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a b s t r a c t

We study numerically the effects of an extrinsic spin–orbit interaction on the model of electrons in

n-doped semiconductors of Matsubara and Toyozawa (MT). We focus on the analysis of the density of

states (DOS) and the inverse participation ratio (IPR) of the spin–orbit perturbed states in the MT set of

energy eigenstates in order to characterize the eigenstates with respect to their extended or localized

nature. The finite sizes that we are able to consider necessitate an enhancement of the spin–orbit

coupling strength in order to obtain a meaningful perturbation. The IPR and DOS are then studied as a

function of the enhancement parameter.

& 2012 Elsevier B.V. All rights reserved.
The metal–insulator transition (MIT) is one of the paradigms of
Condensed Matter Physics [1,2] and new features constantly
appear according to the physical properties under study, the
specific system or the emerging experimental techniques. The
richness of the physics around the MIT stems from the fact that it
is a quantum phase transition where disorder and Coulomb
interactions coexist and compete in the determination of the
ground state. In the case of the n-doped semiconductors, the MIT
appears at doping densities where the Fermi level is in the
impurity band [3,4]. This observation allows a description taking
into account only the electronic states built from the hydrogenic
ground state of the doping impurities. For densities slightly larger
than the critical one (in the metallic side of the transition) non-
interacting models, like the Matsubara–Toyozawa (MT) [5], are
applicable. Furthermore, the previous description in terms of
impurity sites is often traded by the Anderson model of a tight-
binding lattice with on-site or hopping disorder. Large amounts of
numerical work have been devoted to the Anderson model [6]
and the critical exponents obtained fit reasonably well those of
the experimental measurements [7].

The recently developed field of spintronics is contributing to put
the MIT again into the focus of the condensed matter community. A
key concept for possible applications of spintronics is the spin
relaxation time, that is, the typical time in which the electron spin
loses its initially prepared direction. Interestingly, the maximum
spin relaxation times in n-doped semiconductors have been
observed for impurity densities close to that of the MIT [8–11].
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This intriguing physics is not completely understood at present, and
various mechanisms of spin relaxation have been thought to be
active at the MIT region [12–15]. At the level of models, the
generalization of the Anderson model in order to include some
spin–orbit coupling has been provided by Ando [16]. While this
model is very useful to study the progressive breaking of the spin
symmetry [17], its connection with experimentally relevant systems
requires the estimation of coupling parameters which are not
obtainable from first principles. This situation has led us to reconsi-
der the MT model of impurity sites randomly placed in order to
incorporate into the spin–orbit interaction. The various spin–orbit
couplings (intrinsic and extrinsic) can be included and lead to
effective Hamiltonians which depend on fundamental material
constants, rather than on adjustable parameters.

In this paper we first consider the MT model in order to
characterize the regions of extended and localized states, analyz-
ing the limitations of the model and the conditions of applic-
ability. We then include one of the sources of spin–orbit coupling,
i.e. the interaction arising from the electrostatic potential of the
impurities [15]. This extrinsic mechanism is analogous to the
well-known Rasbha coupling generated in low-dimensional sys-
tems by the effect of an electrostatic asymmetric confining
potential. We then study how the previously studied character
of the MT eigenstates evolves under increasing values of the spin–
orbit coupling strength. This work is a necessary step toward the
understanding of spin dynamics in the generalized models that
will allow us to extract the spin relaxation times close to the MIT.

We start by considering the MT Hamiltonian [5]

H0 ¼
X

mam0 ,s
tssm0mcym0scms, ð1Þ
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where cym0s ðcmsÞ represents the creation (annihilation) operator
for the ground state of the impurity at site m0 (m) with spin
projection s in the z-direction. The spin degree of freedom is
irrelevant for the MT model, but it will become crucial later. The
hopping matrix element is

tssm0m ¼/fm0 9Vm0 9fmS¼�V0 1þ
Rm0m

a

� �
exp �

Rm0m

a

� �
, ð2Þ

where fpðrÞ ¼fð9r�Rp9Þ, with fðrÞ ¼ 1=ðpa3Þ
1=2
� expð�r=aÞ, and

a is the effective Bohr radius. The Coulombic potential produced
by the impurity placed at Rp is VpðrÞ ¼�V0ða=9r�Rp9Þ, where
V0 ¼ e2=ea and e stands for the static dielectric constant of the
semiconductor.

In order to characterize the electronic eigenstates in the impurity
band from the point of view of their extended or localized nature,
we obtain numerically the eigenvalues and eigenstates fei,cig of H0

for given configurations in which N impurities are randomly placed
in a three-dimensional volume. For each configuration we calculate
the energy-dependent density of states

DOS¼
X

i

dðe�eiÞ ð3Þ

and the inverse participation ratio of the state 9ciS

IPR¼

P
m9/fm9ciS94

ð
P

m9/fm9ciS92
Þ
2

" #�1

: ð4Þ

In Fig. 1 we present the impurity-averaged DOS and IPR for three
densities on the metallic side of the transition. The impurity band
develops around the E¼0 level of the isolated impurity in an
asymmetric fashion: the DOS exhibits a long low-energy tail while
the high-energy part is bounded by E¼1 (in units of V0). We verify
that the width of the impurity band increases with the doping
density. The numerically obtained DOS for different densities are
well reproduced by approximate methods like diagrammatic per-
turbation [5] or moment expansion [18]. The highest energy states
correspond to electronic wave functions localized on small clusters
of impurities. This clustering is known to happen in realistic systems
Fig. 1. Density of states (DOS, thick line and right scale) and inverse participation

ratio (IPR, left scale) for three different densities on the metallic side of the metal–

insulator transition, obtained through impurity averaging in the Matsubara–

Toyozawa model. The solid, dashed and dotted curves of IPR/N are for N¼2744,

4096 and 5832, respectively, and the vertical lines indicate the Fermi energy.
due to the lack of hard-core repulsion between impurities on the
scale of a [19,15].

Before continuing with the analysis of the numerical results
obtained from the MT model, we discuss some technical features
of the model and the difficulties that we face in trying to improve
upon it. Firstly, we notice that the chosen basis set is not
orthogonal. In principle, we can deal with this issue by writing
a generalized eigenvalue problem which includes the matrix of
orbital overlaps [20,21]. This procedure results in unphysical
high-energy states (with Eb1) that necessitate the inclusion of
hydrogenic states beyond the 1s orbital in order to be described
properly. However, care must be taken since enlarging the basis
set leads to the problem of overcompleteness. Fortunately, for the
properties we are interested in, the effects arising from non-
orthogonality are known to be small for moderate doping den-
sities, and that is why we will not consider them in the numerical
work, thus staying within the original MT model. Finally, another
drawback of the MT model is that the high-energy edge of the
impurity band overlaps with the conduction band, which starts
at V0=2 (the effective Rydberg) and is not included in the MT
description. As seen in Fig. 1 the DOS beyond V0=2 is always very
small, and therefore we can ignore the effects that the hybridiza-
tion of the bands would yield in a more complete model.

The determination of the mobility edges from the size scaling
of Fig. 1 is not straightforward. This difficulty arises from the
heavily structured DOS of the MT model [21]. At low energy the
small values of the DOS translate into a poor statistics for feasible
sizes. In the high-energy part of the impurity band, the separation
between the curves corresponding to different values of N is
masked by the small values of the IPR/N.

For the highest density (top panel) the IPR/N exhibits a
relatively flat region at intermediate energies, which is approxi-
mately independent of N for the two largest system sizes. The
lower mobility edge can be located roughly at E� 3:5, where the
latter curves separate. For lower impurity densities (lower panels)
the previous analysis becomes increasingly demanding in terms
of system sizes. We see that the flat region of IPR/N shrinks from
which we can conclude that the lower mobility edge is shifting
toward higher values of E.

The study of spin relaxation in doped semiconductors with
densities close to that of the MIT calls for a generalization of the
previously discussed MT model that incorporates spin–orbit cou-
pling. Such an extension was done in Ref. [15], where a spin-flip
term

H1 ¼
X

mam0 ,s
tssm0mcy

m0scms ð5Þ

was added to H0 ðs ¼�sÞ. Similar to the spin-conserving case,
we have

tssm0m ¼
X

pam

/ ~cm0s 9Vp9 ~cmsS: ð6Þ

The wave function ~cms is an impurity spin-admixed (ISA) state with
an envelope part fmðrÞ and a lattice-periodic part (conduction band)
which has a small spin admixture. In Ref. [15], the expression of the
matrix elements of Eq. (6) within an 8-band Kane model has been
obtained. Here, we evaluate the three-center matrix elements
numerically.

Spin–orbit coupling is known to favor the delocalization of
disordered systems in two dimensions. In what follows we repeat
the previous analysis, performed on the MT model, for its spin–
orbit generalized counterpart.

The matrix element (6) is proportional to the effective spin–orbit
coupling l which for a zinc-blende semiconductor can be orders of
magnitude larger than the one of vacuum l0C3:7� 10�6 Å

2
.

For the case of GaAs treated in Ref. [15], lC�5:3 Å
2

[22]. Still, the



Fig. 3. Density of states (DOS, solid line and right scale) and inverse participation

ratio (IPR, dashed lines and left scale) for three different densities on the metallic

side of the metal–insulator transition. Dashed lines with increasing thickness are

for Rr¼50, 150 and 250, respectively. The vertical lines indicate the Fermi energy.
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spin-admixture perturbation energies are, even for largest system
sizes that we can treat numerically, orders of magnitude smaller
than the MT level spacing. We are then led to consider an
enhancement factor Rr that multiplies l and makes the two previous
energy scales comparable. In Fig. 2 we show the spectral decom-
position of a MT eigenstate with s¼ 1 on the basis of spin-admixed
eigenstates of H0þH1. Only for enhanced values of Rr we do obtain
significant projections into the two spin-admixed subspaces. The
study of larger values of Rr then appears not only as a useful tool for
analyzing the progressive inclusion of spin–orbit effects, but also as
a need for numerical simulations of the spin dynamics.

In Fig. 3 we present the DOS and IPR/N of the extended model
for the three densities previously treated and various values of
the spin–orbit coupling strength Rr. Since the eigenstates of the
full Hamiltonian are no longer spin eigenstates, the IPR should be
calculated by projecting the state onto each impurity orbital
including both spin orientations, that is

IPR¼

P
mð
P

s9/fms9ciS92
Þ
2

ð
P

m,s9/fms9ciS92
Þ
2

" #�1

: ð7Þ

The DOS does not noticeably change with Rr, and that is why we
only present the Rr¼1 case. The spin–orbit coupling results in the
increase of the IPR/N as a function of Rr in the region of extended
states. This effect is more prominent for the larger density. The
low-energy sector that has localized states in the MT model
exhibits IPR/N curves approximately independent of N, which is
a signature of the delocalization tendency.

We also performed a finite-size scaling of the IPR/N for a given
density above the MIT critical density and one value of the spin–
orbit coupling enhancement factor, Rr¼50. It turns out that the
Fig. 2. Spectral decomposition of a Matsubara–Toyozawa eigenstate into the basis

set formed by the eigenstates of the spin–orbit extended model. The system size is

N¼1000 and the density is given by ðnia
3Þ

1=3
¼ 0:33. Top and bottom panels

correspond to Rr¼1 and 100, respectively.
relative insensitivity of IPR/N with N implies that the lower
mobility edge has considerably shifted toward lower energy.

In conclusion, we revisited the problem of the characterization
of the eigenstates of the Matsubara–Toyozawa model from the
point of view of their localization, and performed a similar
analysis in an extended model proposed recently which includes
the extrinsic spin–orbit coupling mechanism arising from the
electrostatic potential of the hydrogenic impurities. Analyzing the
effect of spin–orbit coupling of various strengths is necessary in
order to address the study of the spin dynamics in the impurity
band of doped semiconductors. We found that while the density
of states is not considerably modified by the spin–orbit interac-
tion, the nature of the states is noticeably affected by it showing a
tendency to the delocalization.
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