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Rapid progress of experimental biology has provided a huge flow of quantitative data,
which can be analyzed and understood only through the application of advanced tech-
niques recently developed in theoretical sciences. On the other hand, synthetic biology
enabled us to engineer biological models with reduced complexity. In this review we dis-
cuss that a multidisciplinary approach between this sciences can lead to deeper under-
standing of the underlying mechanisms behind complex processes in biology. Following
the mini symposia “Noise and oscillations in biological systems” on Physcon 2011 we
have collected different research examples from theoretical modeling, experimental and
synthetic biology.
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1. Introduction

Recent decade can be associated with a real revolution in molecular biology. Se-
quencing of human genome, pioneering steps in understanding the role of miRNAs
in genome processing, epigenetics studies, and increased complexity in all aspects of
molecular biology, from genome to protein turnover, all this become possible due to
rapid progress of high throughput technologies which provided unprecedented flow
of information from experimental studies. It soon became clear that we have more
data that we can analyze and understand with classical approaches to data analysis
and theoretical modeling. The overflow of bio-information can be treated only with
sophisticated and newly developed techniques for statistical analysis and numer-
ical modeling. Fortunately, rapid progress in data mining was accompanied with
equally fast development of computer hardware, nonlinear dynamics and numerical
techniques which moved theoretical modeling on a new niveau.

Modeling can be not only numerical - one can use synthetic biology to construct
biological synthetic models of more complex real systems. This is especially true
for synthetic genetic networks which operate almost independently from the rest
of cellular machinery and hence provide us with a test system of reduced com-
plexity. Such synthetic genetic networks allow to study complicated interaction of
gene expression in more precise way. And again, recent decade manifested itself
in pioneering construction of genetic switches, oscillators or logical networks. Due
to this factors, the flow of information between theoretical modeling, experimental
and synthetic biology is especially interesting nowadays and make multidisciplinary
approaches really productive. We analyze briefly this flow in Fig.1.

In this review, following the mini symposia ”Noise and oscillations in biolog-
ical systems” at the conference Physcon 2011 in León, Spain we have collected
examples which use this multidisciplinary approach to apply theoretical modeling
to understand functioning of more complex systems in experimental and synthetic
biology.

2. Delayed Coupling Theory of Vertebrate Segmentation (S. Ares,
L.G. Morelli, A.C. Oates, and F. Jülicher)

The body plan of all vertebrate animals has a segmented organization that is re-
flected in the repeated arrangement of vertebra and ribs. This structure forms
during the development of the organism by a process called segmentation. The seg-
ments —called somites— form sequentially along a linear axis, one by one, with
a precisely controlled timing, Fig. 2A. The timing of vertebrate segmentation is
set by a genetic clock. This clock is realized by oscillations of the levels of certain
proteins in individual cells.

The spatio-temporal patterns of genetic oscillations have been described by
coupled sets of phase oscillators which are arranged in space.1 The state of a single
oscillator is characterized by the phase θi(t), where i labels the oscillator. The
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Fig. 1. The vice versa benefit between theoretical modeling, experimental and synthetic biology.
1: synthetic biology works with small genetic networks of reduced complexity and, hence, greatly
contributes to understanding of more complex natural systems by proving the general design
principals suggested by mathematical models, 2: experimental biology with medical applications
set aims for synthetic biology e.g. by asking for target molecules, 3,5: experiments provide data
for theoretical modeling to parametrize the model and validate model predictions, 4: modeling
contributes to understanding and helps to set up new experiments, 6: modeling develops design
principles for synthetic biology.

dynamic equations for the phases are given by

θ̇i(t) = ωi(t) +
εi(t)

ni

∑

j

sin [θj(t− τ)− θi(t)], (1)

where the sum is over all neighbors j of cell i. Here, ε denotes the coupling strength
and τ is the time delay involved in coupling. After initial transient dynamics, the
system settles in a spatio-temporal limit cycle with collective frequency Ω which
obeys the relation Ω = ωA − ε sin(Ωτ). This implies that changes in coupling
strength or delay would lead to changes in oscillation period, Fig. 2B, and thus
in variations of the wavelength of cyclic gene expression patterns as well as the
resulting segment length, Fig. 2C-D. These predictions have been confirmed exper-
imentally and have led to the discovery of the first mutants with altered collective
period, so called period mutants.2 This example shows how the analysis of effective
theoretical descriptions can motivate the design of experimental perturbations, and
lead to the discovery of interesting biological phenomena.

3. Mixed Feedback Loops Greatly Improve the Tunability of
Genetic Oscillators (E. Nicola, S. Ares, and L.G. Morelli)

As mentioned in the introduction, biological cells are composed of thousands of dif-
ferent genes, proteins, metabolites and other chemical substances. All these compo-
nents interact with each other inside the cell in a myriad of different ways, and the
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Fig. 2. (A) Schematic lateral view of a zebrafish embryo. (B) Dimensionless collective frequency
Ω as a function of time delay τ of coupling for parameters obtained from zebrafish experiments.
Solid and dashed lines indicate stable and unstable solutions, respectively. Blue dots correspond to
the three cases shown in panels (C-E). (C-E) Snapshots of numerical solutions of the model given
by Eq. (1) in a two-dimensional geometry for different time delays as indicated. Color intensity
indicates the value sin θ of the phase θ.

output of these interactions regulates many cellular functions. However, this com-
plicated network of interactions seems to be modular. A recurrent type of module
or motif appearing in gene regulatory networks is characterized by its oscillatory
behaviour on the levels of gene expression.3 Novák and Tyson have shown that,
when modules with small numbers of components are considered, only a handful of
different motifs can oscillate.3,4

Modules of gene regulatory networks often include feedback loops which vastly
enrich their dynamics. These feedback loops can be either negative or positive.3

A pure negative feedback loop can result in oscillations. On the opposite, a pure
positive feedback may lead to multi-stability, typically resulting in a toggle-switch
(i.e. bistability). In a recent publication Tsai et al. have recognized that oscillatory
motifs combining positive and negative feedback loops seem to be more common in
biology than simpler oscillators built on single negative feedback loop.5 Based on
a extensive numerical study of many different models of biological oscillators, they
suggest that motifs combining positive and negative feedback loops are more robust
and that they offer the potential of tuning the properties of the oscillations. In
contrast, single negative feedback loop oscillators are much less flexible, in particular
regarding the range of frequencies in which they can oscillate.

We aim to explore the reasons that make genetic oscillators based on mixed
positive and negative feedback loops more flexible. We propose a family of sim-
ple models that include mixed feedback loops and perform a detailed bifurcation
analysis of these motifs. Our analysis of this family of generic models of genetic
oscillators reveals that very general mechanisms underlie the tunability of the os-
cillations. Overall, our study shows that simple mathematical models can be used,
together with thorough theoretical analysis as provided by the theory of bifurca-
tions, to identify key mechanisms underlying the complex behaviour observed in
more detailed models of oscillatory genetic networks.
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4. Modeling Approaches of the Circadian Clock and Light
Entrainment in Zebrafish (R. Heussen, A. Zaikin, and D.
Whitmore)

A circadian clock is the daily time-keeping mechanism found in a wide variety
of organisms, which allows them to anticipate and thus adapt to environmental
fluctuations. Circadian rhythms can free-run in constant conditions, but are usually
entrained by environmental cues, often light, and in most higher organisms a central
circadian pacemaker is present. Understanding these clocks is of great interest as
a host of biological processes is affect by them. In this respect, zebrafish is an
attractive vertebrate model due to its similarities to mammalian clocks, coupled
with the lack of a central pacemaker and direct light sensitivity of fish organs and
embryonic cell lines.8 Thus they represent a complete clock system within a single
cell and could provide great insight into the yet poorly understood processes of
entrainment.6

On a population scale, core clock component transcription output can be in-
vestigated using transgenic luciferase reporter genes. Different cell lines, each with
a specific clock reporter gene construct, allow to look at various transcriptional
activities with high time resolution under different light regimes or pulses. In the
more costly experiments with single cells, it has been shown that global signal fluc-
tuations up to non-oscillating averages stem from desynchronization of cells, while
their individual oscillators persist.7,9 Here, a single light pulse shifts the phase of
individual cells to become synchronized again. The raw data can subsequently be
quantified in order to determine features and extract essential information. For one,
variable responses of cell cultures and unaccounted factors that mask the circadian
rhythm can be removed by detrending, for example by applying a 24-hour moving
average method. The data can be further analyzed using the Hilbert transform to
obtain the circadian rhythm amplitude, period, the phase of oscillations, as well as
the dampening due to desynchronization. However, even with this information it
can prove difficult to spot the underlying mechanisms and any emergent properties.
Here, a mathematical model can reduce the complexity of such systems and thus
the cost of simulation, while still allowing accurate predictions. Oscillators are fre-
quently modeled using gene regulatory networks characterized by negative feedback
with time delay. Furthermore, the noisy and random events at the microscopic level
can be reflected with mathematical random or stochastic processes.

While the mechanisms behind entrainment require more investigation, the mod-
eling of circadian clocks of several species has already significantly shed light on how
these oscillations arise. Importantly, systems biology does not just focus on the in-
dividual components, but seeks to discover instances of emergence. In this way the
dynamics of interactions can be captured and compared with experimental data, to
not only improve the theoretical grasp of a system, but also to make experimental
work more effective and to pin point unexpected predictions as starting points for
future investigation.
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5. Symmetry and Synchronization in Models of Antigenic
Variation (K. Blyuss)

This work employs methods of equivariant bifurcation theory to study the dynamics
of the interactions between antigenic variants and the human immune system during
immune escape. Using the example of antigenic variation in malaria, we investigate
the effects of symmetry on possible dynamical regimes and (de)synchronization of
antigenic variants. The results of the analysis are quite generic and can also be
applied to the studies of various multi-strain diseases.

Many known parasites, such as Plasmodium falciparum (causative agent of
malaria), African Trypanosoma, HIV, Haemophilus Influenzae etc. use antigenic
variation to achieve antigenic escape.10 This method relies on the ability of par-
asites to continuously change the surface markers (antigens) they present on the
cell surface, which allows them for a long period of time to remain undetected by
the immune system of their hosts. Although many aspects of the dynamics of anti-
genic variation have been studied, the effects of symmetry have remained largely
unexplored.

When considering models of antigenic variation from a perspective of equivariant
bifurcation theory (i.e. theory of dynamical systems with symmetry), it is possible
to gain an insight into classification and stability of steady states using symmetry
properties of the coupling matrix between different antigenic variants.11 Isotypic
decomposition of the phase space and equivariant Hopf theorem allow one to find
analytical expressions for the boundary of Hopf bifurcation for the fully symmetric
steady state, as well as identify particular symmetry of the bifurcating solution.12

On the other hand,13 H/K Theorem provides a systematic approach to classifying
periodic solutions with different types of symmetry.11

Due to the genericity of obtained results, they can be applied to a wide range
of models of host-parasite interactions, where the symmetry of interactions be-
tween antigenic variants gives clues about the expected types of behaviour, their
stability and symmetries. The same approach can be used to study the dynamics
of multi-strain infections, where the symmetry properties of interactions between
strains provide significant insights into stability and symmetries of different types
of solutions.

6. Noise-induced Rhythmicity in the Circadian Clock (E. Ullner)

In higher organisms, circadian rhythms are generated by a multicellular genetic
clock that is entrained very efficiently to the 24-hour light-dark cycle. Most studies
of these circadian oscillators have considered a perfectly periodic driving by light.
Naturally organisms are subject to non-negligible fluctuations in the light level all
through the daily cycle. Interestingly higher organisms respond to artificial con-
stant light conditions over several days with a kind of phase transition from the
free running rhythmic to an arrhythmic behaviour. The constant light intensity
determines the transition.
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We investigate how the interplay between light fluctuations and intercellular
coupling affects the dynamics of the central clock. We model the central circa-
dian clock as a collective rhythm of a large ensemble of nonidentical, globally
coupled cellular clocks modeled as Goodwin oscillators. Based on experimental
considerations,14 we assume an inverse dependence of the cell-cell coupling strength
on the light intensity, in such a way that the larger the light intensity the weaker
the coupling.

The system offers access to interesting questions from the biological viewpoint
and the dynamical systems side. The phase transition from the rhythmic to the
arrhythmic behaviour and the critical light intensity are essential for the coherence
resonance (CR), a noise-induced effect known from the dynamical system theory.
The phase transition can be observed only in the overt rhythm that we model by
the mean response of all individual circadian oscillators. We study the influence of
noise on the quality of the overt rhythm and consider the synchronization and the
coherence of the mean-field. Our results show a noise-induced rhythm generation for
constant light intensities at which the clock is arrhythmic in the noise-free case.15

Importantly, the rhythm shows a resonance-like phenomenon as a function of the
noise intensity. Such improved coherence can be only observed at the level of the
overt rhythm and not at the level of the individual oscillators, thus suggesting a
cooperative effect of noise, coupling, and the emerging synchronization between the
oscillators.

From the biological viewpoint the CR offers a test tool for the light dependent
coupling hypothesis. The CR in the discussed system relies on the hypothesis of
light dependent coupling. Experimental results of a noise-induced rhythmicity for
constant light intensities at which the clock is arrhythmic in the noise-free case
would strengthen the biological relevant hypothesis of light dependent coupling
amongst the individual oscillators. The mathematical model originates form the
biological problem, makes use of a noise-induced phenomena and gives a protocol
for experimental testable predictions that can be used to strengthen the biological
derived hypothesis of light dependent coupling amongst the many basic circadian
oscillators building the central clock. The discussed circadian model gives an ex-
ample for the vice versa beneficial connection between biology and mathematical
modeling.

7. Stochastic Bifurcations in Biological Systems (A. Zakharova
and A. Koseska)

The dynamical structure of genetic networks determines the occurrence of various
biological mechanisms, such as cellular differentiation. However, the question of how
cellular diversity evolves in relation to the inherent stochasticity and intercellular
communication remains still to be understood. In order to address this problem,
we have generalized the deterministic systems theory to stochastic dynamical sys-
tems,16 and hence investigated the complexity of genetic networks’ behaviour in
terms of stochastic bifurcations.17 This theoretical consideration allows to obtain
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a comprehensive picture of the dynamics of stochastic cellular networks. In par-
ticular, we have shown that the expression of given proteins of interest is defined
via the probability distribution of the phase variable, representing one of the genes
constituting the system. Moreover, we have shown that under changing stochastic
conditions, the probabilities of expressing certain concentration values are different,
leading to different functionality of the cells, and thus to differentiation of the cells
in the various types.

8. Stabilising the Artificial Cell Differentiation in the Coupled
Repressilator (M. Fryett and E. Ullner)

Synthetic genetic networks are very important for a general understanding of bi-
ological design principals and for future applications.18 In particular, the coupled
repressilator is a prototype due to it’s simplicity yet rather complex dynamics.19

The basic model consists of a set of coupled differential equations for each cell which
provide very rich and multi-stable dynamics due to phase respulsive coupling. De-
pending on the cell density and the initial conditions,20 the system expresses an
oscillatory regime, inhomogenous limit cycle (IHLC), inhomogenous steady state
(IHSS) and homogenous steady state (HSS). The IHLC and IHSS are of particular
interest since they can be seen as artificial cell differentiation (ACD) in isogenetic
populations.

In any microbiological system we expect to see intrinsic noise and we have to
be able to test the robustness of the deterministic models by inducing noise.27 In
particular, it would be interesting to see if the IHLC and IHSS exist within a noisy
environment. Intrinsic noise can be simulated in the coupled repressilator model by
applying the Gillpesie algorithm.

Taking the parameter set of the deterministic model and applying Gillespie to
that model yields very noisy results due to the low numbers genes (and mRNA
molecules) and the dynamical regimes are indistinguishable (Fig. 3 left).20 To over-
come the destructive high intrinsic noise level we apply two strategies. First we
reduce the intrinsic noise by increasing the number of plasmids within each cell
thus increasing the number of genes and thence the number of mRNA molecules.
Secondly, bifurcation analysis shows that the HSS and IHSS/IHLC regimes are close
together and the intrinsic noise pushes the system in randomly and very frequent in
different co-existing state. The bifurcation analysis revealed that a change in the cell
membrane permeability increases the distance between these basins of attraction
and stabilizes the ACD. The stochastic Gillespie simulations of the altered model
show a significant stabilization of the ACD (Fig. 3 right) in the noisy environment
and the IHLC/IHSS are expressed much longer in time and clearly distinguishable.

9. Effect of Noise and Asymmetry on Decision Making in Gene
Regulatory Networks (N. Nene and A. Zaikin)

Cell fate commitment, or attractor selection, has only recently been shown to be
also dependent on the speed at which external signals induce changes on tran-
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Fig. 3. Stochastic simulation of three coupled repressilators. Each color shows the dynamics of
the CI protein in different cell. Left: Intrinsic noise dominated the system for the parameter set
taken from the deterministic model. Right: Increasing the plasmid number and changing the cell
permeability according to the bifurcation analysis reduce the noise and stabilise the ACD. The
genetically identical cells behave differently under the same environmental condition. The red and
green cells express over long time a high CI protein level whereas the blue cell expresses a low CI
protein level but a high LacI protein level (data not shown).

scriptional landscapes, a mechanism known as Speed-dependent Cellular Decision

Making (SdCDM).21 This has extended the already widely proven importance of
external signal characteristics such as amplitude and duration on phenotype selec-
tion. SdCDM has been observed in genetic decision switch models (see Fig. 4A)
and it depends on the time-dependent asymmetry between external signals. In the
simulations of Fig. 4, illustrating the mechanism reviewed here, the signals S1,2

had simple linear profiles where only the rising times to the same final steady state
amplitude caused the transient selective driving force to arise. This induced a tran-
sition into a region of bistability where decision making stemmed from the system
converging to one of the available stable states. An inherent aspect to SdCDM
is the fact that the signals are most efficient in selecting a desired attractor, in
the face of fluctuations, when the sweeping speeds through the critical region are
smaller, i.e. when the characteristic rising times are larger (see Fig. 4B).21 As in
canonical models of nonequilibrium statistical physics, the probability of noise forc-
ing a jump across the potential barrier separating the desired end states is reduced
when the system goes through its critical region slowly, thus helping memory of
the transient external asymmetry to be retained. For additional effects when both
the intensity of fluctuations and the time-scale separation between processes in the
circuit of Fig. 4A are increased see Ref. 21. The SdCDM mechanism shows the
importance of considering the theory of dynamic bifurcations in addition to other
techniques more extensively explored in biological circuits,21 such as large devia-
tion and sample-paths approaches,22 in order to understand cell fate decision. This
endeavour contributes to the clarification of real selectivity mechanisms present in
cells that execute competing differentiation, proliferation or apoptosis programs.
One can hypothesize that evolution has selected for embryonic development with
an optimal cellular differentiation speed. The conditions leading to deviations from
this optimal route, the onset of pathologies and their potential treatment, constitute
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Fig. 4. Integrated genetic switch and SdCDM. (A) Circuit representation: Nodes represent pro-
teins, regulated by signals S1 and S2, and X and Y transcription factors that can be phosporylated
to generate Xa and Y a. Black and grey lines represent protein-gene and protein-protein inter-
actions, respectively. (B) Fraction of cells R converging to a selected state ((X, Y ) = (H,L))
versus signalling sweeping speed (controlled by the signal rising time TS1

) and maximum asym-
metry A between S1 and S2 in the presence of fluctuations. Here the maximal asymmetry
A = max(∆S(t)) = Smax

[

1− (TS1
/TS2

)
]

. The values of all parameters associated with tran-
scription or translation processes were assumed to be symmetric in order to focus on the bias
provided by the external signals.21

still an important open question to which the observation of speed-dependent effects
is an important contribution.21

10. Discussion

The greatest challenge facing the systems biology research community is the trans-
lation of knowledge accumulated in Statistical Physics, Nonlinear Dynamics and
Applied Mathematics into effective methods to understand effects in complex bi-
ological systems. Let us discuss main trends recently utilized along this strategy,
which became possible due to the development of main principles behind modeling
of genetic or protein systems.

Real advance of Nonlinear Dynamics has been understanding of chaotic be-
haviour, self-organization principles,23 and on the other hand synchronization be-
tween interacting systems.24 The adjustment of rhythms due to an interaction, the
essence of synchronization, has been found in huge variety of different cellular and
molecular systems. Recently the synthetic gene network with global intercellular
coupling has been engineered that is capable of generating synchronized oscilla-
tions in a growing population of cells.25 Interestingly, the principles governing the
behaviour of nonlinear systems are similar in genetic and neural networks including
also manifestation of stochasticity.26

Stochasticity can be found on all levels of molecular and cellular organization,
in particular, gene expression occurs in random way under the influence of intrinsic
and extrinsic fluctuations which can be measured experimentally.27 These measure-
ments established a quantitative foundations for modeling noise in genetic networks
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and led to numerous theoretical studies. The key question of these studies was how
noise which is inherently present in genetic systems and is essential for heterogene-
ity enable genetic networks to function in robust and reliable way. Moreover, studies
of stochastic and coherence resonances, ratchets and noise-induced transitions have
shown that counterintuitively noise may lead not only to disorder but to ordering
in nonlinear systems. This noise-induced order has been found in numerous biolog-
ical systems and is certainly utilized by nature in real time or as a evolutionary
adaptation.28)

Network theory is an another source of knowledge and methods for the study
of genetic and protein network systems. Inferring regulatory and pattern formation
interactions between genes or interacting elements from genomics, transcriptomics
or proteomics data is of paramount importance to systems biology. How genetically
regulated patterns are organized, how to identify links or couplings between network
elements, what is the minimal topology to perform the required function and still
work in the robust and reliable way, what is the direction of coupling and which
principle underlie the oscillations, synchronization, scale-free behaviour - all these
questions are just the few where developed methods of network analysis can help
use in understanding the complex biological systems.29

Discussion about the translational research will be incomplete without taking
note of new approaches to analysis of information processing on intra- or inter-
cellular level interpreting a cell or genetic motif as a single dynamical node able to
perform state-dependent computations.30 Living cells need to continuously sense
and process external information in an adaptive manner and in multiple time scale
using genes and proteins as a reservoir of dynamical elements coupled each other in
recurrent networks, similar to those existing in neural or artificial neural systems.
The goal of this research direction is not only to understand signatures of this
primitive intelligence on cellular level but also to construct synthetic intelligence
systems using gene or DNA interactions.31
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