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We identify the Dresselhaus spin-orbit coupling as the source of the dominant spin-relaxation

mechanism in the impurity band of a wide class of n-doped zinc blende semiconductors. The

Dresselhaus hopping terms are derived and incorporated into a tight-binding model of impurity sites,

and they are shown to unexpectedly dominate the spin relaxation, leading to spin-relaxation times in good

agreement with experimental values. This conclusion is drawn from two complementary approaches: an

analytical diffusive-evolution calculation and a numerical finite-size scaling study of the spin-relaxation

time.
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Spin dynamics in semiconductors is a fundamental issue
in view of the rich physics involved and the potential
technological applications [1,2]. It is thus not surprising
that spin-relaxation studies were already performed in the
early days of semiconductor research [3–5] and are in-
tensely pursued today with modern experimental tech-
niques [6,7]. An intriguing experimental observation is
the fact that in n-doped semiconductors at low tempera-
tures the spin-relaxation time �s presents a maximum as a
function of the doping density near the metal-insulator
transition (MIT) [5,6,8–12].

Interestingly, while the mechanisms behind spin relaxa-
tion have been properly identified at high temperatures or
for doping densities away from the critical one [10,13,14],
a theoretical understanding of low-temperature spin re-
laxation close to the MIT is still lacking. This unsatisfac-
tory state of affairs has motivated some attempts to identify
the relevant mechanisms for spin relaxation [15–19] in this
regime. In particular, on the metallic side of the transition,
Shklovskii proposed the applicability of the well-known
Dyakonov-Perel mechanism usually valid in the conduc-
tion band [15]. Furthermore, a tight-binding model of
impurities including spin-orbit coupling due to the electro-
static impurity potentials has been developed [19]. The
spin-relaxation times resulting from this last model are
larger than the experimental values, implying that other
mechanisms should be active in this density regime.

In this work we identify the Dresselhaus coupling as the
source of the leading spin-relaxation mechanism on the
metallic side of the transition for zinc blende semiconduc-
tors. This conclusion is based on the construction of an
effective spin-orbit Hamiltonian for the impurity system,
together with its analytical and numerical solution. The
resulting spin-relaxation times are in good agreement with
the existing experimental values for GaAs and CdTe. The

detailed temperature-dependent measurements of Ref. [11]
yielded a saturation of �s below 10 K, indicating that
inelastic processes are irrelevant at low temperatures. We
thus work with a zero-temperature formalism.
The envelope-function approximation for describing

conduction-band electrons in zinc blende semiconductors
incorporates the lattice-scale physics (described by the
periodic part of the Bloch wave function) into the effective
one-body Hamiltonian [20,21]

H ¼ H0 þHextr þHD; (1)

H0 ¼ p2

2m� þ VðrÞ; (2)

Hextr ¼ �� � rV � k; (3)

HD ¼ �½�xkxðk2y � k2zÞ þ cyclic permutations�: (4)

Here � is the vector of Pauli matrices and k ¼ p=@. The
extrinsic term stems from VðrÞ, which includes all poten-
tials aside from the crystal one. The effective spin-orbit
coupling � is usually orders of magnitude larger than the

one of vacuum �0 ¼ @
2=4m2

0c
2 ’ 3:7� 10�6 �A2. It can be

calculated at the level of the 8-band Kane model, which,

for example, for GaAs yields � ’ �5:3 �A2 [21]. The
Dresselhaus or intrinsic term is enabled by the bulk inver-
sion asymmetry and depends on the material-dependent
coupling constant �. The exact value of � for GaAs is a
matter of current debate [1,21]. A 14-band model is re-
quired for the theoretical estimation of �, leading to

� � 27 eV �A3 [22]. More refined theoretical calculations
yield somewhat lower values [23–25]. While early experi-
mental values obtained in bulk samples agree approxi-

mately with the above-quoted value of 27 eV �A3 [26],
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recent results inferred from measurements in low-
dimensional systems are again consistently lower
[1,27–29].

In order to study the spin relaxation in the impurity band
near the MIT, we consider the potential VðrÞ due to the
ionized impurities, given by

VðrÞ ¼ X
p

VpðrÞ ¼ �X
p

e2

�jr�Rpj ; (5)

where � is the dielectric constant of the semiconductor and
Rp represents the impurity positions. The potential Vp

gives rise to hydrogenic states centered at the impurity p.
In order to build the basis of electronic states, we will
consider only the ground state �pðrÞ ¼ �ðjr�RpjÞ,
with �ðrÞ ¼ ð1=

ffiffiffiffiffiffiffiffiffi
�a3

p
Þ expð�r=aÞ and a the effective

Bohr radius.
The second-quantized form of the Hamiltonian (1), that

we denote H , has components

H 0 ¼
X

m�m0;�
hm0�jH0jm�icym0�cm�; (6)

H SO ¼ X
m�m0;�

hm0 ��jHSOjm�icy
m0 ��cm�; (7)

where the label SO stands for ‘‘extr’’ or ‘‘D.’’ We denote
the 1s state �mðrÞ with spin � ¼ �1 in the z direction by

jm�i, and cym� (cm�) is the creation (annihilation) operator
of a particle in that state ( �� ¼ ��). The matrix elements
in Eq. (6) contain three-center integrals hm0�jVpjm�i with
p � m. Because of the exponential decay of �mðrÞ, one
usually keeps only the term

hm0�jVm0 jm�i ¼ �V0

�
1þ R

a

�
e�R=a; (8)

with V0 ¼ e2="a (twice the binding energy of an isolated
impurity) and R ¼ jRm0mj the distance between the two
impurities. The resulting Hamiltonian H 0 defines the
well-known Matsubara-Toyozawa (MT) model [30]. The
subtleties, drawbacks, and applicability of this model to
describe the metallic side of the MIT, as well as its exten-
sion to include theH extr spin-orbit coupling, have recently
been discussed [31]. Electron-electron interactions induce
significant many-body effects on the insulating side of the
transition but not on the metallic side. Therefore, we do not
include them in our model. According to theMott criterion,
the critical dimensionless impurity density for the MIT
corresponds to N i ¼ nia

3 ’ 0:017, leading to a critical
density of 2� 1016 cm�3 for GaAs.

The matrix element of H extr is

hm0 ��jHextrjm�i¼��

a2

Z
drVðrÞ �m0 ðrÞ�mðrÞ

jr�Rm0 jjr�Rmj
�½ðz�zmÞðr��Rm0�Þ�ðz�zm0 Þ
�ðr��Rm�Þ�; (9)

where r� ¼ xþ i�y and Rm� ¼ Xm þ i�Ym. The
Hamiltonian H extr takes into account the electric field
arising from the impurity potentials and was introduced
in Ref. [19]. There, an alternative path to the envelope-
function approximation was followed in order to calculate
the matrix elements hm0 ��jHextrjm�i, which made use of
impurity states with spin admixture obtained from spin-
admixed conduction-band Bloch states derived at the level
of the 8-band Kane model. We remark that the terms
corresponding to p ¼ m;m0 in VðrÞ give vanishing contri-
butions to the matrix element (9) due to the axial symmetry
of the two-center integrals. Therefore, these matrix ele-
ments are given by three-center integrals, resulting in very
slow spin relaxation [19] in comparison with experimental
results. We thus turn to the Dresselhaus term, whose matrix
element is given by

hm0 ��jHDjm�i ¼ �

�a3
ð�Iy;m0m þ iIx;m0mÞ; (10)

where

Ix;m0m¼ 1

a3

Z
dr

e�jr�Rm0mj=ae�r=a

jr�Rm0mjr3
ðaþrÞðx�Xm0mÞðy2�z2Þ

(11)

and Iy;m0m is obtained from Ix;m0m with the exchanges

Xm0m $ Ym0m and x $ y. Performing a rotation of the
coordinate system and with the help of prolate spheroidal
coordinates, we obtain for the previous two-center integral
the remarkably simple expression

Ix;m0m ¼ �c

6

�
R

a

�
2
e�R=a; (12)

where c¼2cos’sin�½1�sin2�ð1þsin2’Þ� and ðR; �; ’Þ
are the polar coordinates of Rm0m in the original reference
frame.
The spatial diffusion of electrons through the network of

impurities is accompanied by a small spin rotation angle at
each hop. Thus, the evolution of the electron spin can be
seen as diffusion on a sphere. The typical hopping time �c
can be taken as the time needed for the initial-state popu-
lation on an impurity site to drop from 1 to 1=2, that is,

1

�c
¼

ffiffiffi
2

p
@

� X
m�m0

jhm0�jH0jm�ij2
�
1=2’

ffiffiffiffiffiffiffiffiffi
14�

p
V0

@
N 1=2

i : (13)

For the second equality [32], we have used the impurity
average assuming a random distribution without hard-core
repulsive effects on the scale of the effective Bohr radius
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[19,33]. For an electron hopping between the impurities m
and m0, a spin initially oriented along the unit vector
defined by the polar (	) and azimuthal (
) angles rotates
by [19]

� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2	cos2


q jhm0 ��jHDjm�ij
jhm0�jH0jm�ij : (14)

Averaging over 	, 
 , and the impurity configurations, we
can extract the mean-squared rotation angle per hop defin-
ing the spin diffusion:

h�2i ¼ 16

3

P
m�m0

jhm0 ��jHDjm�ij2
P

m�m0
jhm0�jH0jm�ij2 ’ 0:145

�
�

a3V0

�
2
: (15)

From an initial distribution of absolute certainty that the
point is at the north pole, the resulting distribution after
diffusing on a sphere for a time t is given by [34]

�ð�;tÞ¼X1
n¼0

2nþ1

4�
exp

�
�1

4
nðnþ1ÞUðtÞ

�
Pnðcos�Þ; (16)

where Pn are the Legendre polynomials and UðtÞ ¼
ðt=�cÞh�2i is the variance of the corresponding plane mo-
tion. The z component of the spin expectation value is
given by

hSzðtÞi ¼
Z

d�cos��ð�; tÞ ¼ exp

�
� 1

2

h�2it
�c

�
: (17)

We then have a spin-relaxation rate

1

�s
¼ 1

2

h�2i
�c

’ 0:48
�2

a6V0@
N 1=2

i : (18)

We remark that this expression for the spin-relaxation time
is valid for all n-doped zinc blende semiconductors. The
comparison with other relaxation mechanisms lets us con-
clude that the Dresselhaus coupling dominates in the im-
purity band for all zinc blende semiconductors except the
narrow-gap ones.

Numerical calculations of the spin-relaxation time
within our model provide an alternative path which is
free of the simplifications used in the analytical approach.
The numerical procedure starts with the calculation of the
matrix elements (10) for HD (and similarly for Hextr) for a
given impurity configuration. We then diagonalize the total
Hamiltonian H including the two contributions to the
spin-orbit coupling, which allows us to obtain the quantum
evolution of an arbitrary state. Choosing an initial state
with a well-defined spin projection (for instance, a MT
eigenstate with � ¼ 1), we can follow the spin evolution
and extract the spin lifetime from it. The weakness of the
spin-orbit coupling translates into spin-admixture pertur-
bation energies which are, even for the largest system sizes
(in terms of the number of impurities N) that we are able to
treat numerically, orders of magnitude smaller than the
typical MT level spacing. This large difference between

the two energy scales in finite-size simulations masks the
spin-orbit-driven physics and forces us to follow an indi-
rect path: We introduce an artificially enhanced coupling
constant � and a finite-size scaling procedure. The limits
N ! 1 and then  ! 1 taken at the end of the calculation
provide, after impurity average, the sought spin-relaxation
rate.
We now apply the numerical procedure just described to

the widely studied case of GaAs. The numerically ex-
tracted values of the spin-relaxation times associated
with Hextr are, consistently with the results of Ref. [19],
considerably larger than the ones experimentally observed.
Therefore, we hereafter neglect this term in the numerical
calculations and concentrate on the spin evolution gov-
erned by HD. In the lower inset in Fig. 1, we show typical
spin evolutions starting from an eigenstate of the MT
system with � ¼ 1 in the energy range of extended states
of the impurity band, for a densityN i ¼ 0:029 just above
the MIT transition for three values of the coupling constant
and N ¼ 3375 impurities. The initial perturbative regime
with a quadratic time decay of the spin survival is followed
by an exponential decay from which the relaxation rate ��1

s

can be inferred, until the saturation value of 1=2. For each
density and effective coupling constant �, the asymptotic
value of ��1

s can be obtained by extrapolating the finite-N
values to the infinite-size limit (upper inset in Fig. 1). We

FIG. 1. Scaling of the spin-relaxation time extrapolated to
infinite system size with the spin-orbit enhancement factor ,
for densities N i ¼ 0:02 (r), 0.029 (j), 0.037 (m), and 0.06
(.). The lines are fits of a quadratic dependence of the relaxation
rate on . Times are given in units of @=V0. Lower inset: Spin
survival probability P for an initial MT eigenstate at density
N i ¼ 0:029 and system size N ¼ 3375. Lines of increasing
thickness are for  ¼ 75, 100, and 150. Upper inset: Size
dependence of ��1

s for  ¼ 50 at the densities of the main
figure. Lines are linear fits to the data that allow us to extrapolate
to the infinite-size values.
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ran a sufficiently large number of impurity configurations
(typically 200) to make the statistical errors negligible
(smaller than the symbol size in the figure). In agreement
with our analytical results, an inverse quadratic depen-
dence of �s on the coupling strength is obtained (Fig. 1).
Fitting this dependence of �s on  allows us to extract the
physical values ( ¼ 1) of �s.

In Fig. 2, we present the spin-relaxation times resulting
from our numerical approach for GaAs at four different
impurity densities above the MIT (d), together with the
prediction of Eq. (18) (solid line), and the available experi-
mental data from Refs. [6,7,10,11] (blue online). Both
approaches describe the data within the experimental un-
certainty and correctly reproduce the density dependence
of the spin-relaxation time. The departure of the analytical
and numerical results is not significant, taking into account
the different approximations of both paths and the arbitra-
riness associated with the definition of relaxation times.

While in the critical region and deep into the localized
regime there is some dispersion of the experimental values
for GaAs, depending on the different samples and mea-
surement technique, on the metallic side of the MIT values
of �s * 100 ns are consistently obtained. A decrease of �s
with n1=2i is observed, with a clear change in the density
dependence once the impurity and the conduction bands
hybridize. Our analytical and numerical results of Fig. 2
(solid line and filled circles, respectively) are obtained by

using for GaAs the values V0 ¼ 11:76 meV and � ¼
27 eV �A3 without any adjustable parameter. We remark
that these results are quite sensitive to the value of �.
Taking the smaller values suggested in some of the litera-
ture [1,27] results in larger relaxation times. The identifi-
cation of the Dresselhaus coupling as the dominant channel
for spin relaxation close to the MIT provides a strong
motivation to pursue experimental and theoretical work
in order to determine the precise value of �.
Recently, spin-relaxation measurements have been per-

formed in bulk CdTe at various doping densities [12]. A
nonmonotonic behavior was obtained with an optimal
value of �s ¼ 2:5 ns close to the MIT. The experimental
data for densities near the MIT (� in Fig. 2) are well
described by the numerically extracted values of �s (plus
symbols) and by the prediction of Eq. (18) (red online
dashed line). We remark that the numerical calculations
are universal and that the material parameters enter upon
performing the scaling procedure. The agreement between
the theory and experiment for both GaAs and CdTe in spite
of their dissimilar material parameters illustrates the wide
applicability of our results. In narrow-gap semiconductors,
like InAs and InSb, the particularly large Bohr radii lead to
very long Dresselhaus relaxation times, which in the first
case are even longer than those yielded by the extrinsic
coupling [19]. However, the extremely low critical den-
sities of these materials make it difficult to probe the
physics of spin relaxation in the impurity band.
Consequently, the low-density spin relaxation is proposed
to be governed by other mechanisms [8].
In conclusion, we have identified a spin-relaxation

mechanism characteristic of electrons on the metallic
side of the metal-insulator transition in the impurity band
of semiconductors, thereby solving a long-standing prob-
lem in spintronics. Our mechanism is derived from the
Dresselhaus spin-orbit coupling. It dominates over the
usually stronger extrinsic counterpart in the landscape of
hydrogenic impurities in semiconductors with zinc blende
structure and provides relaxation times that are in good
agreement with the experimentally measured values.
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