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1 Introduction

The development of accurate QCD calculations is a fundamental tool to properly test

the Standard Model. Given the size of the perturbative corrections, leading order (LO)

evaluations are insufficient, and higher perturbative orders must be taken into account.

However, these calculations are highly non-trivial, and at present only a few processes

have been computed analytically with full next-to-next-to-leading order (NNLO) precision.

At hadronic colliders, only Drell-Yan [1, 2] and Higgs boson production [2–4] (within the

effective vertex approach) have reached that stage of accuracy.

Higgs production is a particular example of an observable with a slow convergence for

the perturbative expansion in the strong coupling constant αS. Next-to-leading (NLO)

corrections [5–7] are as large as the Born result and the NNLO contribution still increases

the cross section by about 25% at LHC energies. Analyses from scale variations [8–12]

and soft-gluon expansion [13–17] indicate that the next orders (N3LO and beyond) can

contribute still at the level of 10%.

An important step towards a complete NNLO calculation for both Drell-Yan and Higgs

production has been the evaluation of the soft and virtual contributions [18–20], which

provide the dominant terms for those processes. As a matter of fact, this is a general

feature when a system of large invariant mass Q is produced in hadronic collisions. Since

parton distributions fa/h(x) grow very rapidly for small fractions of the hadron momentum

x, the partonic center-of-mass energy tends to be close to the invariant mass Q, and the
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remaining energy only allows for the emission of soft particles. For this reason the soft-

virtual contributions are expected to be a very good approximation to the total cross

section for a large number of processes.

In this paper we exploit the factorization properties of the QCD matrix elements to

compute the soft and virtual contributions to the partonic cross sections at NNLO for a

wide number of processes in hadronic collisions where a system of colourless particles is

produced (as gauge bosons, Higgs, leptons, etc.). The computational approach presented

here can be extended to higher orders in perturbation theory simplifying considerably the

evaluation of the corrections.

We present a universal expression for the corresponding cross section at NNLO, valid

to all orders in the dimensional regularization parameter ǫ. With this result, it is possible

to evaluate the soft-virtual approximation for any process of the kind studied in this paper

in an automatized way once the relevant one- and two-loop amplitudes become available

and, therefore, provide a first estimate of the size of higher order corrections for a number

of interesting observables at the LHC. Furthermore, since the results are valid to all orders

in ǫ, they become necessary ingredients for ultraviolet and infrared factorization at N3LO

(and beyond) within the same approximation.

Another interesting use of the soft approximation is the relation to the soft-gluon

threshold resummation approach. We profit from this calculation and obtain, for the

first time, a universal expression for the hard coefficient needed to perform threshold

resummation up to next-to-next-to-leading logarithmic (NNLL) accuracy.

The paper is organized as follows. In section 2 we present the notation for the QCD

cross sections and show how phase space factorization occurs in the soft limit. In sec-

tions 3 and 4 we perform the calculation of the soft-virtual corrections at NLO and NNLO

respectively. In section 5 we present the soft-virtual approximation in Mellin space. In

section 6 we analyse the phenomenological results for Drell-Yan and Higgs boson produc-

tion via gluon fusion to compare the soft-virtual approximation with the full result as a

way to validate its dominance. In section 7 we profit from the previous result and present

a universal expression for the hard coefficient required to perform threshold resummation

up to NNLL accuracy. Finally, in section 8 we present our conclusions.

2 QCD cross sections

We consider the following general process in hadronic collisions:

h1 + h2 −→ F +X (2.1)

where F denotes any colourless final state (i.e. without quarks or gluons), and X stands

for any inclusive final hadronic state. The center-of-mass energy is
√
sH , and Q is the

invariant mass of the system F which can involve a combination of gauge bosons, Higgs,
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isolated photons, leptons, etc. The inclusive cross section can be written as

Q2 dσ

dQ2
(sH , Q

2) =
∑

a,b

∫ 1

0
dx1 dx2 fa/h1

(x1, µ
2
F ) fb/h2

(x2, µ
2
F )

∫ 1

0
dz δ

(

z − τ

x1x2

)

× σ̂0 z Gab(z;αS(µ
2
R), Q

2/µ2R;Q
2/µ2F ) , (2.2)

where τ = Q2/sH , µF and µR are the factorization and renormalization scales respectively,

and σ̂0 is the Born level partonic cross section. The parton densities of the colliding

hadrons are denoted by fa/h(x, µ
2
F ) and the subscripts a, b label the type of massless partons

(a, b = g, qf , q̄f , with Nf different flavours of light quarks).

According to eq. (2.2), the cross section σ̂ab for the partonic subprocess ab → F +X

at the center-of-mass energy s = x1x2sH is

Q2 dσ̂ab
dQ2

(s,Q2) =
1

s
σ̂0Q

2 Gab(z) = σ̂0 z Gab(z) , (2.3)

where the term 1/s arises from the flux factor and leads to an overall z factor, being

z = Q2/s the partonic equivalent of τ . The hard coefficient function Gab has a perturbative

expansion in terms of powers of the QCD renormalized coupling αS(µ
2
R):

Gab(z;αS(µ
2
R), Q

2/µ2R;Q
2/µ2F ) =

+∞
∑

n=0

(

αS(µ
2
R)

2π

)n

G
(n)
ab (z;Q

2/µ2R;Q
2/µ2F ) . (2.4)

In the following, the dependence of αS on the renormalization scale µR is understood. We

always use the MS scheme for the renormalization of the strong coupling.

At leading-order the partonic subprocess is ab→ F , and since the final state is colour-

less we can only have ab = gg or ab = qq̄ (and ab = q̄q). The LO contribution is then

G
(0)
ab (z) = δag δbg δ(1− z) or G

(0)
ab (z) = (δaq δbq̄ + δaq̄ δbq) δ(1− z) . (2.5)

At higher orders, other parton subprocesses can contribute to the total cross section.

In the soft-virtual approximation, however, we are only interested in the same parton

subprocess present at LO, and we compute only those contributions in Gaā that give rise

to the distributions δ(1− z) and Di(z) in the coefficient function, where we have defined

Di(z) ≡
[

lni(1− z)

1− z

]

+

. (2.6)

The + indicates the usual plus-prescription,

∫ 1

0
Di(z)f(z) dz =

∫ 1

0

lni(1− z)

1− z
[ f(z)− f(0)] dz . (2.7)

These two types of contributions are the most singular terms when z → 1, and then

dominate the cross section in the soft limit.
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The aim of this paper is to calculate the NNLO soft-virtual corrections for any process

of the type of eq. (2.1). The parton subprocesses that contribute up to second order in

αS are

α0
S aā→ F (tree-level)

α1
S aā→ F (one-loop)

aā→ F + g (tree-level)

α2
S aā→ F (two-loop) (2.8)

aā→ F + g (one-loop)

aā→ F + q + q̄ (tree-level)

aā→ F + g + g (tree-level) ,

with aā = gg or aā = qq̄, depending on the process.

2.1 Phase-space factorization

To compute the real corrections of the processes we are interested in, we have to perform

the phase-space integration of the corresponding matrix elements in the limit in which

the emitted QCD-partons become soft. In this limit, the phase-space can be written in a

factorized form.

Let us consider that the final state F has l non-QCD particles with momenta {k}, and
m soft QCD massless partons with momenta {q}. The n-dimensional phase-space is then

∫

dPS=

∫

[

m
∏

i=1

dnqi
(2π)n−1

δ+(q2i )

]





l
∏

j=1

dnkj
(2π)n−1

δ+(k2j−m2
j )



(2π)nδn(p1+p2−q1−. . . qm−k1−. . . kl) .

(2.9)

We introduce the momentum K = k1 + . . . kl [21], with K
2 = Q2. Multiplying the above

equation by the identity

1 =

∫

dnK δn(K − k1 − . . . kl)

∫

dQ2 δ+(K2 −Q2) (2.10)

we arrive at

∫

dPS =
dQ2

2π

∫





l
∏

j=1

dnkj
(2π)n−1

δ+(k2j )



 (2π)nδn(K − k1 − . . . kl) (2.11)

×
∫

[

m
∏

i=1

dnqi
(2π)n−1

δ+(q2i )

]

[

dnK

(2π)n−1
δ+(K2 −Q2)

]

(2π)nδn(p1 + p2 −K − q1 − . . . qm) .

In the soft limit we have

δn(K−k1− . . . kl)δn(p1+p2−K−q1− . . . qm)
S≃ δn(p1+p2−k1− . . . kl)δn(p1+p2−K−q1− . . . qm) ,

(2.12)

where the symbol
S≃ indicates that the equality is valid when the emitted QCD partons are

soft. Within this approximation we obtain in the first line of eq. (2.11) the corresponding
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leading-order phase-space dPS(0), which contains the dependence on the internal variables

of the system F . The second line in eq. (2.11) is the phase-space of a process with one

particle of invariant mass Q in the final state plus m soft partons, dPS2→1+m soft. Then

eq. (2.11) can be rewritten in the following way:

∫

dPS
S≃ dQ2

2π

∫

dPS(0)
∫

dPS2→1+m soft , (2.13)

arriving to a factorized expression for the phase-space in the soft limit.

3 NLO

At NLO we have to consider the one-loop corrections to the partonic subprocess aā→ F ,

and also the real gluon emission subprocess, aā → F + g. We begin by computing the

latter.

Let M(0) be the LO matrix element, and M(0)
g the correction corresponding to the

real gluon emission subprocess at tree-level. In the limit where the momentum q of the

gluon becomes soft, M(0)
g can be written in the following factorized way [22]:

∣

∣M(0)
g (q, p1, p2)

∣

∣

2 S≃
(

α0 µ
2ǫ
0

)

8π Sg(q, p1, p2)Ca

∣

∣M(0)(p1, p2)
∣

∣

2
, (3.1)

where p1 and p2 are the momenta of the incoming QCD-partons, and the dependence of

the matrix elements on other non-QCD particles momenta is understood. The symbol

α0 stands for the bare coupling constant, and µ0 is the dimensional-regularization scale.

Renormalization is achieved by the replacement

α0 µ
2ǫ
0 Sǫ = αS µ

2ǫ
R

(

1− αS
β0
ǫ

+O(α2
S)

)

, (3.2)

where β0 is the first coefficient of the QCD beta function and Sǫ is the typical phase-space

volume factor in n = 4− 2ǫ dimensions:

β0 =
11CA − 2Nf

12π
, Sǫ = (4π)ǫ e−ǫγE , (3.3)

being γE = 0.5772 . . . the Euler number.

The scalar eikonal function Sg(q, p1, p2) contains all the dependence of M(0)
g on the

soft gluon momentum, and takes the form [22]

Sg(q, p1, p2) =
p1 · p2

(p1 · q)(p2 · q)
, (3.4)

while the constant Ca depends on the nature of the radiating parton, being

Ca =

{

CA = Nc, if a = g

CF = (N2
c − 1)/(2Nc), if a = q, q̄ ,

(3.5)

where Nc = 3 is the number of colours.
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Combining eq. (3.1) with the phase-space factorization of eq. (2.13) we arrive at the

following expression for the NLO tree-level real gluon emission cross section σ̂
(0)
g :

dσ̂
(0)
g

dQ2

S≃ σ̂0
2π

(

α0 µ
2ǫ
0

)

8π Ca

∫

Sg(q, p1, p2) dPS
2→1+1 soft . (3.6)

The phase-space integration in eq. (3.6) can be performed in a closed form. After some

simple algebra we arrive at

∫

Sg(q, p1, p2) dPS
2→1+1 soft =

∫

p1 · p2
(p1 · q)(p2 · q)

δ+(K2 −Q2)

(2π)n−2

dn−1q

2 |q| . (3.7)

Using polar coordinates in n dimensions we can write

dn−1q = d|q| |q|n−2 dΩn−2 , (3.8)

with

dΩn−2 ≡ sinn−3 θ1 sinn−4 θ2 . . . sin θn−3 dθ1 dθ2 . . . dθn−2 , (3.9)

where θn−2 ∈ [0, 2π) and θi ∈ [0, π] for the others. Parametrizing the momenta in the

center-of-mass of the incoming partons, and setting n = 4− 2ǫ, it can be shown that

∫

Sg(q, p1, p2) dPS
2→1+1 soft =

(16π)ǫ

s1+ǫ(1− z)1+2ǫ 2π Γ(1− ǫ)

∫

sin1−2ǫ θ

(1− cos θ)(1 + cos θ)
dθ ,

(3.10)

where θ ≡ θ1 is the angle between the soft gluon and the n-th axis. Using the variable

y ≡ (1 + cos θ)/2, the remaining integral can be carried out as a particular case of

∫ 1

0
yα−1(1− y)β−1dy =

Γ(α)Γ(β)

Γ(α+ β)
. (3.11)

Finally, the tree-level real gluon emission cross section in the soft limit has the following

expression:

dσ̂
(0)
g

dQ2

S≃ − σ̂0
s

(α0

2π

)

(

4πµ20/s
)ǫ

(1− z)1+2ǫ
Ca

4 Γ(1− ǫ)

ǫ Γ(1− 2ǫ)
. (3.12)

This formula is valid to all orders in ǫ for any reaction of the kind of eq. (2.1), and its only

dependence on a particular process is in the Born-level cross section σ̂0. The Ca factor only

depends on the nature of the incoming partons. The expansion of the factor (1− z)−1−2ǫ

leads to the appearance of δ(1− z) and Di(z) terms, according to the following relation:

1

(1− z)1+aǫ
= − 1

aǫ
δ(1− z) +

∞
∑

i=0

(−aǫ)i
i!

Di(z) . (3.13)

We now have to evaluate the one-loop correction term. Even though this cannot be

done in a process independent way, the infrared-singular behaviour of QCD amplitudes at

one-loop (and two-loop) order is well known [23–27]. For the processes we are interested in,
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the renormalized one-loop order amplitude M(1) can be written in terms of the Born-level

amplitude M(0) in the following way1 [27]:

M(1)(ǫ) =
αS

2π

[

I
(1)
a (ǫ)M(0)(ǫ) +M(1)

fin (ǫ)
]

, (3.14)

where

I
(1)
a (ǫ) = −

(

−4πµ2R
s

)ǫ
S−1
ǫ

Γ(1− ǫ)

(

Ca
1

ǫ2
+ γa

1

ǫ

)

, (3.15)

and the contribution M(1)
fin is finite when ǫ→ 0.2 The coefficient γa depends on the initial-

state partons, being

γa =

{

11
6 CA − 1

3Nf , if a = g
3
2CF , if a = q, q̄ .

(3.16)

For the NLO calculation we only need the O(αS) term of the squared matrix element,

that is M(1)(M(0))∗+(M(1))∗M(0). Performing the formal phase-space integration of this

term we arrive at the following expression for the one-loop virtual contribution to the cross

section:

dσ̂
(1)
v

dQ2
=
σ̂0
s

(αS

2π

)

δ(1− z)

{

−
(

4πµ2R
s

)ǫ
S−1
ǫ Γ(ǫ)

Γ(1− 2ǫ)Γ(2ǫ)

(

Ca
1

ǫ2
+ γa

1

ǫ

)

+
σ̂
(1)
fin (ǫ)

σ̂0

}

,

(3.17)

where σ̂
(1)
fin (ǫ) is a one-loop finite contribution to the cross section defined by

σ̂
(1)
fin (ǫ)

σ̂0
=

∫

(

M(1)
fin

(

M(0)
)∗

+
(

M(1)
fin

)∗

M(0)
)

dPS(0)
/∫

∣

∣M(0)
∣

∣

2
dPS(0) . (3.18)

To obtain the NLO soft-virtual contribution to the coefficient function Gaā(z) we still

have to add to eqs. (3.12) and (3.17) the counterterms coming from mass factorization.

Keeping terms up to second order in powers of αS, relevant for the NNLO calculation in

the next section, we have

dσ̂(s)

dQ2
=
σ̂0
s

{

δ(1− x) +
αS

2π

{

G
(1)
aā (z)−

2

ǫ
P (0)
aa (z)

}

+
(αS

2π

)2
{[

2
(

P (0)
aa ⊗ P (0)

aa

)

(z) + 2πβ0P
(0)
aa (z)

]

1

ǫ2
(3.19)

−
[

P (1)
aa (z) + 2

(

P (0)
aa ⊗G

(1)
aā

)

(z)

]

1

ǫ
+G

(2)
aā (z)

}

+O(α3
S)

}

,

where for simplicity we have set µF = Q. The symbol “⊗” stands for the usual convolution.

The Altarelli-Parisi splitting functions in the soft limit (z → 1) take the form [28]

P (0)
aa (z)

S≃ γa δ(1− z) + 2CaD0(z) , (3.20)

P (1)
aa (z)

S≃ γ(1)a δ(1− z) + Ca

[

CA

(

67

9
− π2

3

)

−Nf
10

9

]

D0(z) , (3.21)

1For the sake of simplicity we omit the explicit dependence of the matrix elements on the partons

momenta.
2We explicitly keep higher order terms in ǫ originated in the one-loop amplitude as they contribute to

the final result to the same order in the dimensional regularization parameter. Those in M(0) are implicitly

included in the definition of σ̂0 = 1
2s

∫
∣

∣M(0)
∣

∣

2
dPS(0).
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where we have defined

γ(1)a =











C2
A

(

8
3 + 3ζ3

)

− 1
2CFNf − 2

3CANf , if a = g

C2
F

(

3
8 − π2

2 + 6ζ3

)

+ CFCA

(

17
24 + 11π2

18 − 3ζ3

)

− CFNf

(

1
12 + π2

9

)

, if a = q, q̄ .

(3.22)

Combining the results of eqs. (3.12) and (3.17) with the counterterms coming from

eq. (3.19) we arrive at a closed expression valid to all orders in ǫ for the NLO soft-virtual

coefficient function G
(1)
aā . For simplicity, we only write the first three terms of its expansion

in powers of ǫ:3

G
(1)
aā (z)

S≃ δ(1− z)

{

Ca
2π2

3
+
σ̂
(1)
fin(0)

σ̂0
+

[

− 4Caζ3 + γa
7π2

6
+
σ̂
(1)
fin(1)

σ̂0

]

ǫ

+

[

− Ca
17π4

90
+ γa

2ζ3
3

+
σ̂
(1)
fin(2)

σ̂0

]

ǫ2

}

(3.23)

+8CaD1(z) + Ca

(

π2D0(z)− 8D2(z)

)

ǫ

+Ca

(

28ζ3
3

D0(z)− 2π2D1(z) +
16

3
D3(z)

)

ǫ2 +O(ǫ3),

where we have set µR = µF = Q
S≃ √

s. The dependence of this expression on a particular

process is contained only in the one-loop coefficients σ̂
(1)
fin(i) defined by

σ̂
(1)
fin (ǫ) =

∞
∑

i=0

σ̂
(1)
fin(i) ǫ

i . (3.24)

4 NNLO

At second order in the perturbative expansion we have to consider the four O(α2
S) parton

subprocesses of eq. (2.8). The one-loop correction to the subprocess aā → F + g can

be obtained in a very similar way to the tree-level one. Let M(1)
g be the one-loop gluon

emission matrix element. The analogous to eq. (3.1) is given by the soft limit of one-loop

amplitudes as [29–33]

(

M(1)
g

)∗

M(0)
g +M(1)

g

(

M(0)
g

)∗ S≃
(

α0µ
2ǫ
0

)

Ca

{

8πSg(q)
[ (

M(1)
)∗

M(0) +M(1)
(

M(0)
)∗]

−
(

α0µ
2ǫ
0

)

CA
(2π)ǫ

ǫ2
2Γ4(1− ǫ)Γ2(1 + ǫ)Γ(ǫ)

Γ2(1− 2ǫ)Γ(2ǫ)

(

Sg(q)
)1+ǫ∣

∣M(0)
∣

∣

2
}

. (4.1)

The phase-space integrals we have to perform are
∫

Sg(q, p1, p2) dPS
2→1+1 soft and

∫

[Sg(q, p1, p2)]
1+ǫ dPS2→1+1 soft , (4.2)

3Contributions up to O(ǫ2) are needed to build the renormalization and factorization counterterms for

a calculation to N3LO accuracy.
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and their calculation can be achieved with the tools discussed in section 3. The result is

dσ̂
(1)
g

dQ2

S≃− σ̂
(1)
v

s

(α0

2π

)

(

4πµ20/s
)ǫ

(1− z)1+2ǫ
Ca

4 Γ(1− ǫ)

ǫ Γ(1− 2ǫ)
(4.3)

− σ̂0
s

(α0

2π

)2
(

4πµ20/s
)2ǫ

(1− z)1+4ǫ
CaCA

2Γ3(1− ǫ)Γ3(ǫ)Γ(−2ǫ)

Γ(1− 4ǫ)Γ(1− 2ǫ)Γ(2ǫ)
,

where σ̂
(1)
v can be written as in eq. (3.17), using the delta function to perform the Q2

integral.

We continue by computing the double real emission subprocesses, that is aā→ F+q+q̄

and aā→ F +g+g. For the NNLO squared amplitudes the following infrared factorization

formulae hold [34, 35]:

∣

∣Mqq̄(q1, q2, p1, p2)
∣

∣

2 S≃
(

α0µ
2ǫ
0

)2
8π2Ca

[

I11(q1, q2)+I22(q1, q2)−2I12(q1, q2)
]∣

∣M0(p1, p2)
∣

∣

2
,

(4.4)
∣

∣Mgg(q1, q2, p1, p2)
∣

∣

2 S≃
(

α0µ
2ǫ
0

)2
16π2

∣

∣M0(p1, p2)
∣

∣

2
(4.5)

×
[

4C2
aSg(q1)Sg(q2)−CACa

(

S11(q1, q2)+S22(q1, q2)−2S12(q1, q2)
)]

,

where all the dependence on the momenta q1 and q2 of the soft particles is embodied in

the functions Iij and Sij , which take the form [34]

Iij(q1, q2) = − 2(pi · pj) (q1 · q2) + [pi · (q1 − q2)] [pj · (q1 − q2)]

2(q1 · q2)2 [pi · (q1 + q2)] [pj · (q1 + q2)]
, (4.6)

Sij(q1, q2) =
(1− ǫ)

(q1 · q2)2
pi · q1 pj · q2 + pi · q2 pj · q1
pi · (q1 + q2) pj · (q1 + q2)

− (pi · pj)2
2pi · q1 pj · q2 pi · q2 pj · q1

[

2− pi · q1 pj · q2 + pi · q2 pj · q1
pi · (q1 + q2) pj · (q1 + q2)

]

(4.7)

+
pi · pj
2q1 · q2

[

2

pi · q1 pj · q2
+

2

pj · q1 pi · q2

− 1

pi · (q1 + q2) pj · (q1 + q2)

(

4 +
(pi · q1 pj · q2 + pi · q2 pj · q1)2
pi · q1 pj · q2 pi · q2 pj · q1

)]

. (4.8)

To perform the phase-space integration of both contributions we use the parametriza-

tion of dPS2→1+2 soft introduced in [18] for the calculation of the second order corrections

to the Drell-Yan process. Introducing the variables q = q1 + q2 and s12 = q2 we can write
∫

dPS2→1+2 soft =
1

(2π)2n−3

×
∫

dnK

∫

dnq

∫

ds12δ
+(K2 −Q2)δ+(q2 − s12)δ

n(p1 + p2 −K − q)

×
∫

dnq1

∫

dnq2δ
+(q21)δ

+(q22)δ
n(q − q1 − q2) . (4.9)

The last line of the above equation is most easily computed in the center-of-mass of q1 and

q2. In this frame, orientated so that p1 is in the direction of the n-th axis and p2 lies in
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the plane defined by the n-th and (n − 1)-th axes, the momenta can be parametrized as

follows [18]:

q1 =
1

2

√
s12 (1, . . . , cosφ sin θ, cos θ) ,

q2 =
1

2

√
s12 (1, . . . ,− cosφ sin θ,− cos θ) ,

p1 =
(s− t̃ )

2
√
s12

(1, 0, . . . , 0, 0, 1) ,

K =

(

s−Q2 − s12
2
√
s12

, 0, . . . , 0, |K| sinψ, |K| cosψ
)

,

|K| =
√

λ(s,Q2, s12)

2
√
s12

,

cosψ =
(s−Q2)(ũ−Q2)− s12(t̃+Q2)

(s− t̃ )
√

λ(s,Q2, s12)
, (4.10)

where we have defined θ ≡ θ1 and φ ≡ θ2 (see eq. (3.9)), and

t̃ = 2 p1 ·K, ũ = 2 p2 ·K, s = (p1 + p2)
2, s12 = s− t̃− ũ+Q2, (4.11)

where λ(a, b, c) is the Källen function, λ(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ca. The

dots in q1 and q2 represent n−3 unspecified components of momentum, which are trivially

integrated with the present parametrization. Using momentum conservation, we obtain for

p2 the following expression:

p2 =
s12 + t̃−Q2

2
√
s12

(1, 0, . . . , 0, sinχ, cosχ) ,

cosχ =
2
√
s12

s12 + t̃−Q2

(

|K| cosψ +
t̃− s

2
√
s12

)

. (4.12)

Considering the above parametrization and introducing the variables x, y and z:

z = Q2/s ,

ũ = s(1− y(1− z)) ,

t̃ = s

(

z + y(1− z)− y(1− y)x(1− z)2

1− y(1− z)

)

, (4.13)

the double real emission phase-space can be written as follows [18]:
∫

dPS2→1+2soft =
1

(4π)n
sn−3

Γ(n− 3)
(1− z)2n−5

∫ π

0
dθ

∫ π

0
dφ sinn−3 θ sinn−4 φ

×
∫ 1

0
dy

∫ 1

0
dx[y(1− y)]n−3[x(1− x)]n/2−2[1− y(1− z)]1−n/2. (4.14)

Up to this point we have kept the exact expression for the phase-space. In the soft

limit the last factor of eq. (4.14) can be approximated by 1, obtaining
∫

dPS2→1+2 soft S≃ 1

(4π)n
sn−3

Γ(n− 3)
(1− z)2n−5

∫ π

0
dθ

∫ π

0
dφ sinn−3 θ sinn−4 φ

×
∫ 1

0
dy

∫ 1

0
dx [y(1− y)]n−3 [x(1− x)]n/2−2 . (4.15)

With this approximation the integrals we have to perform become considerably simpler.
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We now have to express the integrands in terms of the variables x, y, z, θ and φ. The

quark-antiquark emission subprocess is relatively simple. The I11(q1, q2) term of eq. (4.4),

for example, takes the following form

I11(q1, q2) = −2 cos2 θ

(s12)2
= − 2 (1− (1− z) y)2 cos2 θ

s2(1− z)4 y2(1− y)2 x2
S≃ − 2 cos2 θ

s2(1− z)4 y2(1− y)2 x2
, (4.16)

where we have considered the z → 1 limit in the numerator in the last step. Then the

phase-space integral can be done in a direct way, obtaining

∫

I11(q1, q2) dPS2→1+2 soft S≃ − (4π)2ǫ

s1+2ǫ (1− z)1+4ǫ

Γ(−1− ǫ) Γ(−2ǫ) Γ(2− ǫ)

32π3 Γ(−4ǫ) Γ(4− 2ǫ)
. (4.17)

The phase-space integral of the I22(q1, q2) term yields the same result, since the integrand

can be obtained from I11 by the exchange p1 ↔ p2. The same happens for two integrands

that only differ in the exchange of q1 ↔ q2.

The remaining term is I12(q1, q2). It can be split into two contributions, I12 = IA+IB,
where

IA(q1, q2) =
−(p1 · p2) (q1 · q2)

(q1 · q2)2 [p1 · (q1 + q2)] [p2 · (q1 + q2)]

S≃ − 4

s2 (1− z)4 y2(1− y)2 x
, (4.18)

IB(q1, q2) =
−[p1 · (q1 − q2)] [p2 · (q1 − q2)]

2(q1 · q2)2[p1 · (q1 + q2)][p2 · (q1 + q2)]

S≃ 2x cosφ sin 2θ − (2− 4x) cos2 θ

s2 (1− z)4 y2(1− y)2 x2
.

(4.19)

Their integration is straightforward and the result is

∫

IA(q1, q2) dPS2→1+2 soft S≃ − (4ǫ)2ǫ

s1+2ǫ (1− z)1+4ǫ

Γ(−ǫ) Γ(−2ǫ) Γ(1− ǫ)

16π3 Γ(1− 4ǫ) Γ(2− 2ǫ)
, (4.20)

∫

IB(q1, q2) dPS2→1+2 soft S≃ − (4π)2ǫ

s1+2ǫ (1− z)1+4ǫ

Γ(−1− ǫ) Γ(−2ǫ) Γ(2− ǫ)

8π3 Γ(1− 4ǫ) Γ(4− 2ǫ)
. (4.21)

Combining eqs. (4.17), (4.20) and (4.21) with eq. (4.4) we arrive at a rather compact

expression for the NNLO double real soft quark-antiquark emission cross section:

dσ̂qq̄
dQ2

S≃ σ̂0
s

(α0

2π

)2
(

4πµ20/s
)2ǫ

(1− z)1+4ǫ
CaNf

2Γ2(2− ǫ) Γ(−2ǫ)

ǫ2 Γ(4− 2ǫ) Γ(−4ǫ)
. (4.22)

The Nf factor arises from the sum over the different qq̄ pair flavours.

The integration of the double gluon emission matrix element of eq. (4.5) is more cum-

bersome. The following formula is used several times in the calculation of the angular

integrals [18]:

∫ π

0
dθ

∫ π

0
dφ

sinn−3 θ sinn−4 φ

(1− cos θ)i(1− cos ξ cos θ − sin ξ cosφ sin θ)j
(4.23)

= 21−i−jπ
Γ(n/2− 1− j)Γ(n/2− 1− i)

Γ(n− 2− i− j)

Γ(n− 3)

Γ2(n/2− 1)
F

(

i, j;
n

2
− 1; cos2

ξ

2

)

,

where F (a, b; c; z) is the hypergeometric function.
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As an example we show in detail the integration of the simplest term,
∫

Sg(q1)Sg(q2)dPS
2→1+2 soft. After partial fractioning, it can be written in the follow-

ing way

Sg(q1)Sg(q2) =
s2

(s− t̃ ) (s12 + t̃−Q2)

(

1

p1 · q1
+

1

p1 · q2

)(

1

p2 · q1
+

1

p2 · q2

)

. (4.24)

Out of the four terms we obtain multiplying the factors in parenthesis we have to integrate

only two because the others can be obtained from them by the exchange p1 ↔ p2 or q1 ↔ q2.

Let SA(q1, q2) be the term corresponding to the product (p1 · q1)(p2 · q1) in the denom-

inator. Using the parametrization of eq. (4.10) we arrive at

SA(q1, q2) =

(

4s

(s− t̃ ) (s12 + t̃−Q2)

)2( 1

(1− cos θ)(1− cosχ cos θ − sinχ cosφ sin θ)

)

.

(4.25)

The first factor can be written in terms of the variables x, y and z. Then the second factor

can be integrated using eq. (4.23) with i = j = 1 and ξ = χ (the factors sinn−3 θ sinn−4 φ

are present in dPS2→1+2 soft). The argument of the hypergeometric function, cos2 χ
2 , can

be written using the definition of cosχ in eq. (4.12) in the following way:

cos2
χ

2
=

1 + cosχ

2

S≃ 1 + x , (4.26)

where the last step is valid in the soft limit, since cosχ→ 1− 2x when z → 1.

Now we have to perform the integration in the variables x and y. The first one takes

the following form in the soft limit
∫ 1

0
F (1, 1;

n

2
− 1; 1− x)[x(1− x)]n/2−2dx , (4.27)

which is a particular case of
∫ 1

0
F (1, 1, γ, t)[(1− t)t]γ−1dt =

Γ2(γ)Γ(2γ − 2)

Γ2(2γ − 1)
. (4.28)

The remaining integral can be done straightforwardly, and the final result is
∫

SA(q1, q2) dPS
2→1+2 soft S≃ − (4π)2ǫ

s1+2ǫ(1− z)1+4ǫ

Γ2(−ǫ)
32π3 ǫΓ(1− 4ǫ)

. (4.29)

Now let SB(q1, q2) be the term of eq. (4.24) corresponding to the product (p1 ·q1)(p2 ·q2)
in the denominator. In this case we have

SB(q1, q2) =

(

4s

(s− t̃ ) (s12 + t̃−Q2)

)2( 1

(1− cos θ)(1 + cosχ cos θ + sinχ cosφ sin θ)

)

.

(4.30)

To perform the angular integral we use again eq. (4.23), taking in this case i = j = 1

and ξ = χ+ π. Then the result only differs from the previous one in the argument of the

hypergeometric function, which is

cos2
ξ

2
= cos2

(

χ+ π

2

)

=
1− cosχ

2

S≃ x , (4.31)
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and the x integral takes the form

∫ 1

0
F (1, 1;

n

2
− 1;x)[x(1− x)]n/2−2dx , (4.32)

which is the same of eq. (4.27) through the change of variables x→ 1−x. Then the phase-

space integral of
∫

SB(q1, q2) dPS
2→1+2 soft coincides with eq. (4.29), and the four terms of

eq. (4.24) give equal contributions to the cross section, yielding

∫

Sg(q1)Sg(q2) dPS
2→1+2 soft S≃ − (4π)2ǫ

s1+2ǫ(1− z)1+4ǫ

Γ2(−ǫ)
8π3 ǫΓ(1− 4ǫ)

. (4.33)

The integration of the remaining terms of eq. (4.5) is more complicated due to the more

involved expression of the two-gluon eikonal function Sij(q1, q2). However, the techniques

needed for the calculation are essentially the ones we have described so far. The result we

obtain is the following:

∫

S11(q1, q2) + S22(q1, q2)− 2S12(q1, q2) dPS
2→1+2 soft

S≃ − (4π)2ǫ

s1+2ǫ(1− z)1+4ǫ

Γ(−ǫ)Γ(−2ǫ)Γ(2− ǫ)

16π3ǫ2Γ(−4ǫ)Γ(4− 2ǫ)

×
[

− 3 + (19− 11ǫ)ǫ+ 2(3 + 4ǫ(ǫ− 2)) 3F2(1, 1,−ǫ; 1− 2ǫ, 1− ǫ; 1)
]

, (4.34)

where the generalized hypergeometric function 3F2 arises from the following integral:

∫ 1

0
(1− x)−ǫx−1−ǫF (1, 1; 1− ǫ, x)dx =

Γ2(−ǫ)
2 Γ(−2ǫ)

3F2(1, 1,−ǫ; 1− 2ǫ, 1− ǫ; 1) . (4.35)

Combining the results of eqs. (4.33) and (4.34), adding the factors coming from eq. (4.5)

and a 1
2 factor for identical particles in the final state, we finally arrive at the double soft

gluon emission cross section:

dσ̂gg
dQ2

S≃ σ̂0
s

(α0

2π

)2
(

4πµ20/s
)2ǫ

(1− z)1+4ǫ

Γ(−ǫ)
ǫ2Γ(−4ǫ)

{

2C2
a Γ(−ǫ) + CaCA

Γ(−2ǫ)Γ(2− ǫ)

Γ(4− 2ǫ)
(4.36)

×
[

− 3 + (19− 11ǫ)ǫ+ 2(3 + 4ǫ(ǫ− 2)) 3F2(1, 1,−ǫ; 1− 2ǫ, 1− ǫ; 1)
]

}

.

Again, this result is valid at all orders in ǫ.4

We now have to evaluate the O(α2
S) virtual corrections. One contribution comes from

the square of the matrix element M(1) of eq. (3.14). The other arises from the two-loop

(renormalized) matrix element M(2), whose infrared-singular behaviour can be written

as [27, 37, 38]:

M(2)(ǫ) =
αS

2π
I
(1)
a (ǫ) M(1)(ǫ) +

(αS

2π

)2 [

I
(2)
a (ǫ)M(0)(ǫ) +M(2)

fin (ǫ)
]

, (4.37)

4The contribution from the generalized hypergeometric function 3F2 is the only term that can not be

written in terms of simpler Γ functions [36].
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where M(2)
fin is finite when ǫ→ 0, and the function I

(2)
a (ǫ) is explicitly given by [27]:

I
(2)
a (ǫ) =

(

−4πµ2
R

s

)ǫ
S−1
ǫ

72ǫ4Γ(1−ǫ)

{

12ǫ(Ca+ǫγa)(11CA−2Nf )−36
S−1
ǫ

Γ(1−ǫ)

(

−4πµ2R
s

)ǫ

(Ca+ǫγa)
2

+ǫ(−1)ǫ
(

µ2R
s

)ǫ
[

36ǫ2Ha + 2(3 + 5ǫ)(Ca + 2ǫγa)Nf (4.38)

+ CA(Ca + 2ǫγa)
(

−33− 67ǫ+ 3ǫπ2
)

]

}

.

Here the coefficient Ha depends on the type of the incoming partons, being [27, 37–39]

Ha =











C2
A

(

1
2ζ3+

5
12+

11π2

144

)

−CANf

(

29
27+

π2

72

)

+ 1
2CFNf+

5
27 N

2
f , if a = g

C2
F

(

− 6ζ3− 3
8+

π2

2

)

+CACF

(

13
2 ζ3+

245
216− 23π2

48

)

+CFNf

(

π2

24− 25
108

)

, if a = q, q̄ .

(4.39)

The corresponding contribution to NNLO arises from the product with the Born-level

matrix element, i.e., M(2)(M(0))∗ + (M(2))∗M(0).

Combining all the second order virtual corrections we arrive at the following expression

for the two-loop virtual contribution to the cross section σ̂
(2)
v :

dσ̂
(2)
v

dQ2
=
σ̂0
s

(αS

2π

)2
δ(1− z)

{

S−1
ǫ

72 ǫ4

(

4πµ2R
s

)ǫ
[

(

4πµ2R
s

)ǫ
36S−1

ǫ (Ca + ǫγa)
2 Γ2(ǫ)

Γ2(2ǫ) Γ2(1− 2ǫ)

+ǫ

[(

µ2R
s

)ǫ
Γ(2ǫ) Γ(1− 2ǫ)

Γ(4ǫ) Γ(1− ǫ) Γ(1− 4ǫ)

×
(

CA

(

3π2ǫ− 67ǫ− 33
)

(Ca + 2ǫγa) + 2Nf (5ǫ+ 3)(Ca + 2ǫγa) + 36Ha ǫ
2

)

−12 (Ca + ǫγa) Γ(ǫ)

Γ(2ǫ) Γ(1− 2ǫ)

(

− 11CA + 6ǫ
σ̂
(1)
fin (ǫ)

σ̂0
+ 2Nf

)]

]

+
σ̂
(2)
fin (ǫ)

σ̂0

}

, (4.40)

where σ̂
(2)
fin (ǫ) is a second order finite contribution to the cross section defined by

σ̂
(2)
fin (ǫ)

σ̂0
=

∫

[(

M(2)
fin

(

M(0)
)∗

+
(

M(2)
fin

)∗

M(0)
)

+
∣

∣M(1)
fin

∣

∣

2
]

dPS(0)
/∫

∣

∣M(0)
∣

∣

2
dPS(0) .

(4.41)

We have evaluated all the NNLO corrections for a process with a colourless final

state. The results are valid at all orders in ǫ. To obtain a finite result we must add

eqs. (4.3), (4.22), (4.36), (4.40) and the O(α2
S) of eq. (3.12) together with the counterterms

coming from mass factorization (eq. (3.19)). In this way we arrive at a closed expression

for the second order coefficient function G
(2)
aā (z). Expanding the result in powers of ǫ and

keeping terms up to O(ǫ) (relevant for an eventual calculation at the next order) we obtain
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the following result:

G
(2)
aā (z)

S≃ δ(1− z)

{

C2
a

2π4

15
+ CaCA

(

607

81
+

737π2

432
− 407ζ3

36
− 7π4

48

)

+CaNf

(

−82

81
− 55π2

216
+

37ζ3
18

)

+ γa β0
11π3

6
+ Ca

2π2

3

σ̂
(1)
fin(0)

σ̂0
+
σ̂
(2)
fin(0)

σ̂0

+ǫ

[

C2
a

(

80π2ζ3
3

− 256ζ5

)

+ CaNf

(

305ζ3
54

− 488

243
+

49π2

81
+

77π4

960

)

+CaCA

(

−4087ζ3
108

+
101π2ζ3

18
− 43ζ5

2
+

3644

243
− 707π2

162
− 847π4

1920

)

+Ca





7π4

9
γa − 4ζ3

σ̂
(1)
fin(0)

σ̂0
+

2π2

3

σ̂
(1)
fin(1)

σ̂0



+ CA γa

(

−11ζ3
18

+
1675π2

216
− 25π4

72

)

+Nf γa

(

ζ3
9

− 125π2

108

)

− 25π2

12
Ha +

7π2γa
6

σ̂
(1)
fin(0)

σ̂0
+
σ̂
(2)
fin(1)

σ̂0

]}

+ C2
a

(

64ζ3D0(z)−
16π2

3
D1(z) + 32D3(z)

)

+ CaCA

[(

−404

27
+

22π2

9
+ 14ζ3

)

D0(z) +

(

268

9
− 4π2

3

)

D1(z)−
44

3
D2(z)

]

+ CaNf

[(

56

27
− 4π2

9

)

D0(z)−
40

9
D1(z) +

8

3
D2(z)

]

+ 8Ca

σ̂
(1)
fin(0)

σ̂0
D1(z)

+ǫ

{

C2
a

(

10π4

9
D0(z)− 416ζ3D1(z) +

116π2

3
D2(z)−

160

3
D4(z)

)

+CaCA

[(

176ζ3
3

− 2428

81
+

469π2

54
− π4

9

)

D0(z)

+

(

−56ζ3 +
1616

27
− 121π2

9

)

D1(z) +

(

8π2

3
− 536

9

)

D2(z) +
88

3
D3(z)

]

+CaNf

[(

−32ζ3
3

+
328

81
− 35π2

27

)

D0(z)

+

(

22π2

9
− 224

27

)

D1(z) +
80

9
D2(z)−

16

3
D3(z)

]

+Ca

[

π2
σ̂
(1)
fin(0)

σ̂0
D0(z) +

(

28π2

3
γa + 8

σ̂
(1)
fin(1)

σ̂0

)

D1(z)− 8
σ̂
(1)
fin(0)

σ̂0
D2(z)

]

}

+O(ǫ2) ,

(4.42)

where for simplicity we have set µF = µR = Q. The dependence of the above expression

on a particular process is embodied in the finite virtual contributions σ̂
(1)
fin(i) and σ̂

(2)
fin(i), the

latter being defined by

σ̂
(2)
fin (ǫ) =

∞
∑

i=0

σ̂
(2)
fin(i) ǫ

i . (4.43)

The coefficients Ca, γa and Ha only depend on the type of the incoming partons.
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The expression of eq. (4.42) coincides with the existing results for colourless final state

NNLO cross sections, i.e., Drell-Yan process [18] and Higgs boson production via gluon

fusion [19, 20].5 For the latter, when we consider the Higgs-gluon effective coupling in the

large top mass (Mt) limit, the corresponding vertex factor C1 has the following perturbative

expansion in powers of αS [17, 42]:

C1 = 1 +
11

4

αS

π
+

(αS

π

)2
[

2777

288
+

19

16
ln
µ2R
M2

t

+Nf

(

−67

96
+

1

3
ln
µ2R
M2

t

)]

+O(α3
S) . (4.44)

The “tree-level” cross section σ̂0 is proportional to α2
SC

2
1 and then can be expanded in

powers of αS, being the lowest order term proportional to α2
S. The NLO and NNLO

corrections are then of order α3
S and α4

S respectively. To obtain the correct result when

using eqs. (3.24) and (4.42) to compute eq. (2.2), one has to include the terms in eq. (4.44)

up to the desired precision in the strong coupling constant.

The results we have presented can also be trivially expressed in a more general way,

by undoing the formal dPS(0) integrals. Then one arrives at an identical expression for

the differential cross section d2σ̂/dQ2dPS(0), where dPS(0) depends on all the internal

kinematical variables of the system F . In this way the result would be differential except

on the hadronic activity which has been integrated out.

5 Soft-virtual approximation in Mellin space

The soft limit can be defined in a more natural way by working in Mellin (or N -moment)

space, where instead of distributions in z the dominant contributions are provided by con-

tinuous functions of the variable N . In fact, it was shown in ref. [43] that large subleading

terms arise when one attempts to formulate the soft-gluon resummation problem in z-space

(as opposed to its natural formulation in N -space), and that these subleading terms grow

factorially with the order of the perturbative expansion. As a consequence of these spuri-

ous contributions, all-order resummation cannot be systematically defined in z-space. In

ref. [13] it was shown that the soft-virtual approximation at NLO and NNLO for Higgs

boson production yielded better results if defined in N -space.

We consider the Mellin transform σN (Q2) of the hadronic cross section σ(sH , Q
2). The

N -moments with respect to τ = Q2/sH at fixed Q are thus defined as follows:

σN (Q2) ≡
∫ 1

0
dτ τN−1 σ(sH , Q

2) . (5.1)

In N -moment space, eq. (2.2) takes a simple factorized form

σN−1(Q
2) = σ̂0

∑

a,b

fa/h1, N (µ2F ) fb/h2 N (µ2F ) Gab,N (αS, Q
2/µ2R;Q

2/µ2F ) , (5.2)

5Higher order soft (non-virtual) corrections to the Di terms are obtained in [14, 40, 41]
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where we have introduced the customary N -moments of the parton distributions (fa/h,N )

and of the hard coefficient function (Gab,N ):

fa/h,N (µ2F ) =

∫ 1

0
dx xN−1 fa/h(x, µ

2
F ) , (5.3)

Gab,N =

∫ 1

0
dz zN−1 Gab(z) . (5.4)

Once these N -moments are known, the physical cross section in z-space can be obtained

by Mellin inversion:

σ(sH , Q
2) = σ̂0

∑

a,b

∫ CMP+i∞

CMP−i∞

dN

2πi

(

Q2

sH

)−N+1

fa/h1, N (µ2F ) fb/h2 N (µ2F )

× Gab,N (αS, Q
2/µ2R;Q

2/µ2F ) , (5.5)

where the constant CMP that defines the integration contour in the N -plane is on the right

of all the possible singularities of the integrand, as defined in the Minimal Prescription

introduced in [43].

The evaluation of Gaā in the limit z → 1 corresponds to the evaluation of the N -

moments Gaā,N in the limit N → ∞. In the Mellin space soft-virtual approximation we

drop all the terms that vanish when N → ∞ and keep only constant and logarithmic

(lnN) contributions.6 We introduce the notation SV-N to indicate this approximation,

while SV-z stands for the previous results obtained in the z space by keeping the most

divergent terms when z → 1. Then, z-space and N -space approximations generally differ

by terms that are formally subleading.

The (soft-virtual approximation to the) N -moments Gaā,N can be obtained again as

an expression valid to all orders in ǫ by using the following results:

∫ 1

0
dz zN−1 δ(1− z) = 1 , (5.6)

∫ 1

0
dz zN−1 1

(1− z)1+aǫ
=

Γ(N) Γ(−aǫ)
Γ(N − aǫ)

= Naǫ

[

Γ(−aǫ) +O
(

1

N

)]

(5.7)

∫ 1

0
dz zN−1D0(z) = − ln(N)− γE +O

(

1

N

)

, (5.8)

since all the contributions to the function Gaā have one of these three dependences on the

variable z (the D0(z) terms appear in the counterterms coming from mass factorization).

Then, to obtain the SV-N approximation we just have to replace δ(1 − x) → 1 and (1 −
z)−1−aǫ → NaǫΓ(−aǫ) in eqs. (3.12), (3.17), (4.3), (4.22), (4.36) and (4.40), and replace

D0(z) → − ln(N)− γE in the Altarelli-Parisi splitting functions.

We can also arrive at the SV-N approximation from the expanded results of eqs. (3.24)

and (4.42). For this, we need the N → ∞ limit of the N -moments of the distributions

6Non-diagonal channels Gab,N with b 6= ā result in corrections which are at least O
(

1
N

)

suppressed at

the partonic level.
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Di(z), which can be obtained for instance from [13, 44]. The results, keeping only the

O(ǫ0) terms, are the following:

G
(1)
aā,N = 4Ca ln

2(N) + 8CaγE ln(N) + C
(1)
aā +O

(

1

N

)

, (5.9)

G
(2)
aā,N = 8C2

a ln
4(N) + Ca ln

3(N)

[

32CaγE +
44

9
CA − 8

9
Nf

]

+Ca ln
2(N)

[

Ca

(

48γ2E +
16π2

3

)

+ CA

(

134

9
− 2π2

3
+

44γE
3

)

−Nf

(

20

9
+

8γE
3

)

+ 4
σ̂
(1)
fin(0)

σ̂0

]

+Ca ln(N)

[

Ca

(

32γ3E+
32γEπ

2

3

)

+CA

(

−14ζ3+
404

27
+
268γE

9
+
44γ2E
3

− 4γEπ
2

3

)

−Nf

(

56

27
+

40γE
9

+
8γ2E
3

)

+ 8γE
σ̂
(1)
fin(0)

σ̂0

]

+ C
(2)
aā +O

(

1

N

)

, (5.10)

where the coefficients C
(1)
aā and C

(2)
aā are independent of N and take the form

C
(1)
aā = Ca

4π2

3
+ 4Caγ

2
E +

σ̂
(1)
fin(0)

σ̂0
, (5.11)

C
(2)
aā = C2

a

(

8γ4E +
16γ2Eπ

2

3
+

8π4

9

)

+CaCA

(

−55ζ3
36

−14γEζ3+
607

81
+
404γE
27

+
134γ2E

9
+
44γ3E
9

+
67π2

16
− 2γ2Eπ

2

3
− 37π4

144

)

+CaNf

(

5ζ3
18

− 82

81
− 56γE

27
− 20γ2E

9
− 8γ3E

9
− 5π2

8

)

+γaβ0
11π3

6
+ Ca

σ̂
(1)
fin(0)

σ̂0

(

4π2

3
+ 4γ2E

)

+
σ̂
(2)
fin(0)

σ̂0
. (5.12)

Again, the corresponding result for Higgs production using the ggH effective coupling

has to be treated by incorporating the corrections described by eq. (4.44).

6 Phenomenological results

To evaluate the phenomenological accuracy of the SV-z and SV-N approximations we

compare them to the exact calculation for the processes of the kind of eq. (2.1) that are

available up to NNLO, i.e., Drell-Yan and Higgs boson production via gluon fusion. We

compute the corresponding hadronic cross sections for proton-proton collisions at a center-

of-mass energy
√
sH = 14TeV. For simplicity, in the Drell-Yan process we only consider

the photon channel, since the nature of the exchanged boson does not affect the impact of

the QCD corrections we want to evaluate.

To obtain the hadronic cross section we have to perform the convolution of the partonic

result with the parton distribution functions. At each order, we use the corresponding
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MSTW2008 [45] parton distribution set and QCD coupling (one-loop αS at LO, two-loop

αS at NLO and three-loop αS at NNLO).

We introduce now the notation used for the different contributions to the hadronic

cross section. The up to NLO and NNLO calculations are denoted by σNLO(sH) and

σNNLO(sH) respectively, while σLO(sH) is the LO cross section. The contribution σ(i)(sH)

is defined as the O(αi
S) correction of the fixed order calculation σNiLO(sH), i.e.,

σNiLO(sH) = σLO(sH) + · · ·+
(αS

2π

)i
σ(i)(sH) . (6.1)

For the corresponding soft-virtual hadronic cross sections we use the same notation adding

the index SV-z or SV-N . The cross section σSVNNLO(sH) contains the full NLO hard cross

section.

Since the soft-virtual cross section approximates only the dominant parton subprocess,

to evaluate its accuracy we first have to compare it to the partial contributions for that

partonic channel. In figure 1 we plot the quantities

K
(i)
SV-z =

σ
(i)
SV-z(sH)

σ
(i)
aā (sH)

, K
(i)
SV-N =

σ
(i)
SV-N (sH)

σ
(i)
aā (sH)

, (6.2)

for i = 1, 2. In the left-hand side of figure 1 we show K
(1)
SV-z and K

(1)
SV-N for Higgs boson

production as a function of the Higgs mass MH = Q. The corresponding comparison at

the next order K
(2)
SV-z and K

(2)
SV-N is shown in the right-hand side of the same figure. We

present the equivalent plots for the Drell-Yan process in figure 2, as a function of the

lepton pair mass Q. In all figures the central curves are obtained by fixing µR = µF = Q,

and the bands by varying simultaneously the renormalization and factorization scales to

µR = µF = Q/2 and µR = µF = 2Q.

We can see from the plots that in all the cases the N -space approximation is in very

good agreement with the exact NLO and NNLO calculations, being much more accurate

than the z-space one, as expected since the soft-virtual approximation is defined in a more

natural way in Mellin space. For Higgs boson production the SV-N approximation repro-

duces about 90% of the exact result at each order, while for the Drell-Yan process the

agreement reaches the level of 80%. This difference is expected because the gluon distri-

bution function grows faster than quark distributions for small fractions of x, enhancing

the threshold contribution to the cross section for gluon fusion processes.

Our next step is to evaluate if the inclusion of the NiLO soft-virtual corrections results

in an improvement over the Ni−1LO calculation. We plot the ratio between σSV-N
NiLO

(sH)

and σNiLO(sH), and compare it with the ratio between σNi−1LO(sH) and σNiLO(sH), for

i = 1, 2. This is shown for Higgs boson production in figure 3, and for the Drell-Yan

process in figure 4.

For Higgs boson production we see that the ratio between the SV-N approximation

and the full calculation is very close to 1 for both NLO and NNLO [13]. We can also see

that, due to the large perturbative corrections, the Ni−1LO calculation is far from the NiLO

one (for i = 1, 2). If the full NNLO result were not available, it would be clearly convenient

to include the SV-N approximation contribution as an attempt to improve the accuracy of

the calculation. Given the fact that one can reach this conclusion based on the relevance
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Figure 1. The ratio between SV-N (solid lines) and SV-z (dashed lines) approximations and the

exact result for Higgs boson production gg channel at the LHC (
√
sH = 14TeV) for the NLO (left)

and NNLO (right) contributions.

0

0.2

0.4

0.6

0.8

1

200 400 600 800 1000

Q (GeV)

SV-N
SV-z

K(1)

Q (GeV)

SV-N
SV-z

K(2)

200 400 600 800 1000

Figure 2. The ratio between SV-N (solid lines) and SV-z (dashed lines) approximations and the

exact result for the Drell-Yan qq̄ channel at the LHC (
√
sH = 14TeV) for the NLO (left) and NNLO

(right) contributions.

on soft-gluon emission in gluon initiated processes, it seems very reasonable to conjecture

that the soft-virtual approximation might be equally accurate for any gluon-gluon fusion

dominated reaction.
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Figure 3. The ratio between σSV-N

NiLO
(solid lines) and σNi−1LO (dashed lines) and σNiLO for Higgs

boson production at the LHC (
√
sH = 14TeV), for i = 1 (left) and i = 2 (right).
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Figure 4. The ratio between σSV-N

NiLO
(solid lines) and σNi−1LO (dashed lines) and σNiLO for the

Drell-Yan process at the LHC (
√
sH = 14TeV), for i = 1 (left) and i = 2 (right).

The situation is different for the Drell-Yan process, mainly for two reasons. In the

first place, the total cross section has more sizeable contributions from other partonic

subprocesses besides the quark-antiquark one, mainly from the quark-gluon channel which

is not included in the SV approximation. In the second place, the perturbative corrections

are small compared to those for Higgs boson production, and then the Ni−1LO calculation
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is closer to the NiLO one. However, we can see that the NLO SV-N approximation is far

more accurate than the LO result, and the NNLO SV-N one is as accurate as the NLO

result, improving with the invariant mass. Therefore, one might expect even more accurate

results for quark initiated process where heavier states (closer to the production threshold

for the same collider energy) are produced in the final state, as in double gauge boson

production.

Another process for which NNLO have been recently computed is diphoton produc-

tion [46]. One can in principle apply the formulae developed in this paper in order to

compute the SV contribution. This is a clear counter-example for which SV corrections are

not dominant and, therefore, the SV approximation fails to reproduce the main features for

the process. The main issue here is that while the Born contribution is initiated by qq̄ anni-

hilation, the higher order corrections from the qg channel completely overwhelm the Born

result simply because of the large non-perturbative quark-gluon luminosity at hadronic

colliders.7 This effect is particularly stressed by the implementation of asymmetric cuts

in the transverse momentum of the two photons which tends to diminish the relevance of

Born like kinematic configuration and emphasise the contribution from hard (i.e, non-soft)

contributions in higher order corrections [46]. For some observables, like those relevant for

Higgs searches, the contributions from the non-diagonal qg channel amounts a few times

the one arising from qq̄ annihilation.

Therefore, even if in some kinematical conditions the SV approximation provides an ac-

curate description of the contribution only from the qq̄ channel, it clearly fails to reproduce

the full NLO or NNLO results by a large amount. In conclusions, the SV approximation

can only be accurate enough when it is not affected by the non-perturbative enhancement

of formally hard contributions from channels opening beyond the Born level with a very

large partonic luminosity.

We want to remark that this issue affects basically some processes that are initiated at

LO by qq̄ annihilation, since those initiated by gg are already enhanced by largest partonic

luminosity at hadronic colliders. In any case, since the effect of the opening of a new

channel can be appreciated at NLO, it can be checked whether such large new contribution

spoils the SV approximation before attempting to use it at NNLO accuracy.

7 Threshold resummation

Given that soft-virtual terms provide the bulk of the corrections for the processes un-

der study, it is possible to improve over the state of the art fixed-order predictions by

performing soft-gluon resummation. In this section we consider the all-order perturbative

summation of enhanced threshold (soft and virtual) contributions to the partonic cross sec-

tion. We refrain from analyzing the phenomenological impact of soft-gluon resummation

and, instead, concentrate on the extraction of a universal expression for the coefficients

needed to achieve next-to-next-to-leading logarithmic (NNLL) accuracy.

7In some cases even the formally NNLO contribution from the gg channel turns out to be comparable

to the Born result for the same reason.
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The formalism to systematically perform soft-gluon resummation for hadronic pro-

cesses, in which a colourless massive system F is produced by qq̄ annihilation or gg fusion,

was set up in refs. [44, 47, 48].

The resummation of soft-gluon effects is achieved by organizing the partonic coefficient

function in Mellin space as

G
(res)
aā,N (αS(µ

2
R),M

2
H/µ

2
R;M

2
H/µ

2
F ) = C̃aā(αS(µ

2
R),M

2
H/µ

2
R;M

2
H/µ

2
F )

·∆N (αS(µ
2
R),M

2
H/µ

2
R;M

2
H/µ

2
F ) +O(1/N) , (7.1)

The large logarithmic corrections (that appear as αn
S ln

2n−kN in Mellin space) are expo-

nentiated in the Sudakov radiative factor ∆N , which depends only on the dynamics of soft

gluon emission from the initial state partons. It can be expanded as

∆N

(

αS(µ
2
R), lnN ;

M2
H

µ2R
,
M2

H

µ2F

)

= lnN g(1)a (β0αS(µ
2
R) lnN) + g(2)a (β0αS(µ

2
R) lnN,M

2
H/µ

2
R;M

2
H/µ

2
F )

+ αS(µ
2
R) g

(3)
a (β0αS(µ

2
R) lnN,M

2
H/µ

2
R;M

2
H/µ

2
F )

+
+∞
∑

n=4

[

αS(µ
2
R)

]n−2
g(n)a (β0αS(µ

2
R) lnN,M

2
H/µ

2
R;M

2
H/µ

2
F ) . (7.2)

The function lnN g
(1)
a resums all the leading logarithmic (LL) contributions

αn
S ln

n+1N , g
(2)
a contains the next-to-leading logarithmic (NLL) terms αn

S ln
nN , αSg

(3)
a

collects the next-to-next-to-leading logarithmic (NNLL) terms αn+1
S lnnN , and so forth.

All the perturbative coefficients required to construct the g
(1)
a , g

(2)
a and g

(3)
a functions are

known and only depend on the nature of the initiating partons. Their explicit expression

can be found, for instance, in ref. [13, 49].

On the other hand, the function C̃aā(αS) contains all the contributions that are con-

stant in the large-N limit. They are produced by the hard virtual contributions and

non-logarithmic soft corrections, and can be computed as a power series expansion in αS:

C̃aā(αS(µ
2
R),M

2
H/µ

2
R;M

2
H/µ

2
F ) = 1 +

+∞
∑

n=1

(

αS(µ
2
R)

2π

)n

C̃
(n)
aā (M2

H/µ
2
R;M

2
H/µ

2
F ) . (7.3)

The C̃
(i)
aā coefficient required to perform the resummation up to NiLL can be obtained

from the corresponding fixed order computation to NiLO accuracy. No general expression

was known up to now for the hard coefficient, and its obtention demanded an individual

computation for each process. We show here that, given the results for the soft-virtual

approximation in Mellin space presented in the previous section, it is possible to obtain

the universal expressions for the C̃
(i)
aā coefficients up to NNLL accuracy.

A direct comparison of the expansion of eq. (7.1) up to order α2
S to the expression

presented in eqs. (5.9) and (5.10) shows a complete agreement for the logarithmically

enhanced terms (which are fully predicted by the resummed expression), and allows the

extraction of the C̃
(i)
aā coefficients from the N−independent terms. As a matter of fact,
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since it is customary to define the functions g
(n)
a such that g

(n)
a (β0αS lnN) = 0 when

αS = 0, the Sudakov radiative factor can only produce logarithmically enhanced terms

(i.e., no constant terms) when expanded to any fixed order in the strong coupling constant

and, therefore, the C̃
(i)
aā are exactly given by the N−independent terms of the soft-virtual

coefficients G
(i)
aā,N at each order in perturbation theory. Up to NNLL accuracy they are

expressed by eqs. (5.11) and (5.12) as

C̃
(1)
aā = C

(1)
aā ,

C̃
(2)
aā = C

(2)
aā . (7.4)

The coefficients in eq. (7.4) depend, as expected, on the virtual corrections to the corre-

sponding scattering amplitudes and on the colour factors of the initial state partons. We

have explicitly checked that the known coefficient for Higgs8 production [13] agrees with

the result from eq. (7.4).

The new universal expression in eq. (7.4) plus the present knowledge of the Sudakov

radiative factor allows us to perform the resummation of soft-gluon emission relevant at

the partonic threshold up to NNLL accuracy for any process of the kind h1+h2 −→ F +X.

8 Conclusions

In this paper we have computed the NNLO soft and virtual QCD corrections for the

partonic cross section of colourless-final state processes in hadronic collisions. We presented

a universal expression for the corresponding cross section, whose only dependence on the

process enters through the (finite part of) one- and two-loop amplitudes.

We evaluated the accuracy of the soft-virtual approximation for known processes as

Drell-Yan and Higgs boson production in hadronic colliders. We conclude that the ap-

proximation is excellent for gluon-gluon fusion initiated processes and quite accurate for

quark-antiquark initiated ones for high invariant masses. For processes for which it is still

not possible to compute the full NNLO corrections, counting with the corresponding soft-

virtual approximation results in a clear improvement over the accuracy of the available

calculation.

Finally, profiting from the soft-virtual calculation, we provided a universal expression

for the coefficient needed to perform threshold resummation up to NNLL accuracy.

With the recent calculation of the three-loop quark and gluon form-factors [50–52], it

should be possible to attempt for an evaluation of the dominant soft-virtual corrections

at N3LO for a number of interesting processes (as Drell-Yan and Higgs boson production)

following the approach described in this paper. As a first step in this direction, we have

provided the necessary ingredients for ultraviolet and infrared factorization by presenting

explicit results for the cross section valid to all orders in ǫ. The other contributions needed

to obtain the N3LO soft-virtual result are the following:

1. The soft gluon emission from a two-loop amplitude, which can be obtained from the

factorization formula derived in [53]. The corresponding phase space integration is

8After properly taking into account the corrections to the effective ggH vertex.

– 24 –
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trivial following the same procedure indicated here for the tree-level and one-loop

soft gluon emission.

2. Double soft (gluon and quark-antiquark) emission at one-loop level. The soft limit of

the corresponding amplitudes may be derived following the path developed in [29].

The phase space integration should not be more difficult than the (double real) tree-

level one described in this manuscript.

3. The tree-level triple soft emission. The corresponding soft limit of the tree-level

amplitudes are accesible by either using the soft insertion rules of [34] or the recursion

relations in [35]. The main complexity of this contribution arises from the integration

over the three-particle phase space, where one can forsee the extension of the method

presented in [36] to one order higher.
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[26] Z. Kunszt, A. Signer and Z. Trócsányi, Singular terms of helicity amplitudes at one loop in

QCD and the soft limit of the cross-sections of multiparton processes,

Nucl. Phys. B 420 (1994) 550 [hep-ph/9401294] [INSPIRE].

[27] S. Catani, The Singular behavior of QCD amplitudes at two loop order,

Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].

[28] R.K. Ellis, W.J. Stirling and B. Webber, QCD and collider physics, Camb. Monogr. Part.

Phys. Nucl. Phys. Cosmol. 8 (1996) 1 [INSPIRE].

[29] S. Catani and M. Grazzini, The soft gluon current at one loop order,

Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].

– 26 –

http://dx.doi.org/10.1016/j.physletb.2009.03.033
http://arxiv.org/abs/0901.2427
http://inspirehep.net/search?p=find+J+Phys.Lett.,B674,291
http://dx.doi.org/10.1088/1126-6708/2009/04/003
http://arxiv.org/abs/0811.3458
http://inspirehep.net/search?p=find+J+JHEP,0904,003
http://dx.doi.org/10.1088/1126-6708/2003/07/028
http://arxiv.org/abs/hep-ph/0306211
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0306211
http://dx.doi.org/10.1016/j.physletb.2005.09.061
http://arxiv.org/abs/hep-ph/0508265
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508265
http://dx.doi.org/10.1016/j.physletb.2005.10.038
http://arxiv.org/abs/hep-ph/0508284
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508284
http://dx.doi.org/10.1016/j.nuclphysb.2006.06.025
http://arxiv.org/abs/hep-ph/0603041
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B752,173
http://dx.doi.org/10.1016/S0550-3213(97)00679-2
http://arxiv.org/abs/hep-ph/9611272
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B511,523
http://dx.doi.org/10.1016/0550-3213(89)90620-2
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B319,570
http://dx.doi.org/10.1088/1126-6708/2001/05/025
http://arxiv.org/abs/hep-ph/0102227
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0102227
http://dx.doi.org/10.1103/PhysRevD.64.013015
http://arxiv.org/abs/hep-ph/0102241
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0102241
http://dx.doi.org/10.1016/0550-3213(80)90010-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B173,397
http://dx.doi.org/10.1016/0370-1573(83)90083-2
http://inspirehep.net/search?p=find+J+Phys.Rept.,100,201
http://dx.doi.org/10.1103/PhysRevD.46.1980
http://inspirehep.net/search?p=find+J+Phys.Rev.,D46,1980
http://dx.doi.org/10.1016/0370-2693(96)00425-X
http://arxiv.org/abs/hep-ph/9602277
http://inspirehep.net/search?p=find+J+Phys.Lett.,B378,287
http://dx.doi.org/10.1016/S0550-3213(96)00589-5
http://arxiv.org/abs/hep-ph/9605323
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B485,291
http://dx.doi.org/10.1016/0550-3213(94)90077-9
http://arxiv.org/abs/hep-ph/9401294
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9401294
http://dx.doi.org/10.1016/S0370-2693(98)00332-3
http://arxiv.org/abs/hep-ph/9802439
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9802439
http://inspirehep.net/search?p=find+Nucl.Phys.Cosmol.,8,1
http://dx.doi.org/10.1016/S0550-3213(00)00572-1
http://arxiv.org/abs/hep-ph/0007142
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0007142


J
H
E
P
1
2
(
2
0
1
2
)
0
8
8

[30] Z. Bern and G. Chalmers, Factorization in one loop gauge theory,

Nucl. Phys. B 447 (1995) 465 [hep-ph/9503236] [INSPIRE].

[31] Z. Bern, V. Del Duca and C.R. Schmidt, The Infrared behavior of one loop gluon amplitudes

at next-to-next-to-leading order, Phys. Lett. B 445 (1998) 168 [hep-ph/9810409] [INSPIRE].

[32] Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The Infrared behavior of one loop

QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001

[hep-ph/9903516] [INSPIRE].

[33] S. Catani, D. de Florian, G. Rodrigo and W. Vogelsang, Perturbative generation of a

strange-quark asymmetry in the nucleon, Phys. Rev. Lett. 93 (2004) 152003

[hep-ph/0404240] [INSPIRE].

[34] S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the

next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523]

[INSPIRE].

[35] F.A. Berends and W. Giele, Multiple Soft Gluon Radiation in Parton Processes,

Nucl. Phys. B 313 (1989) 595 [INSPIRE].

[36] C. Anastasiou, S. Buehler, C. Duhr and F. Herzog, NNLO phase space master integrals for

two-to-one inclusive cross sections in dimensional regularization, JHEP 11 (2012) 062

[arXiv:1208.3130] [INSPIRE].

[37] S.M. Aybat, L.J. Dixon and G.F. Sterman, The Two-loop soft anomalous dimension matrix

and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004

[hep-ph/0607309] [INSPIRE].

[38] S.M. Aybat, L.J. Dixon and G.F. Sterman, The Two-loop anomalous dimension matrix for

soft gluon exchange, Phys. Rev. Lett. 97 (2006) 072001 [hep-ph/0606254] [INSPIRE].

[39] Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD,

JHEP 08 (2004) 012 [hep-ph/0404293] [INSPIRE].

[40] V. Ravindran, On Sudakov and soft resummations in QCD, Nucl. Phys. B 746 (2006) 58

[hep-ph/0512249] [INSPIRE].

[41] V. Ravindran, J. Smith and W. van Neerven, QCD threshold corrections to di-lepton and

Higgs rapidity distributions beyond N2 LO, Nucl. Phys. B 767 (2007) 100 [hep-ph/0608308]

[INSPIRE].

[42] K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order alpha-S4,

Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [INSPIRE].

[43] S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The Resummation of soft gluons in

hadronic collisions, Nucl. Phys. B 478 (1996) 273 [hep-ph/9604351] [INSPIRE].

[44] S. Catani and L. Trentadue, Resummation of the QCD Perturbative Series for Hard

Processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].

[45] A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC,

Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

[46] S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at

hadron colliders: a fully-differential QCD calculation at NNLO,

Phys. Rev. Lett. 108 (2012) 072001 [arXiv:1110.2375] [INSPIRE].

– 27 –

http://dx.doi.org/10.1016/0550-3213(95)00226-I
http://arxiv.org/abs/hep-ph/9503236
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9503236
http://dx.doi.org/10.1016/S0370-2693(98)01495-6
http://arxiv.org/abs/hep-ph/9810409
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9810409
http://dx.doi.org/10.1103/PhysRevD.60.116001
http://arxiv.org/abs/hep-ph/9903516
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9903516
http://dx.doi.org/10.1103/PhysRevLett.93.152003
http://arxiv.org/abs/hep-ph/0404240
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0404240
http://dx.doi.org/10.1016/S0550-3213(99)00778-6
http://arxiv.org/abs/hep-ph/9908523
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9908523
http://dx.doi.org/10.1016/0550-3213(89)90398-2
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B313,595
http://dx.doi.org/10.1007/JHEP11(2012)062
http://arxiv.org/abs/1208.3130
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.3130
http://dx.doi.org/10.1103/PhysRevD.74.074004
http://arxiv.org/abs/hep-ph/0607309
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0607309
http://dx.doi.org/10.1103/PhysRevLett.97.072001
http://arxiv.org/abs/hep-ph/0606254
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0606254
http://dx.doi.org/10.1088/1126-6708/2004/08/012
http://arxiv.org/abs/hep-ph/0404293
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0404293
http://dx.doi.org/10.1016/j.nuclphysb.2006.04.008
http://arxiv.org/abs/hep-ph/0512249
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0512249
http://dx.doi.org/10.1016/j.nuclphysb.2007.01.005
http://arxiv.org/abs/hep-ph/0608308
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0608308
http://dx.doi.org/10.1103/PhysRevLett.79.353
http://arxiv.org/abs/hep-ph/9705240
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9705240
http://dx.doi.org/10.1016/0550-3213(96)00399-9
http://arxiv.org/abs/hep-ph/9604351
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9604351
http://dx.doi.org/10.1016/0550-3213(89)90273-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B327,323
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://arxiv.org/abs/0901.0002
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0002
http://dx.doi.org/10.1103/PhysRevLett.108.072001
http://arxiv.org/abs/1110.2375
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2375


J
H
E
P
1
2
(
2
0
1
2
)
0
8
8

[47] G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections,

Nucl. Phys. B 281 (1987) 310 [INSPIRE].

[48] S. Catani and L. Trentadue, Comment on QCD exponentiation at large x,

Nucl. Phys. B 353 (1991) 183 [INSPIRE].

[49] A. Vogt, Next-to-next-to-leading logarithmic threshold resummation for deep inelastic

scattering and the Drell-Yan process, Phys. Lett. B 497 (2001) 228 [hep-ph/0010146]

[INSPIRE].

[50] T. Gehrmann, E. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark

and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653]

[INSPIRE].

[51] R. Lee, A. Smirnov and V. Smirnov, Analytic Results for Massless Three-Loop Form Factors,

JHEP 04 (2010) 020 [arXiv:1001.2887] [INSPIRE].

[52] P. Baikov, K. Chetyrkin, A. Smirnov, V. Smirnov and M. Steinhauser, Quark and gluon form

factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].

[53] S. Badger and E.N. Glover, Two loop splitting functions in QCD, JHEP 07 (2004) 040

[hep-ph/0405236] [INSPIRE].

– 28 –

http://dx.doi.org/10.1016/0550-3213(87)90258-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B281,310
http://dx.doi.org/10.1016/0550-3213(91)90506-S
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B353,183
http://dx.doi.org/10.1016/S0370-2693(00)01344-7
http://arxiv.org/abs/hep-ph/0010146
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0010146
http://dx.doi.org/10.1007/JHEP06(2010)094
http://arxiv.org/abs/1004.3653
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.3653
http://dx.doi.org/10.1007/JHEP04(2010)020
http://arxiv.org/abs/1001.2887
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.2887
http://dx.doi.org/10.1103/PhysRevLett.102.212002
http://arxiv.org/abs/0902.3519
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.3519
http://dx.doi.org/10.1088/1126-6708/2004/07/040
http://arxiv.org/abs/hep-ph/0405236
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0405236

	Introduction
	QCD cross sections
	Phase-space factorization

	NLO
	NNLO
	Soft-virtual approximation in Mellin space
	Phenomenological results
	Threshold resummation
	Conclusions

