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Short periodic orbit approach to resonances and the fractal Weyl law
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We investigate the properties of the semiclassical short periodic orbit approach for the study of open quantum
maps that was recently introduced [Novaes, Pedrosa, Wisniacki, Carlo, and Keating, Phys. Rev. E 80, 035202(R)
(2009)]. We provide solid numerical evidence, for the paradigmatic systems of the open baker and cat maps, that
by using this approach the dimensionality of the eigenvalue problem is reduced according to the fractal Weyl law.
The method also reproduces the projectors |ψR

n 〉〈ψL
n |, which involves the right and left states associated with a

given eigenvalue and is supported on the classical phase-space repeller.
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I. INTRODUCTION

One of the cornerstones of the semiclassical approach to
quantum mechanics is the Gutzwiller trace formula, which
relates the fluctuating part of the quantum density of states
to the classical periodic orbits of a chaotic system [1].
However, this relation requires infinitely long orbits and
involves divergent sums. More recently, periodic orbits have
been used to study quantum spectra in a different way,
by constructing some special quantum states, called scar
functions [2–8], which are adapted to the system’s classical
dynamics and provide a suitable basis for diagonalizing the
Hamiltonian. This formulation has the advantage of using only
a small number of short periodic orbits, and shedding light
on the phenomenon of scarring [9], which is an anomalous
localization of stationary wave functions along periodic
orbits.

In quantum scattering a prominent role is played by
resonances or quasibound states. These are eigenfunctions of
the system with complex energy, whose (negative) imaginary
part is interpreted as a decay rate. In chaotic systems the
number of states with a prescribed decay rate grows as a
power of the energy which is conjectured to be related to a
fractal dimension of the classical repeller, the set of initial
conditions which remains trapped in the scattering region for
all, positive and negative, times. This fractal Weyl law has
been investigated in several systems [10–16]. One the other
hand, the (right) eigenfunctions are supported by the unstable
manifold of this repeller [17,18], and its scarring properties
have also been under investigation [19–21].

The scattering analog of the short periodic orbit approach
has been introduced in Ref. [22]. Scar functions were con-
structed which are not only concentrated on the periodic
orbits but also extend along the unstable manifolds by means
of a dynamical evolution up to the order of the system’s
Ehrenfest time. This basis is adequate for the calculation of
the small fraction of resonances which have small decay rates,
usually the most important ones, without having to consider
the multitude of rapidly decaying states. Also, it provides a tool
for studying localization on classical structures more directly,
and allows a natural semiclassical approach to resonance wave
functions.

This method was used in Ref. [22] to reproduce the main
resonances of an open baker map for a specific value of h̄.
In the present work we focus on the scaling of the method
and show that it is compatible with the fractal Weyl law,
not only for the baker but also for a cat map, which is more
generic. We also discuss the ability of the method to reproduce
eigenfunctions. We find that a mixed quantity involving both
types of functions (right and left), which has been introduced in
Ref. [23], can be accurately reproduced. The paper is organized
as follows. Section II is focused on reviewing the quantum and
the classical versions of the systems that we have used in our
study: the open baker and cat maps. In Sec. III we discuss the
method and its results. Finally, we present our conclusions in
Sec. IV.

II. OPEN QUANTUM MAPS

Maps are paradigmatic systems in classical and quantum
chaos because of their simplicity [24–26]. We will consider
maps defined on the torus. When quantizing them, boundary
conditions must be imposed for both the position and mo-
mentum representations. This amounts to taking 〈q + 1|ψ〉 =
ei2πχq 〈q|ψ〉, and 〈p + 1|ψ〉 = ei2πχp 〈p|ψ〉, with χq , χp ∈
[0,1). This implies a Hilbert space of finite dimension N =
(2πh̄)−1, and the semiclassical limit is approached for large
N . The system’s propagator becomes a N × N matrix. The
discrete set of position and momentum eigenstates is given
by |qj 〉 = |(j + χq)/N〉 and |pj 〉 = |(j + χp)/N〉 with j ∈
{0, . . . ,N − 1}. They are related by a discrete Fourier trans-
form, i.e., 〈pk|qj 〉 = 1√

N
e−2iπ(j+χq )(k+χp)/N ≡ (G

χq,χp

N ).
We consider a certain region of the torus to be the

opening, through which particles can escape. Its quantization
is implemented by means of a projection operator P on its
complement. We always choose a finite strip parallel to the
p axis and corresponding to a range of q values, so that
the projector P is quite simple in position representation. If
U is the propagator for the closed system, then Ũ = PUP

represents the open one. It will have N right eigenvectors |�R
n 〉

and N left ones 〈�L
n |, which are orthogonal among themselves

〈�L
n |�R

m〉 = δnm. Their norm is arbitrary, but one may choose
〈�R

n |�R
n 〉 = 〈�L

n |�L
n 〉.
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The classical (tri)baker map

B(q,p) =

⎧⎪⎨
⎪⎩

(3q,p/3) if 0 � q < 1/3,

(3q − 1,(p + 1)/3) if 1/3 � q < 2/3,

(3q − 2,(p + 2)/3) if 2/3 � q < 1,

(1)

is an area-preserving, uniformly hyperbolic, piecewise-linear
and invertible map with Lyapunov exponent λ = ln 3. Follow-
ing [27,28], the quantum version is defined in terms of the
discrete Fourier transform in position representation as

UB = G−1
N

⎛
⎜⎝

GN/3 0 0

0 GN/3 0

0 0 GN/3

⎞
⎟⎠ , (2)

where antiperiodic boundary conditions are imposed, χq =
χp = 1/2. For this system we always take the opening as the
region 1/3 < q < 2/3.

The classical cat maps are of the form(
q ′
p′

)
= C

(
q

p

)
mod 1 =

(
c11 c12

c21 c22

)(
q

p

)
mod 1, (3)

where the cij must be integers to ensure continuity and the
conditions TrC > 2 and det C = 1 are imposed to make the
map hyperbolic and area-preserving. Here, we consider

C =
(

2 1
3 2

)
, (4)

for which the Lyapunov exponent is log(2 + √
3) and the stable

and unstable directions are s = (−√
3,1) and u = (

√
3,1). The

opening is defined analogously to the baker map, between
q = 0.3 and q = 0.7. The corresponding fractal dimensions
are d = 0.61 for the cat map and d = ln 2/ ln 3 ∼ 0.63 for the
tribaker map. Quantization of cat maps was first introduced in
Ref. [25] and discussed in Ref. [29]. For the case considered
here, with periodic boundary conditions χq = χp = 0, this
results in

UC(Q′,Q) =
√

−i

N
e2iπ(Q2−Q′Q+Q′2)/N , (5)

where q = Q/N and q ′ = Q′/N .
We note that for the baker map the opening corresponds to

a cell in the Markov partition. As a consequence, the repeller is
given in terms of an exactly self-similar fractal, the well-known
middle-third Cantor set. In that respect the cat map is more
generic, since its stable and unstable manifolds intersect the
opening transversally.

III. METHOD AND RESULTS

Scar functions are special wave functions constructed by
taking into account classical information in the neighborhood
of a periodic orbit [2–8]. They have been developed for closed
systems and are the building blocks of the semiclassical
theory of short periodic orbits, by means of which one can
find eigenvalues and eigenfunctions of a quantum system
starting from purely classical quantities. For open systems
they were introduced in Ref. [22]. In this section we review
their construction and show a few examples.

Let γ be a periodic orbit of an open map (it must therefore
belong to the repeller) of fundamental period L, i.e., it consists
of L different points in the torus:

(q0,p0),(q1,p1), . . . ,(qL−1,pL−1),(qL,pL) = (q0,p0). (6)

We associate with γ a total of L scar functions. Initially, we
define coherent states |qj ,pj 〉 for each point of the orbit and a
linear combination of them called a periodic orbit mode,

∣∣φk
γ

〉 = 1√
L

L−1∑
j=0

exp
{−2πi

(
jAk

γ − Nθj

)}|qj ,pj 〉. (7)

Here k ∈ {0, . . . ,L − 1} and θj = ∑j

l=0 Sl , where Sl is the
action acquired by the lth coherent state in one step of the
map. The total action of the orbit is θL ≡ Sγ and Ak

γ =
(NSγ + k)/L.

The right and left scar functions associated with the periodic
orbit are defined through the propagation of these modes under
the open map. Namely,

∣∣ψR
γ,k

〉 = 1

N R
γ

τ∑
t=0

Ũ t e−2πiAk
γ t cos

(
πt

2τ

) ∣∣φk
γ

〉
, (8)

and

〈
ψL

γ,k

∣∣ = 1

N L
γ

τ∑
t=0

〈
φk

γ

∣∣Ũ t e−2πiAk
γ t cos

(
πt

2τ

)
. (9)

The constants N R,L are chosen such that 〈ψR
γ,k|ψR

γ,k〉 =
〈ψL

γ,k|ψL
γ,k〉 and 〈ψL

γ,k|ψR
γ,k〉 = 1. The cosine is used to in-

troduce a smooth cutoff. The time scale of the propagation τ

is taken proportional to the system’s Ehrenfest time.

-1 -0.5 0 0.5 1

Real

-1

-0.5

0

0.5

1

Im
ag

in
ar

y

(a)

(c)

(b)

(d)

FIG. 1. (Color online) Exact spectrum (circles) and our results
(crosses), for the baker map. The pairs (N ,Ns) consisting of the
Hilbert space dimension N and the number of scar functions Ns are
(a) (81,51), (b) (177,105), (c) (597,231), and (d) (1821,471). We have
chosen Ns ≈ 4Nd/2 where d is the fractal dimension of the classical
repeller.
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We use these functions to construct a truncated basis in
the Hilbert space to diagonalize our propagator. We select a
number of short periodic orbits that approximately cover the
repeller, and eigenvalues and eigenfunctions are obtained by
solving a generalized eigenvalue problem [22]. In this way, we
isolate the relevant information needed to construct just the
long-lived resonances, without calculating the others. Accord-
ing to the fractal Weyl law, the number of such resonances
grows like Nd/2 [10–16], where d is a fractal dimension of
the classical repeller. Our method takes advantage of this
fact: the number of scar functions that we need to obtain
a reasonable approximation to the long-lived sector of the
spectrum, denoted Ns , is of the order of Nd/2. The dimension
of the matrix to be diagonalized is thus substantially reduced.

Exact spectra and the results of our method are shown in
Fig. 1 for the baker map. We notice a very clear gap developing
in the spectrum, which is reproduced by the method. This gap
has been observed before [12], but the reasons for its existence
have not yet been understood. The number of scar functions
used was taken to scale with dimension as the fractal Weyl law:
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FIG. 2. (Color online) Exact spectrum (circles) and our results
(crosses), for the cat map. Here, the pairs (N ,Ns) are (a) (114,90),
(b) (415,198), and (c) (1751,476).

Ns ∼ Nd/2, where d is the dimension of the classical repeller.
The quality of the eigenvalues obtained does not deteriorate
with N , indicating that this choice is correct and the long-
lived sector of the spectrum indeed has a reduced effective
dimensionality.

Analogous results are presented for the cat map in Fig. 2.
The quality of the individual eigenvalues is not as good as
in the baker map. However, the scaling is preserved, i.e., the
results confirm that we only need about Nd/2 scar functions
for each value of N in order to reproduce the portion of the
spectrum lying closest to the unit circle.

It has been shown [18] that the right eigenstates are located
in the unstable manifold of the repeller, in the sense that
their Husimi representations �R

n 
→ |〈q,p|�R
n 〉|2 are nearly

zero outside that set. On the other hand, left eigenstates are
supported by the stable manifold. Our method is based on
functions that are approximately supported by the repeller.
Therefore, perhaps surprisingly, although it is able to provide
very accurate eigenvalues, the corresponding eigenfunctions
are not necessarily well reproduced. We show in Fig. 3 the
right and left eigenfunctions of the eigenvalue z = 0.895 of
the baker map for N = 243. We see that the results from
our method have significant differences compared to the
exact ones, in regions away from the repeller. We also show
analogous results for the cat map (z = 0.722, N = 100) in
Fig. 4. Differences are not as noticeable in this case.

The method is, however, able to accurately reproduce
the mixed representation hn(q,p) = |〈q,p|�R

n 〉〈�L
n |q,p〉|2

which was recently introduced in Ref. [23]. The reason
for that is that this phase-space quantity is supported

                                                                                               

1q0

1

p

0

(b)(a)

(c) (d)

FIG. 3. Husimi representation of exact eigenstates and the results
of our method for the baker map at N = 243 and |z| = 0.895; right
eigenstate in panels (a) (exact) and (b) (our method), while (c) and
(d) are analogous for the left eigenstate. The overlaps between these
pairs are |〈ψR

ex|φR
sc〉|2 = 0.727 and |〈ψL

ex|φL
sc〉|2 = 0.556.
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FIG. 4. Husimi representation of exact eigenstates and the results
of our method for the cat map. Right eigenstate in panels (a)
(exact) and (b) (our method), while (c) and (d) are analogous for
the left eigenstate. Here N = 100 and |z| = 0.722. Overlaps are
|〈ψR

ex|φR
sc〉|2 = 0.954 and |〈ψL

ex|φL
sc〉|2 = 0.948.

on the intersection of the individual supports, which is
precisely the repeller where our scar functions live. In Fig. 5 we
can clearly see that the values of hn(q,p) computed with our
method indeed coincide with the exact ones for both systems.

IV. CONCLUSIONS

We have shown in two paradigmatic models that our
recently developed method [22] to obtain quantum resonances
of chaotic systems from their classical properties indeed shows
the same scaling as the fractal Weyl law. Namely, only a
fraction Nd/2 (where d is the dimension of the classical
repeller) of our special basis states are required to provide
a good approximation to the long-lived sector of the spectrum.

 

1q0

1

p

0

(a)(a)
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FIG. 5. Mixed representation hn(q,p) of the same eigenfunctions
shown in Figs. 3 and 4, coming from (a) exact calculation and (b)
our method. Results for the baker map are on the left and for the cat
map are on the right. The agreement is much better than in Figs. 3
and 4 for both systems. Overlaps [30] are |〈hex

n ,hsc
n 〉|2 = 0.9429 for

the baker map and |〈hex
n ,hsc

n 〉|2 = 0.9613 in the case of the cat map.

When the Hilbert space dimension N becomes large, this
actually represents only a small fraction of N . We found that
the method gives good but not excellent approximations to the
right and left resonant eigenstates independently, because of
the very limited support of the basis states we use. However,
a mixed quantity involving both right and left eigenstates can
be successfully obtained. Perhaps with some modification the
method could also reproduce them, but further investigation is
needed.
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