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Abstract We consider QCD radiative corrections to vector-
boson production in hadron collisions. We present the next-
to-next-to-leading order (NNLO) result of the hard-collinear
coefficient function for the all-order resummation of log-
arithmically enhanced contributions at small transverse
momenta. The coefficient function controls NNLO contri-
butions in resummed calculations at full next-to-next-to-
leading logarithmic accuracy. The same coefficient function
is used in applications of the subtraction method to perform
fully exclusive perturbative calculations up to NNLO.

The transverse-momentum (qT ) distribution of systems with
high invariant mass M (Drell–Yan lepton pairs, vector bo-
son(s), Higgs boson(s) and so forth) produced in hadronic
collisions is important for physics studies within and beyond
the Standard Model (SM).

The computation of these distributions in perturbative
QCD is complicated by the presence of large logarithmic
contributions of the form ln(M2/q2

T ) that need to be re-
summed to all perturbative orders in the QCD coupling αS.
The method to perform the resummation is known [1–8],
including recent developments on the discovered and re-
summed effects [9, 10] due to helicity and azimuthal cor-
relations in gluon fusion subprocesses. The structure of the
resummed calculation is organized in a process-independent
form that is controlled by a set of perturbative functions
with computable ‘resummation coefficients’. All the resum-
mation coefficients that are process independent are known
since some time [11–18] up to the second order in αS,
and the third-order coefficient A(3) has been obtained in
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Ref. [19]. The complete computations of the second-order
resummation coefficients have been carried out in Refs. [20]
and [21] for two benchmark processes, namely, the pro-
duction of the SM Higgs boson through gluon fusion and
vector-boson production through the Drell–Yan (DY) mech-
anism of quark–antiquark annihilation. The explicit ana-
lytic expressions for the O(α2

S) hard-collinear resummation
coefficients in the case of SM Higgs boson production in
the large-mtop limit have been presented in Ref. [22]. This
paper parallels Ref. [22]: we concentrate on single vector-
boson production, and we present the corresponding ana-
lytic expressions of the second-order hard-collinear coeffi-
cient functions H(2).

QCD predictions for vector-boson production at hadron
colliders are important for present and forthcoming stud-
ies at the Tevatron and the LHC. Resummed calculations
of the qT spectrum of vector bosons and of related observ-
ables are presented in Refs. [23–39]. Calculations for vector-
boson production at the fully exclusive level with respect
to the accompanying QCD radiation have been carried out
in Refs. [21, 40–43] up to the next-to-next-to-leading order
(NNLO) in perturbative QCD.

In this paper we compute the hard-collinear coefficient
function H(2) and, thus, the complete analytical expression
of the NNLO cross section for vector-boson production in
the small-qT region. These results have a twofold relevance,
in the context of both resummed and fixed-order calcula-
tions.

The knowledge of H(2) can be implemented in re-
summed calculations at full next-to-next-to-leading loga-
rithmic (NNLL) order to achieve uniform NNLO accuracy
in the small-qT region. In the case of vector-boson produc-
tion, this implementation has been carried out in Ref. [33] by
using the impact-parameter space resummation formalism
developed in Refs. [44, 45]. This formalism enforces a uni-
tarity constraint and thus it guarantees that (upon inclusion
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of H(2)) the resummed qT spectrum returns the complete
NNLO total cross section after integration over qT .

The subtraction method of Ref. [20] exploits the knowl-
edge of transverse-momentum resummation coefficients at
O(α2

S) to perform NNLO calculations at the fully exclu-
sive level. The Higgs boson coefficient functions presented
in Ref. [22] were used in the numerical computations of
Refs. [20, 46]. The coefficient functions presented in this pa-
per are precisely those that are needed for the actual imple-
mentation of this subtraction method in DY-type processes:
they are used in Refs. [21] and [47] for the NNLO numerical
computations of vector-boson production and of associated
production of a Higgs boson and a W boson. The diphoton
NNLO calculation of Ref. [48] also uses part of the results
of the present paper to treat the quark-antiquark annihilation
subprocess qq̄ → γ γ .

This paper is organized as follows. We first introduce our
notation and illustrate the NNLO calculation of the vector-
boson cross section at small values of qT . Then we recall the
transverse-momentum resummation formalism. Finally, we
present our NNLO results in analytic form and the relation
with the qT resummation coefficients at O(α2

S).
We briefly introduce the theoretical framework and our

notation. We consider the production of a vector boson V

(V = W±,Z and/or γ ∗) in hadron–hadron collisions. We
use the narrow width approximation and we treat the vec-
tor boson as an on-shell particle with mass M . The QCD
expression of the vector-boson transverse-momentum cross
section1 is

dσ

dq2
T

(qT ,M, s)

=
∑

a,b

∫ 1

0
dz1

∫ 1

0
dz2 fa/h1

(
z1,M

2)fb/h2

(
z2,M

2)

× dσ̂ab

dq2
T

(
qT ,M, ŝ = z1z2s;αS

(
M2)), (1)

where fa/hi
(x,μ2

F ) (a = qf , q̄f , g) are the parton densi-
ties of the colliding hadrons (h1 and h2) at the factoriza-
tion scale μF , and dσ̂ab/dq2

T are the partonic cross sections.
The centre-of-mass energy of the two colliding hadrons is
denoted by s, and ŝ is the partonic centre-of-mass energy.
We use parton densities as defined in the MS factoriza-
tion scheme, and αS(μ2

R) is the QCD running coupling at
the renormalization scale μR in the MS renormalization
scheme. In Eq. (1) and throughout the paper, the arbitrary
factorization and renormalization scales, μF and μR , are set
to be equal to the vector-boson mass M .

1If V = γ ∗ or if the vector boson V is not an on-shell particle, the
transverse-momentum cross section dσ/dq2

T has to be replaced by the
doubly differential distribution M2 dσ/dM2 dq2

T , where M is the in-
variant mass of V .

The partonic cross sections dσ̂ab/dq2
T are computable

in QCD perturbation theory as power series expansions in
αS(M2). We are interested in the perturbative contributions
that are large in the small-qT region (qT � M) and, even-
tually, singular in the limit qT → 0. To explicitly recall the
perturbative structure of these enhanced terms at small qT ,
we follow Ref. [22] and we introduce the cumulative par-
tonic cross section:2

∫ Q2
0

0
dq2

T

dσ̂ab

dq2
T

(
qT ,M, ŝ = M2/z;αS

(
M2))

≡
∑

c=qf ,q̄f ′
zσ

(0)
cc̄,V R̂V

cc̄←ab

(
z,M/Q0;αS

(
M2)), (2)

where the overall normalization of the function R̂V is de-
fined with respect to σ

(0)
qf q̄f ′ ,V , which is the Born level

cross section for the quark–antiquark annihilation subpro-
cess qf q̄f ′ → V (the quark flavours f and f ′ are equal if
V = Z,γ ∗). The partonic function R̂V has the following
perturbative expansion:

R̂V
cc̄←ab(z,M/Q0;αS)

= δcaδc̄bδ(1 − z) +
∞∑

n=1

(
αS

π

)n

R̂
V (n)
cc̄←ab(z,M/Q0). (3)

The next-to-leading order (NLO) and NNLO contributions
to the cumulative cross section in Eq. (2) are determined by
the functions R̂V (1) and R̂V (2), respectively. The small-qT

region of the cross section dσ̂ab/dq2
T is probed by perform-

ing the limit Q0 � M in Eq. (2). In this limit, the NLO and
NNLO functions R̂V (1) and R̂V (2) have the following be-
haviour:

R̂
V (1)
cc̄←ab(z,M/Q0) = l2

0R̂
(1;2)
cc̄←ab(z) + l0R̂

(1;1)
cc̄←ab(z)

+ R̂
(1;0)
cc̄←ab(z) + O

(
Q2

0/M
2), (4)

R̂
V (2)
cc̄←ab(z,M/Q0) = l4

0R̂
(2;4)
cc̄←ab(z) + l3

0R̂
(2;3)
cc̄←ab(z)

+ l2
0R̂

(2;2)
cc̄←ab(z) + l0R̂

(2;1)
cc̄←ab(z)

+ R̂
(2;0)
cc̄←ab(z) + O

(
Q2

0/M
2), (5)

where l0 = ln(M2/Q2
0). In Eqs. (4) and (5), the powers

of the large logarithm l0 are produced by the singular
(though integrable) behaviour of dσ̂ab/dq2

T at small values
of qT . The coefficients R̂(1;m) (with m ≤ 2) and R̂(2;m) (with

2In our notation, the subscripts c and c̄ denote a quark and an anti-
quark (or vice versa) that do not necessarily have the same flavour. The
flavour structure depends on the produced vector boson V and it is (im-
plicitly) specified by the specific form of the Born level cross section
σ

(0)
cc̄,V .
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m ≤ 4) of the large logarithms are independent of Q0; these
coefficients depend on the partonic centre-of-mass energy ŝ

and, more precisely, they are functions of the energy frac-
tion z = M2/ŝ. As is well known (see also Eq. (7)), the
logarithmic coefficients R̂(n;m) do not depend on the spe-
cific vector boson that is produced by qq̄ annihilation and,
therefore, we have removed the explicit superscript V (i.e.,
R̂V (n;m) = R̂(n;m)).

In this paper we present the result of the computation of
the cumulative cross section in Eq. (2) up to NNLO. The par-
tonic calculation is performed in analytic form by neglect-
ing terms of O(Q2

0/M
2) in the limit Q0 � M . Therefore,

we determine the coefficient functions R̂(n;m)(z) in Eqs. (4)
and (5).

To perform our calculation, we follow the same method
as used in Ref. [22] to evaluate the transverse-momentum
cross section for Higgs boson production. The qT integra-
tion in Eq. (2) is thus rewritten in the following form:

∫ Q2
0

0
dq2

T

dσ̂ab

dq2
T

(qT ,M, ŝ;αS)

≡
∫ +∞

0
dq2

T

dσ̂ab

dq2
T

(qT ,M, ŝ;αS)

−
∫ +∞

Q2
0

dq2
T

dσ̂ab

dq2
T

(qT ,M, ŝ;αS)

= σ̂
(tot)
ab (M, ŝ;αS)

−
∫ ∞

Q2
0

dq2
T

∫ +∞

−∞
dŷ

dσ̂ab

dŷdq2
T

(ŷ, qT ,M, ŝ;αS), (6)

where σ̂
(tot)
ab is the vector-boson total (i.e. integrated over

qT ) cross section and dσ̂ab/dŷ dq2
T is the corresponding

doubly differential cross section with respect to the trans-
verse momentum and rapidity (ŷ is the rapidity of V in the
centre-of-mass frame of the two colliding partons a and b)
of the vector boson. The total cross section σ̂

(tot)
ab (M, ŝ;αS)

is known [49, 50] in analytic form up to NNLO (i.e., up
to O(α2

Sσ
(0)
V )). In the region of large or, more precisely,

non-vanishing values of qT , the differential distribution
dσ̂ab/dŷ dq2

T is also known [51–53] in analytic form up

to O(α2
Sσ

(0)
V ). Using these known results and exploiting

Eq. (6), we can compute the cumulative partonic cross sec-
tion up to the NNLO. Note that qT > Q0 in the last term
on the right-hand side of Eq. (6). Therefore the correspond-
ing integration of the expression dσ̂ab/dŷ dq2

T [51–53] over
ŷ and q2

T is finite as long as Q0 
= 0: using the explicit
expression of dσ̂ab/dŷ dq2

T from3 Ref. [52], we carry out
the integration in analytic from in the limit Q0 � M (i.e.,

3We list some typos that we have found and corrected in some formulae

of Ref. [52]. In Eq. (2.12), B
qG

2 has to be replaced by B
qG

2 + C
qG

2 ,

we neglect terms of O(Q2
0/M

2) on the right-hand side of
Eq. (6)). The result of our calculation4 confirms the logarith-
mic structure in Eqs. (4) and (5), and it allows us to deter-
mine the NLO and NNLO coefficients R̂(1;m) (with m ≤ 2)
and R̂(2;m) (with m ≤ 4) of the cumulative cross section in
Eq. (2).

The results of the coefficient functions R̂(n;m)(z) are con-
veniently expressed in terms of transverse-momentum re-
summation coefficients. Therefore, before presenting the re-
sults, we recall how these functions are related to the pertur-
bative coefficients of the transverse-momentum resumma-
tion formula for vector-boson production [7]. This relation
also shows that from the knowledge of Eq. (5) we can fully
determine the NNLO rapidity distribution of the vector bo-
son in the small-qT region.

To present the transverse-momentum resummation for-
mula, we first decompose the partonic cross section dσ̂ab/

dq2
T in Eq. (1) in the form dσ̂ab = dσ̂

(sing)

ab + dσ̂
(reg)

ab . The

singular component, dσ̂
(sing)

ab , contains all the contributions
that are enhanced at small qT . These contributions are
proportional to δ(q2

T ) or to large logarithms of the type

1/q2
T lnm(M2/q2

T ). The remaining component, dσ̂
(reg)

ab , of
the partonic cross section is regular order-by-order in αS

as qT → 0: the integration of dσ̂
(reg)

ab /dq2
T over the range

0 ≤ qT ≤ Q0 leads to a result that, at each fixed order in αS,
it vanishes in the limit Q0 → 0. Therefore, dσ̂

(reg)

ab only con-
tributes to the terms of O(Q2

0/M
2) on the right-hand side of

Eqs. (4) and (5).
Inserting the decomposition dσ̂ab = dσ̂

(sing)

ab + dσ̂
(reg)

ab

in Eq. (1), we obtain a corresponding decomposition,
dσ = dσ (sing) + dσ (reg), of the hadronic cross section. The
transverse-momentum resummation formula for the singular
component of the qT cross section at fixed value of the ra-
pidity y (the rapidity is defined in the centre-of-mass frame
of the two colliding hadrons) of the vector boson reads [7, 8]

dσ (sing)

dy dq2
T

(y, qT ,M, s)

= M2

s

∑

c=qf ,q̄f ′
σ

(0)
cc̄,V

∫ +∞

0
db

b

2
J0(bqT )Sq(M,b)

×
∑

a1,a2

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2

[
HF C1C2

]
cc̄;a1a2

×fa1/h1

(
x1/z1, b

2
0/b

2)fa2/h2

(
x2/z2, b

2
0/b

2), (7)

and C
qG

2 has to be replaced by C
qG

3 . In Eq. (A.4), two signs have to be

changed: B
qG

1 has to be replaced by −B
qG

1 , and AqG has to be replaced
by −AqG. In the first line of Eq. (A.10), the term CF (fu − fs − ft )

has to be replaced by CA(fu − fs − ft ).
4Some technical details related to the limit Q0 � M are illustrated in
Ref. [22].
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where the kinematical variables xi (i = 1,2) are x1 =
e+yM/

√
s and x2 = e−yM/

√
s. The integration variable

b is the impact parameter, J0(bqT ) is the zeroth-order
Bessel function, and b0 = 2e−γE (γE = 0.5772 . . . is the
Euler number) is a numerical coefficient. The symbol
[HF C1C2]cc̄;a1a2 briefly denotes the following function of
the longitudinal-momentum fractions z1 and z2:
[
HDYC1C2

]
cc̄;a1a2

= HDY
q

(
αS

(
M2))Cca1

(
z1;αS

(
b2

0/b
2))

× Cc̄a2

(
z2;αS

(
b2

0/b
2)), (8)

where HDY
q (αS) and Cca(z;αS) (c = qf , q̄f ) are perturba-

tive functions of αS (see Eqs. (12)–(13)).
The quark form factor Sq(M,b) in Eq. (7) is a process-

independent quantity [7, 8, 11–13]. Its functional depen-
dence on M and b is controlled by two perturbative func-
tions, which are usually denoted as Aq(αS) and Bq(αS) (see,
e.g., Ref. [10] that uses the same notation as in Eq. (7)).
Their corresponding nth order perturbative coefficients are
A

(n)
q and B

(n)
q . The coefficients A

(1)
q , B

(1)
q , A

(2)
q [11–13] and

B
(2)
q [14, 15] are known: their knowledge fully determines

the perturbative expression of Sq(M,b) up to O(α2
S).

The perturbative function HDY
q (αS) in Eq. (8) is pro-

cess dependent, since it is directly related to the production
mechanism of the vector boson through quark–antiquark an-
nihilation. However, HDY

q is independent of the specific type
of vector boson V (V = W±,Z, γ ∗), and we have intro-
duced the generic superscript DY.

The partonic functions Cqf a and Cq̄f a in Eq. (8) are in-
stead process independent, as a consequence of the univer-
sality features of QCD collinear radiation. Owing to their
process independence, these partonic functions fulfil the fol-
lowing relations:

Cqf qf ′ (z;αS)

= Cq̄f q̄f ′ (z;αS)

≡ Cqq(z;αS)δff ′ + Cqq ′(z;αS)(1 − δff ′), (9)

Cqf q̄f ′ (z;αS)

= Cq̄f qf ′ (z;αS)

≡ Cqq̄(z;αS)δff ′ + Cqq̄ ′(z;αS)(1 − δff ′), (10)

Cqf g(z;αS) = Cq̄f g(z;αS) ≡ Cqg(z;αS), (11)

which are a consequence of charge conjugation invariance
and flavour symmetry of QCD. The dependence of the ma-
trix Cca on the parton labels is thus fully specified by the
five independent quark functions Cqq , Cqq ′ , Cqq̄ , Cqq̄ ′ and
Cqg on the right-hand side of Eqs. (9)–(11).

We recall that the function HDY
q (αS), the quark func-

tions Cqa(αS) and the perturbative function Bq(αS) of the

quark form factor are not separately computable in an un-
ambiguous way. Indeed, these three functions are related by
a renormalization-group symmetry [8] that follows from the
b-space factorization structure of Eq. (7). The unambiguous
definition of these three functions thus requires the specifi-
cation5 of a resummation scheme [8]. Note, however, that
considering the perturbative expansion6 of Eq. (7) (i.e., the
perturbative expansion of the singular component of the qT

cross section), the resummation-scheme dependence exactly
cancels order-by-order in αS.

The perturbative expansion of the quark functions
Cqa(αS) and of the vector-boson function HDY

q (αS) is de-
fined as follows:

Cqa(z;αS) = δqaδ(1 − z) +
∞∑

n=1

(
αS

π

)n

C(n)
qa (z),

(
a = g,q, q̄, q ′, q̄ ′), (12)

HDY
q (αS) = 1 +

∞∑

n=1

(
αS

π

)n

HDY(n)
q . (13)

The first-order coefficient function C
(1)
qg (z) is independent of

the resummation scheme; its expression is [14, 15]

C(1)
qg (z) = 1

2
z(1 − z). (14)

The first-order coefficients C
(1)

qq ′(z), C
(1)
qq̄ (z) and C

(1)

qq̄ ′(z)
vanish,

C
(1)

qq ′(z) = C
(1)
qq̄ (z) = C

(1)

qq̄ ′(z) = 0, (15)

while the coefficients C
(1)
qq (z) and H

DY(1)
q fulfil the follow-

ing relation [14, 15, 17, 18]:

C(1)
qq (z) + 1

2
HDY(1)

q δ(1 − z)

= CF

2

((
π2

2
− 4

)
δ(1 − z) + 1 − z

)
. (16)

The separate determination of C
(1)
qq (z) and H

DY(1)
q requires

the specification of a resummation scheme. For instance,
considering the resummation scheme in which the coeffi-
cient H

DY(1)
q vanishes, the right-hand side of Eq. (16) gives

the value of C
(1)
qq (z), and the corresponding value of the

5The reader who is not interested in issues related to the specifica-
tion of a resummation scheme can simply assume that H DY

q (αS) ≡ 1

throughout this paper. The choice HDY
q (αS) = 1 is customarily used in

most of the literature on qT resummation for vector-boson production.
6The resummation-scheme dependence also cancels by consistently
expanding Eq. (7) in terms of classes of resummed (leading, next-to-
leading and so forth) logarithmic contributions [44].
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quark form factor coefficient B
(2)
q is explicitly computed in

Refs. [14, 15]. The computation of the second-order coeffi-
cients C

(2)
qq , C

(2)

qq ′ , C
(2)
qq̄ , C

(2)

qq̄ ′ , C
(2)
qg and H

DY(2)
q is the aim of

the calculation described in this paper.
To the purpose of presenting the NNLO results for the

cumulative cross section in Eq. (2), we also define the fol-
lowing hard-collinear coefficient function:

HDY
qq̄←ab(z;αS) ≡ HDY

q (αS)

∫ 1

0
dz1

∫ 1

0
dz2 δ(z − z1z2)

× Cqa(z1;αS)Cq̄b(z2;αS), (17)

which is directly related to the coefficient function in Eq. (8).
The function HDY depends only on the energy fraction z,
and it arises after integration of the resummation formula
(7) over the rapidity of the vector boson. Note that HDY is
independent of the resummation scheme [8]. The perturba-
tive expansion of the function HDY directly follows from
Eqs. (12)–(13). We have

HDY
qq̄←ab(z;αS) = δqaδq̄bδ(1 − z)

+
∞∑

n=1

(
αS

π

)n

HDY(n)
qq̄←ab(z), (18)

where the first-order and second-order contributions are

HDY(1)
qq̄←ab(z) = δqaδq̄bδ(1 − z)HDY(1)

q

+ δqaC
(1)
q̄b (z) + δq̄bC

(1)
qa (z), (19)

HDY(2)
qq̄←ab(z) = δqaδq̄bδ(1 − z)HDY(2)

q + δqaC
(2)
q̄b (z)

+ δq̄bC
(2)
qa (z)

+ HDY(1)
q

(
δqaC

(1)
q̄b (z) + δq̄bC

(1)
qa (z)

)

+ (
C(1)

qa ⊗ C
(1)
q̄b

)
(z). (20)

In Eq. (20) and in the following, the symbol ⊗ denotes
the convolution integral (i.e., we define (g ⊗ h)(z) ≡∫ 1

0 dz1
∫ 1

0 dz2 δ(z − z1z2)g(z1)h(z2)).
In the limit Q0 � M , the perturbative expansion of the

cumulative partonic cross section in Eq. (2) can directly be
related to the resummation coefficients of Eq. (7). We refer
the reader to Ref. [22] for a concise illustration of this re-
lation and to Ref. [44] for more technical details. The NLO
and NNLO functions R̂V (1) and R̂V (2) in Eqs. (4) and (5)
have the following expressions:

R̂
V (1)
qq̄←ab(z,M/Q0)

= l2
0Σ

DY(1;2)
qq̄←ab (z) + l0Σ

DY(1;1)
qq̄←ab (z)

+ HDY(1)
qq̄←ab(z) + O

(
Q2

0/M
2), (21)

R̂
V (2)
qq̄←ab(z,M/Q0)

= l4
0Σ

DY(2;4)
qq̄←ab (z) + l3

0Σ
DY(2;3)
qq̄←ab (z) + l2

0Σ
DY(2;2)
qq̄←ab (z)

+ l0
(
Σ

DY(2;1)
qq̄←ab (z) − 16ζ3Σ

DY(2;4)
qq̄←ab (z)

)

+ (
HDY(2)

qq̄←ab(z) − 4ζ3Σ
DY(2;3)
qq̄←ab (z)

) + O
(
Q2

0/M
2),

(22)

where we have used the same notation as in Ref. [44]. The
explicit expressions of the coefficient functions Σ

DY(n;m)
qq̄←ab (z)

in terms of the resummation coefficients are given in
Eqs. (63), (64), (66)–(69) of Ref. [44] (we have to set
μR = μF = Q = M , where μR,μF and Q are the auxiliary
scales of Ref. [44]) and are not reported here. The coeffi-
cients HDY(1)

qq̄←ab and HDY(2)
qq̄←ab are exactly those in Eqs. (19)

and (20) (they are also given in Eqs. (65) and (70) of
Ref. [44]) The first-order terms Σ

DY(1;2)
qq̄←ab and Σ

DY(1;1)
qq̄←ab de-

pend on the quark form factor Sq(M,b). The second-order

terms Σ
DY(2;m)
qq̄←ab depend on HDY(1)

qq̄←ab and on the quark form

factor Sq(M,b) up to O(α2
S). The numerical coefficient

ζ3  1.202 . . . (ζk is the Riemann ζ -function) on the right-
hand side of Eq. (22) originates from the Bessel transfor-
mations (see, e.g., Eqs. (B.18) and (B.30) in Appendix B of
Ref. [44]).

We now document our results of the NNLO computation
of the cumulative partonic cross section. Using Eqs. (21)
and (22), the results for R̂V (1) and R̂V (2) allow us to ex-
tract ΣDY(n;m) and HDY(n) up to O(α2

S). The explicit re-

sult of the NLO function R̂V (1)(z) confirms the expressions
of Σ

DY(1;2)
qq̄←ab (z), Σ

DY(1;1)
qq̄←ab (z) and HDY(1)

qq̄←ab(z), as predicted
by the qT resummation coefficients at O(αS). At NNLO,
the present knowledge [11–15] of the qT resummation co-
efficients at O(α2

S) predicts the expressions of the terms

Σ
DY(2;m)
qq̄←ab (z), with m = 1,2,3,4. Our result for the NNLO

function R̂V (2)(z) confirms this prediction, and it allows us
to extract the explicit expression of the second-order coeffi-
cient function HDY(2)

qq̄←ab(z).
We obtain

HDY(2)
qq̄←qq̄ (z)

= CACF

{(
7ζ3

2
− 101

27

)(
1

1 − z

)

+

+
(

59ζ3

18
− 1535

192
+ 215π2

216
− π4

240

)
δ(1 − z)

+ 1 + z2

1 − z

(
−Li3(1 − z)

2
+ Li3(z)

− Li2(z) log(z)

2
− 1

2
Li2(z) log(1 − z) − 1

24
log3(z)

− 1

2
log2(1 − z) log(z) + 1

12
π2 log(1 − z) − π2

8

)
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+ 1

1 − z

(
−1

4

(
11 − 3z2)ζ3

− 1

48

(−z2 + 12z + 11
)

log2(z)

− 1

36

(
83z2 − 36z + 29

)
log(z) + π2z

4

)

+ (1 − z)

(
Li2(z)

2
+ 1

2
log(1 − z) log(z)

)

+ z + 100

27
+ 1

4
z log(1 − z)

}

+ CF nF

{
14

27

(
1

1 − z

)

+

+ 1

864

(
192ζ3 + 1143 − 152π2)δ(1 − z)

+ (1 + z2)

72(1 − z)
log(z)

(
3 log(z) + 10

)

+ 1

108
(−19z − 37)

}

+ C2
F

{
1

4

(
−15ζ3 + 511

16
− 67π2

12
+ 17π4

45

)
δ(1 − z)

+ 1 + z2

1 − z

(
Li3(1 − z)

2
− 5Li3(z)

2

+ 1

2
Li2(z) log(1 − z) + 3Li2(z) log(z)

2

+ 3

4
log(z) log2(1 − z) + 1

4
log2(z) log(1 − z)

− 1

12
π2 log(1 − z) + 5ζ3

2

)

+ (1 − z)

(
−Li2(z) − 3

2
log(1 − z) log(z)

+ 2π2

3
− 29

4

)
+ 1

24
(1 + z) log3(z)

+ 1

1 − z

(
1

8

(−2z2 + 2z + 3
)

log2(z)

+ 1

4

(
17z2 − 13z + 4

)
log(z)

)

− z

4
log(1 − z)

}

+ CF

{
1

z
(1 − z)

(
2z2 − z + 2

)

×
(

Li2(z)

6
+ 1

6
log(1 − z) log(z) − π2

36

)

+ 1

216z
(1 − z)

(
136z2 − 143z + 172

)

− 1

48

(
8z2 + 3z + 3

)
log2(z)

+ 1

36

(
32z2 − 30z + 21

)
log(z)

+ 1

24
(1 + z) log3(z)

}
, (23)

HDY(2)

qq̄←qq̄ ′(z)

= CF

{
1

12z
(1 − z)

(
2z2 − z + 2

)

×
(

Li2(z) + log(1 − z) log(z) − π2

6

)

+ 1

432z
(1 − z)

(
136z2 − 143z + 172

)

+ 1

48
(1 + z) log3(z) − 1

96

(
8z2 + 3z + 3

)
log2(z)

+ 1

72

(
32z2 − 30z + 21

)
log(z)

}
, (24)

HDY(2)
qq̄←qq(z) = CF

(
CF − 1

2
CA

){
1 + z2

1 + z

(
3Li3(−z)

2

+ Li3(z) + Li3

(
1

1 + z

)
− Li2(−z) log(z)

2

− Li2(z) log(z)

2
− 1

24
log3(z) − 1

6
log3(1 + z)

+ 1

4
log(1 + z) log2(z) + π2

12
log(1 + z) − 3ζ3

4

)

+ (1 − z)

(
Li2(z)

2
+ 1

2
log(1 − z) log(z) + 15

8

)

− 1

2
(1 + z)

(
Li2(−z) + log(z) log(1 + z)

)

+ π2

24
(z − 3) + 1

8
(11z + 3) log(z)

}

+ CF

{
1

12z
(1 − z)

(
2z2 − z + 2

)

×
(

Li2(z) + log(1 − z) log(z) − π2

6

)

+ 1

432z
(1 − z)

(
136z2 − 143z + 172

)

− 1

96

(
8z2 + 3z + 3

)
log2(z)

+ 1

72

(
32z2 − 30z + 21

)
log(z)

+ 1

48
(1 + z) log3(z)

}
, (25)
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HDY(2)

qq̄←qq ′(z) = HDY(2)

qq̄←qq̄ ′(z), (26)

HDY(2)
qq̄←qg(z)

= CA

{
− 1

12z
(1 − z)

(
11z2 − z + 2

)
Li2(1 − z)

+ (
2z2 − 2z + 1

)(Li3(1 − z)

8

− 1

8
Li2(1 − z) log(1 − z) + 1

48
log3(1 − z)

)

+ (
2z2 + 2z + 1

)(3Li3(−z)

8

+ Li3( 1
1+z

)

4
− Li2(−z) log(z)

8
− 1

24
log3(1 + z)

+ 1

16
log2(z) log(1 + z) + 1

48
π2 log(1 + z)

)

+ 1

4
z(1 + z)Li2(−z) + zLi3(z)

− 1

2
zLi2(1 − z) log(z) − zLi2(z) log(z)

− 3

8

(
2z2 + 1

)
ζ3 − 149z2

216

− 1

96

(
44z2 − 12z + 3

)
log2(z)

+ 1

72

(
68z2 + 6π2z − 30z + 21

)
log(z)

+ π2z

24
+ 43z

48
+ 43

108z
+ 1

48
(2z + 1) log3(z)

− 1

2
z log(1 − z) log2(z) − 1

8
(1 − z)z log2(1 − z)

+ 1

4
z(1 + z) log(1 + z) log(z)

+ 1

16
(3 − 4z)z log(1 − z) − 35

48

}

+ CF

{(
2z2 − 2z + 1

)(
ζ3 − Li3(1 − z)

8

− Li3(z)

8
+ 1

8
Li2(1 − z) log(1 − z)

+ Li2(z) log(z)

8
− 1

48
log3(1 − z)

+ 1

16
log(z) log2(1 − z) + 1

16
log2(z) log(1 − z)

)

− 3z2

8
− 1

96

(
4z2 − 2z + 1

)
log3(z)

+ 1

64

(−8z2 + 12z + 1
)

log2(z)

+ 1

32

(−8z2 + 23z + 8
)

log(z)

+ 5

24
π2(1 − z)z + 11z

32
+ 1

8
(1 − z)z log2(1 − z)

− 1

4
(1 − z)z log(1 − z) log(z)

− 1

16
(3 − 4z)z log(1 − z) − 9

32

}
, (27)

HDY(2)
qq̄←gg(z) = − z

2

(
1 − z + 1

2
(1 + z) log(z)

)
, (28)

where CF = (N2
c − 1)/(2Nc),CA = Nc (Nc is the number

of colours in SU(Nc) QCD), nF is the number of quark
flavours and Lik(z) (k = 2,3) are the usual polylogarithm
functions,

Li2(z) = −
∫ z

0

dt

t
ln(1 − t),

(29)

Li3(z) =
∫ 1

0

dt

t
ln(t) ln(1 − zt).

We comment on the vector-boson results in Eqs. (23)–
(28) and on the ensuing determination of the second-order
coefficients C

(2)
qq , C

(2)

qq ′ , C
(2)
qq̄ , C

(2)

qq̄ ′ , C
(2)
qg and H

DY(2)
q in

Eqs. (12) and (13).
The parton matrix HDY(2)

qq̄←ab is completely specified by the

six entries7 in Eqs. (23)–(28): the quark–quark functions
HDY(2)

qq̄←qq̄ , HDY(2)

qq̄←qq̄ ′ , HDY(2)
qq̄←qq , HDY(2)

qq̄←qq ′ , the quark–gluon

function HDY(2)
qq̄←qg and the gluon–gluon function HDY(2)

qq̄←gg .
Using Eq. (20), in the gluon–gluon channel we have

HDY(2)
qq̄←gg(z) = (

C(1)
qg ⊗ C(1)

qg

)
(z). (30)

We see that the second-order coefficient function HDY(2)
qq̄←gg(z)

is fully determined by the qT resummation coefficients at
O(αS). Using the value of C

(1)
qg in Eq. (14), the expression

on the right-hand side of Eq. (30) is in complete agreement
with the result in Eq. (28). Therefore, our explicit compu-
tation of the NNLO partonic function R̂

V (2)
qq̄←gg represents a

consistency check of the resummation formula (7).
Considering the quark–gluon channel, Eq. (20) can be re-

cast in the following form:

C(2)
qg (z) + 1

2
HDY(1)

q C(1)
qg (z)

= HDY(2)
qq̄←qg(z) − 1

2

(
HDY(1)

qq̄←qq̄ ⊗ C(1)
qg

)
(z), (31)

7The other non-vanishing entries are obtained by the symmetry rela-
tion HDY

qq̄←ab = HDY
qq̄←b̄ā

. Several entries of the second-order matrix

HDY(2)
qq̄←ab are vanishing because of Eq. (15).
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where we have used HDY(1)
qq̄←qq̄ (z) = H

DY(1)
q δ(1 − z) +

2C
(1)
qq (z) (see Eq. (19)). The relation (31) can be used to de-

termine C
(2)
qg (z) from the knowledge of HDY(2)

qq̄←qg and of the
qT resummation coefficients at O(αS). Inserting the first-
order results of Eqs. (14)–(16) in Eq. (31), we explicitly
have

C(2)
qg (z) + 1

4
HDY(1)

q z(1 − z)

= HDY(2)
qq̄←qg(z) − CF

4

[
z log(z) + 1

2

(
1 − z2)

+
(

π2

2
− 4

)
z(1 − z)

]
, (32)

where HDY(2)
qq̄←qg is given in Eq. (27). Note that the right-hand

side of Eq. (31) (or Eq. (32)) is resummation-scheme in-
dependent. Analogously to Eq. (16), the dependence of C

(2)
qg

on the resummation scheme is thus parametrized by the first-
order coefficient H

DY(1)
q on the left-hand side of Eq. (32).

The process-independent coefficient functions C
(2)
qq (z),

C
(2)

qq ′(z) C
(2)
qq̄ (z) and C

(2)

qq̄ ′(z) are obtained analogously to

C
(2)
qg (z). Considering the flavour diagonal quark–quark

channel, Eq. (20) gives

2C(2)
qq (z) + δ(1 − z)

[
HDY(2)

q − 3

4

(
HDY(1)

q

)2]

+ 1

2
HDY(1)

q HDY(1)
qq̄←qq̄ (z)

= HDY(2)
qq̄←qq̄ (z) − 1

4

(
HDY(1)

qq̄←qq̄ ⊗ HDY(1)
qq̄←qq̄

)
(z), (33)

where the right-hand side of Eq. (33) is expressed in terms
of resummation-scheme independent functions. Inserting
Eqs. (14)–(16) in Eq. (33), we explicitly obtain

2C(2)
qq (z) + δ(1 − z)

[
HDY(2)

q − 3

4

(
HDY(1)

q

)2

+ CF

4

(
π2 − 8

)
HDY(1)

q

]
+ 1

2
CF HDY(1)

q (1 − z)

= HDY(2)
qq̄←qq̄ (z) − C2

F

4

[
δ(1 − z)

(π2 − 8)2

4

+ (
π2 − 10

)
(1 − z) − (1 + z) ln z

]
, (34)

where HDY(2)
qq̄←qq̄ is given in Eq. (23). We observe that C

(2)
qq (z)

includes a resummation-scheme dependent part that de-
pends on H

DY(1)
q and H

DY(2)
q . We also recall [8] that the

resummation-scheme invariance relates C
(2)
qq , H

DY(2)
q and

the third-order coefficient B
(3)
q of the quark form factor.

Considering the flavour off-diagonal quark–quark chan-
nel in Eq. (20), we obtain

C
(2)
qq̄ (z) = HDY(2)

qq̄←qq(z),

C
(2)

qq ′(z) = HDY(2)

qq̄←qq̄ ′(z), (35)

C
(2)

qq̄ ′(z) = HDY(2)

qq̄←qq ′(z),

where HDY(2)

qq̄←qq̄ ′ , HDY(2)
qq̄←qq , and HDY(2)

qq̄←qq ′ are given in
Eqs. (24)–(26). The off-diagonal second-order coefficients
C

(2)
qq̄ (z), C

(2)

qq ′(z) and C
(2)

qq̄ ′(z) are resummation-scheme inde-

pendent. From Eq. (26) we observe that we have C
(2)

qq ′(z) =
C

(2)

qq̄ ′(z). The equality between Cqq ′(z) and Cqq̄ ′(z) is ex-
pected to be violated at higher perturbative orders (i.e., we
expect C

(3)

qq ′(z) 
= C
(3)

qq̄ ′(z)).
In this paper we have considered QCD radiative correc-

tions to vector-boson production in hadron–hadron colli-
sions. We have presented the analytic result of the NNLO
calculation of the vector-boson cross section at small values
of qT (see Eqs. (2) and (5)). The NNLO result is compared
(see Eq. (22)) with the predictions of transverse-momentum
resummation. The comparison gives a second-order cross-
check of the all-order resummation formula (7), and it al-
lows us to determine the previously unknown resummation
coefficients at O(α2

S). These are the coefficient functions

HDY(2)
qq̄←ab(z) (see Eqs. (23)–(28)) and the related coefficients

C
(2)
qg , C

(2)
qq , C

(2)

qq ′(z), C
(2)
qq̄ (z) and C

(2)

qq̄ ′(z) (see Eqs. (32), (34)
and (35)), which control the dependence on the rapidity of
the vector boson. The knowledge of these second-order co-
efficients is relevant for phenomenological applications of
both resummed and fixed-order QCD computations. These
coefficients have been already implemented in resummed
calculations of the inclusive qT distribution at full NNLL
accuracy [33]. Using the method of Ref. [20], the same coef-
ficients have been used to perform the fully exclusive NNLO
perturbative calculations of Refs. [21] and [47].

Acknowledgements This work was supported in part by UBA-
CYT, CONICET, ANPCyT, INFN and the Research Executive Agency
(REA) of the European Union under the Grant Agreement number
PITN-GA-2010-264564 (LHCPhenoNet, Initial Training Network).

Note added Shortly after the Journal submission of this paper,
Ref. [54] presented an NNLO calculation of the vector-boson
transverse-momentum distribution at small qT . In particular, the
second-order quark–quark coefficient function HDY(2)

qq̄←qq̄ (z) or, equiv-

alently, the quark-to-quark coefficient function C
(2)
qq (z) (after having

set H
DY(1)
q = H

DY(2)
q = 0) is computed by using a method (based

on transverse-momentum-dependent parton distributions) that is com-
pletely independent of the method used in our calculation. The result of
C

(2)
qq (z) obtained in Ref. [54] fully agrees with that in our Eq. (34). This

agreement is a relevant crosscheck of the result of the two independent
calculations.
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