14 −97.43 0.3† 51.51 −96.17 0.159 BM-OU
Pbtl 1.86 0.78 0.037 6.28 −5.7 0.952† 1.86 3.23 0.011 OU
Sfal 42.14 −79.86 0.408† 43.51 −80.16 0.472† 42.14 −77.42 0.12 BM-OU
Sfaw 38.87 −73.33 0.03 43.55 −80.24 0.961† 38.87 −70.88 0.009 OU
Sfgl 2.7 −0.98 0.06 6.65 −6.45 0.923† 2.7 1.45 0.017 OU
Sfgw 19.29 −34.17 0.039 23.69 −40.52 0.949† 19.29 −31.72 0.012 OU
Fgl 10.7 −16.98 0.009 16.67 −26.49 0.989† 10.7 −14.74 0.002 OU
Fgw 41.06 −77.71 0.272 43.14 −79.43 0.642† 41.06 −75.27 0.086 OU
Fdll 42.75 −81.09 0.625† 42.78 −78.71 0.19 42.75 −78.64 0.185 BM
Fdlw 43.79 −83.16 0.167 46.55 −86.25 0.784† 43.79 −80.72 0.049 OU
Fdlal 20.08 −35.75 0.606† 20.26 −33.67 0.215 20.08 −33.31 0.179 BM
Fdlaw 33.19 −61.97 0.061 37.12 −67.39 0.921† 33.19 −59.53 0.018 OU
Dfl1 48.03 −91.66 0.446† 49.2 −91.54 0.422† 48.03 −89.21 0.132 BM-OU
Dfl2 25.01 −45.61 0.422† 26.3 −45.75 0.453† 25.01 −43.17 0.125 BM-OU
Dfl3 46.91 −89.41 0.557† 47.44 −88.03 0.279† 46.91 −86.96 0.164 BM-OU
Dfl4 39.19 −73.96 0.283 41.22 −75.59 0.634† 39.19 −71.52 0.083 OU
Dfl5 29.51 −44.62 0.002 32.2 −57.54 0.997† 29.51 −42.17 0.001 OU
Digit 3 length 58.69 −112.97 0.271 60.78 −114.91 0.649† 58.69 −110.53 0.08 OU
Digit 4 length 57.85 −111.3 0.418† 59.17 −111.48 0.458† 57.85 −108.86 0.124 BM-OU
Digit 5 length 63.21 −122.02 0.289 65.21 −123.56 0.626† 63.21 −119.57 0.085 OU
Foot length 27.62 −50.82 0.256 29.8 −52.74 0.668† 27.62 −48.38 0.076 OU
Foot width 13.71 −23.02 0.283 15.74 −24.63 0.633† 13.71 −20.58 0.084 OU
Femur length 23.74 −43.07 0.595† 24.01 −41.16 0.23 23.74 −40.62 0.175 BM
Tibia length 14.29 −24.17 0.569† 14.74 −2263 0.264 14.29 −21.73 0.167 BM

†variables selected with high wAICc
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Table 5 Summary of the best fitting PGLS models for 4 principal components (PC1, PC2, PC3 and PC4) that explained nearly 80% 
of variance of the morphology and the proportion of habitat used (sand, ground, rock and branches)

Model λ Adjusted r2 Intercept Variables Slope Pp Pt AICc Wi
PC1~sand 0 0.14 0.08 Sand -0.207 0.188* 0.188* 14.017 0.189
PC1~sand+rock 0 0.15 0.18 Sand -0.280 0.013* 0.036 15.137 0.180

Rock -0.116 0.227
PC2~branches 0.44 0.16 0.04 Branches -1.044 0.012* 0.012 2.999 0.134
PC3~ground+branches 0 0.25 -0.008 Ground 0.169 0.072 0.005 2.196 0.200

Branches -1.132 0.008*
PC3~trunk 0.70 0.02 0.01 Trunk -0.126 0.188 0.188 -24.370 0.064
PC3~rock 0.72 0.04 -0.04 Rock 0.074 0.126 0.126 -25.040 0.090
PC3~ground 0.81 0.07 0.04 Ground -0.127 0.069 0.069 2-5.719 0.126
PC3~ground+trunk 0.79 0.08 0.05 Ground -0.114 0.103 0.114 -24.604 0.072

Trunk -0.103 0.274
PC3~sand+rock 0.78 0.10 -0.12 Sand 0.097 0.102 0.081 -25.423 0.109

Rock 0.128 0.029*

See Table S2 for all models. λ (Pagel’s phylogenetic signal), adjusted r2 (Adj r2), intercept and slopes were considered for those in-
formative variables based on the Akaike criterion (AICc and Wi). Pp means the partial P-value for each variable; Pt is the P-value 
for the complete model. *Significant results.

and 0.069) were not significant (P > 0.130). Another 
association identified occurred between PC2 and the use 
of branches, where branch lizards tend to have longer 
tibia and femur, wider femorotibial gastrocnemius but 
shorter peroneus longus origin tendon (Fig. 3b, Table 3). 
In the case of the particular analysis for the above of 0.65 
loads in the PCA, none of the morphological traits (Plol, 
Fgw, Fel, Til) showed significant slopes (between 0.057 
and 0.436; P > 0.69), although we may consider that Fel 
and Til are marginally significant (Fel~branches, λ = 
0.839, slope = 0.314, P = 0.079; Til~branches, λ = 0.788, 
slope = 0.436, P = 0.069). We have also identified an 
association between PC3 and the concomitant use of 
rock and sand, where lizards having such ecology tend 
to exhibit wider aponeurosis of the flexor digitorum 
longus muscle (Fig. 3c, Table 3). However, none of the 
morphological traits showed significant (P > 0.099) 
slopes (between −0.046 and 0.032) in our particular 
PGLS analyses. 

DISCUSSION
We studied the evolutionary processes through which 

morphological traits may have evolved in Tropiduri-
dae and Liolaemidae, testing phylogenetic evolutionary 
models to discriminate which one of the evolutionary 

hypotheses better fits the morphological data and es-
tablishing whether identified differences between mod-
els reflect ecomorphological associations. We found that 
there is not a unique evolutionary model for the differ-
ent morphological variables. Some of them fitted better 
for the Brownian Motion evolutionary model (Felsen-
stein 1985; Blomberg et al. 2003), suggesting a random 
path of evolution, while other variables fitted better in 
the Ornstein–Uhlembeck evolutionary model (Hansen 
1997; Butler & King 2004), suggesting a regime of vari-
ation or directional selection. None of the morpholog-
ical variables showed the best fit under the early burst 
evolutionary model. 

Our results partially recover the trend described by 
Harmon et al. (2010) for squamates in general and for 
liolaemids in particular, where the Ornstein–Uhlenbeck 
model best fits most of the morphological variables. It is 
worth mentioning that Harmon et al. (2010) evaluated 
body size and body shape based exclusively on external 
morphology, while our dataset also incorporates traits of 
myo-tendinous anatomy. Interestingly, in Tropiduridae 
and Liolaemidae, only 5 morphological variables fitted 
better in the Brownian motion model, in accordance 
with previous studies on Liolaemidae, suggesting these 
lizards as morphologically and ecologically conserved 
(Schulte et al. 2004; Tulli et al. 2009, 2012a,b). It has 
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Figure 3 Product-moment relationships between habitat use 
and morphology (principal components) according to PGLS 
models. Each panel shows on the x axis the habitat use and 
on the y axis (morphology) the contribution of each principal 
component (PC) for those relationships that were significant. 
Panel a) association between PC1 (with high contribution 
for peroneus longus insertion tendon length, peroneus brevis 
tendon length, femoral gastrocnemius sup length and flexor dig 
longus aponeurosis length) and use of sand; b) the relationship 
between PC2 (peroneus longus origin tendon length and 
femorotibial gastrocnemius width) and the use of branches and 
c) relationship between PC3 (flexor dig longus aponeurosis 
width) and the use of rock and sand partially. The orientation of 
arrows along the morphology axis indicates if the contribution 
of the variable increases (positive load contribution) or 
decreases (negative load contribution) with habitat use. For 
details see Table 4.

to be said that none of these papers tested the models of 
evolution. There is, however, enough recent evidence 
favoring the hypothesis that Liolaemidae consists of 
a mixture of conservative and adaptive traits, where 
phylogenetic clustering hampers adaptive responses 
(Pincheira-Donoso et al. 2009; Tulli et al. 2009, 

2012a,b). Recently, Pincheira-Donoso et al. (2015) 
found that Liolaemus lizards’ body size diversification 
conforms to an Ornstein–Uhlenbeck model with 
multiple trait optima. In the case of Tropiduridae, a 
broader ecological diversification in habitat use seems to 
be related to morphological variation and specialization 
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(Kohlsdorf et al. 2001, 2008; Grizante et al. 2010; 
Kohlsdorf & Navas 2012), despite specific indications 
of some morphological constraints too (see Kohlsdorf et 
al. 2004). Apparently both lineages show some degree 
of morphological conservatism, although it seems 
stronger in liolaemids. 

From a functional perspective, our results suggest 
that the evolution of important tendon traits that play a 
main role in the rotation and flexion of the metatarsus 
(Brinkman 1980) follows a pattern that deviates from 
random evolution (e.g. digital flexor tendons of digits 
3–5). The metatarsus design seems related to the speed 
running flexibility because in most lizards a relatively 
longer metatarsus is associated with higher sprint speeds 
(Russell & Bels 2001). Enhancement of functional 
possibilities elicited by morphological variation has 
also been suggested by our dataset in regards to the fifth 
pedal digit, which is articulated by the digital flexor 
tendon 5, the femoral gastrocnemius superficial muscle 
and the peroneus longus complex. These structures are 
also involved in the abduction and flexion of this digit 
during grasping (Russell & Rewcastle 1979; Brinkman 
1980), permitting exertion of a clasp grip around a 
branch (Robinson 1975; Abdala et al. 2014), which 
as a consequence very likely favors the invasion of 
spatial niches having narrow branches. Variations in 
lizard foot morphology, especially in relation to foot 
size, femur and tibia lengths, and fifth toe length, seem 
particularly relevant during evolutionary processes 
involving the colonization of arboreal habitats. Our 
data indicate that length of digits 4 and 5 and foot 
length and width show a trend to directional selection, 
concurring with Butler and King (2004) and Harmon 
et al. (2010); this evolutionary model is known as the 
Ornstein–Uhlenbeck evolutionary model. Interestingly, 
tibia and femur lengths follow a BM model, reinforcing 
the hypothesis settled on developmental biology that 
suggests a modular evolution of autopod and zeugopod 
in tetrapods (Huang et al. 2015) by showing that these 
modules might evolve following different models in the 
lizards we studied.

Lizards that exploit branches tend to have proportionally 
longer tibias, which contribute to elongated hind limbs 
that enhance sprint-speed (Bonine & Garland 1999; 
Bonino et al. 2011; Tulli et al. 2012a), while in slower 
species the tarsals and metatarsals tend to be shorter 
than the rest of the limb (Irschick & Jayne 1999). 
Interestingly, in our dataset the branch habitat use 
is exclusively associated with external morphology 

variables, while the associations with rock and sand 
involve both external and myo-tendinous traits.

Our results for species using sandy habitats suggest 
ecomorphological associations involving longer super-
ficial femoral gastrocnemius muscle in comparison with 
species that move mainly over trunks, rocks and ground. 
The gastrocnemius muscle is a plantar flexor that also 
bends the leg at the knee joint (Russell & Bauer 2008). 
Interestingly, this muscle tends to be wider in lizards ex-
hibiting pedal grasping (Abdala et al. 2014). We ob-
serve that in iguanid lizards from sandy habitats the leg 
segment tends to be elongated, as do the associated ten-
dons. This variation, represented only by the tendinous 
system, is also recovered in saxicolous lizards that ex-
hibit wider flexor digitorum longus aponeurosis. It 
should be considered that when muscles are longer, the 
force generated might be lower because muscles pro-
duce force over a narrower range of lengths (Higham & 
Nelson 2008). For example, aponeurotic and tendinous 
tissues can change in length with little or no variation 
in muscle fascicle lengths (Higham & Nelson 2008), a 
change produced in a way that most of the variation is 
settled in the tendon rather than in the muscle, reduc-
ing the need for extra work by muscle fibers (Wilson 
& Lichtwark 2011). Elongation of hind limb tendons 
has been reported by Snyder (1954) in bipedal lizards, 
where the distal ends of limb segments are lightened by 
elongated tendons and can be moved through the loco-
motor arc with less energy expenditure. We propose that 
this arrangement is also found in sandy lizards and like-
ly explains the high sprint speeds they usually attain 
(Tulli et al. 2012a).

The identified correlation between muscle-tendinous 
morphology and habitat use suggests that strict saxico-
lous lizards tend to exhibit wider flexor digitorum lon-
gus aponeurosis. This pattern of tendon/muscle relation-
ship contrasts the prediction that distal limb muscles 
should have longer tendons and very short muscle fasci-
cles (Bobbert 2001; Tulli et al. 2012b). Deviation from 
such prediction in saxicolous lizards might be explained 
by the higher resistance imposed by clinging to rocks 
(Tulli et al. 2011).

The discussion about ecomorphological evolution in 
squamates is centered on the concept of “ecomorphs” 
(see Williams 1972),  and one of the principal 
characteristics used to recognize ecomorphs is limb 
length (Losos 2009). Collins et al. (2013) also found 
morphological variables related to limb length to be 
ecomorphologically relevant in terrestrial lizards. 
These parameters were also included in our dataset for 



494

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

M. J. Tulli et al.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

© 2016 International Society of Zoological Sciences, Institute of Zoology/
    Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd

Tropiduridae and Liolaemidae, and clear and significant 
trends involving limb lengths have not been identified 
when these 2 families have been evaluated together. Our 
analyses suggest that this type of external morphology 
evolves only in association with branch-using species, 
although we recognize that the number of species 
from such habitat use in our dataset is low. In contrast, 
evolution of the internal muscle-tendinous morphology 
seems associated to all types of habitat usage in these 
lizard families. Thus, external morphology traits seem 
mostly conservative, except for species that exploit 
branches, a result that seems to explain why it is hard 
to visually recognize ecomorphs shared by tropidurid 
and liolaemid lizards, as ecomorphs are usually defined 
using patterns of external morphology (Losos 1990a,b, 
2009; Irschick & Losos 1996; Beutell & Losos 1999). 
The only ecomorphological study considering muscular 
traits of Anolis (Herrel et al. 2008) detected a tendency 
to differentiation in muscular mass between A. sagrei 
and A. valencienne. The Anolis ecomorphs, in particular, 
exist in clear association with arboreal habitats and 
islands characterized by high microhabitat structure 
complexity (e.g. in the same tree several species of 
Anolis may be observed in different parts of the tree), 
and each island in the Greater Antilles presents many 
specific niches, with the morphological diversity of 
Anolis being a factor that permits occupation of the 
different existing niches (Losos et al. 1998). In contrast, 
most of liolaemid and tropidurid species inhabit open 
areas, such as savannas and deserts (Cei 1986; Vitt 
1991), which are characterized by increased distances 
between shelters to be covered when escaping from 
predators (see Goodman 2009), which probably 
prevents extreme morphological diversification. It 
has been previously suggested that conservation of 
gross morphology may represent a mechanism to 
accommodate demands of a wide array of environmental 
challenges by permitting adequacy in all  such 
circumstances (Gans 1993; Abdala et al. 2014). This is 
the functionally intermediate morphology (Arnold 1998) 
already described for Liolaemid lizards, which have the 
ability to perform relatively well (or similarly badly) at 
several tasks and can be considered as “jack of all trades 
and master of none” (Tulli et al. 2012a), retaining an 
all-purpose morphology allowing them to use a variety 
of habitats. Thus, natural selection is acting on several 
traits and allows lizards to exploit several surfaces (Sathe 
& Husak 2015); therefore, a generalized morphology 
could represent a morphological optimum. It should be 
noted that this generalized morphology seems absent 

in Tropidurus lizards, which have demonstrated to be 
more versatile (Grizante et al. 201.0). The lineage, 
however, also includes generalist species such as the 
lizard Tropidurus torquatus and Tropidurus etheridgei, 
which use a broad variety of environments and exhibit 
suitable performance in physically contrasting surfaces 
(Vitt 1991; Cruz et al. 1998; Brandt et al. 2015). A next 
step, therefore, may consist of incorporating locomotor 
performance of tropidurids and liolaemids running along 
a wide range of surface types in order to directly access 
the functional implications of generalized morphologies 
in different ecological settings.
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