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A B S T R A C T

We present an information-theoretical analysis of temporal dependencies in EEG microstate sequences during
wakeful rest. We interpret microstate sequences as discrete stochastic processes where each state corresponds to a
representative scalp potential topography. Testing low-order Markovianity of these discrete sequences directly,
we find that none of the recordings fulfils the Markov property of order 0, 1 or 2. Further analyses show that the
microstate transition matrix is non-stationary over time in 80% (window size 10 s), 60% (window size 20 s) and
44% (window size 40 s) of the subjects, and that transition matrices are asymmetric in 14/20 (70%) subjects. To
assess temporal dependencies globally, the time-lagged mutual information function (autoinformation function)
of each sequence is compared to the first-order Markov model defined by the classical transition matrix approach.
The autoinformation function for the Markovian case is derived analytically and numerically. For experimental
data, we find non-Markovian behaviour in the range of the main EEG frequency bands where distinct periodicities
related to the subject's EEG frequency spectrum appear. In particular, the microstate clustering algorithm induces
frequency doubling with respect to the EEG power spectral density while the tail of the autoinformation function
asymptotically reaches the first-order Markov confidence interval for time lags above 1000 ms. In summary, our
results show that resting state microstate sequences are non-Markovian processes which inherit periodicities from
the underlying EEG dynamics. Our results interpolate between two diverging models of microstate dynamics,
memoryless Markov models on one side, and long-range correlated models on the other: microstate sequences
display more complex temporal dependencies than captured by the transition matrix approach in the range of the
main EEG frequency bands, but show finite memory content in the long run.
1. Introduction

The most prominent features of resting state surface EEG recordings
are ongoing, amplitude-modulated oscillations across the frequency
range of approximately 0:5� 70 Hz (Niedermeyer and da Silva, 2005).
EEG data is often analyzed with respect to this oscillatory activity. For
instance, we may be interested in the spectral power of a given frequency
band, phase relationships, or the dynamics of the oscillation's envelope,
to name but a few. The spatial distribution of the scalp potential varies
over time, showing episodes of stability alternating with short transition
episodes between certain quasi-stable EEG topographies (Wackermann
et al., 1993). Applying data compression techniques, stable topographies
can be clustered into sets of a few maps maximizing the global explained
variance (GEV) (Wackermann et al., 1993; Murray et al., 2008). These
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maps are fitted competitively into the original EEG time series using a
maximum correlation criterion at each time step. The resulting micro-
state sequence at each time step contains the microstate label whose map
has the maximum absolute correlation with the EEG topography at that
time point. Alternative implementations have been proposed (Koenig
et al., 1999). Microstates denote quasi-stable episodes corresponding to a
single representative map, with an average duration in the range of
10–100 ms (Koenig et al., 2002; Brodbeck et al., 2012). Many studies
have shown a set of n ¼ 4 microstates to be optimal (Murray et al., 2008;
Brodbeck et al., 2012) although other cluster numbers have been
described in healthy resting state (Yuan et al., 2012) and pathological
conditions (Koenig et al., 1999; Kuhn et al., 2015). Here, we mostly use
n ¼ 4 microstates, however, all methods presented here can be used for
any number of states.
nweg 2-16, 60528 Frankfurt am Main, Germany.
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Fig. 1. Microstate segmentation: the top panel shows a section of resting state EEG
(1–40 Hz, black lines) along with the resulting global field power (GFP, blue) and the local
GFP maxima (red dots). For better visibility, only the EEG channels indicated to the left are
shown. EEG topographies at local GFP maxima are clustered by the modified K-means
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The most common approach to microstate analysis is the transition
matrix approach. Using this straightforward approach, the transition
probabilities between microstate maps are estimated from the empirical
sequence of map labels and the resulting matrix is normalized row-wise
in order to yield a stochastic matrix. Subsequently, different experi-
mental conditions can be related to changing matrix entries (Koenig
et al., 2002; Brodbeck et al., 2012; Kuhn et al., 2015). On a conceptual
level, the transition matrix approach implies a (first-order) Markovian
model as the information flow over time is summarized by the condi-
tional probability of the future state xtþ1 ¼ Sj, given the current state
xt ¼ Si. Therefore, temporal dependencies more complex than first-
order Markov models cannot be captured by this approach. Moreover,
calculating a fixed transition matrix for a given data set cannot model
transition dynamics changing over time, i.e. non-stationarities. Unfor-
tunately, the Markov property is almost never tested for, an exception
being the microstate duration analysis published by (Wackermann et al.,
1993). Testing the geometric distribution of microstate durations for
short EEG time series up to a duration of 16 s, the Markov property
could not be rejected in 22/24 data sets (Wackermann et al., 1993). For
longer time series of at least several minutes, as usually recorded in
resting state experiments, we are not aware of any formal tests of low-
order Markov properties.

As an alternative analysis tool, Hurst exponent estimation has
recently been introduced for microstate sequences, with the aim to find
possible long-range dependencies (LRD) (Van de Ville et al., 2010;
Gschwind et al., 2015). In order to estimate the Hurst exponent, the n-
state symbolic sequence has to be mapped to a metric space f� 1; þ 1g
using a partition of the state space (Van de Ville et al., 2010). The
technique is inspired by LRD analyses of 4-state DNA sequences (Peng
et al., 1992). However, the following two questions remain unan-
swered so far: a) which is the correct state space partition, i.e. which
EEG topographies should be lumped into one group, and b) how can
the technique be applied to arbitrary cluster numbers? Moreover, the
resulting Hurst exponents are difficult to interpret as a Hurst exponent
of H > 0:5 does not automatically imply long-range dependencies,
especially in the case of non-stationary signals (McCauley et al., 2007;
Riley et al., 2012). We recently reported an excessive proportion of
false-positive LRD results when comparing experimental data with
short-range correlated Markov models (von Wegner et al., 2016).

The aim of the current study is to systematically analyze temporal
dependencies of microstate sequences and to characterize these se-
quences in the language of stochastic processes. Without making as-
sumptions on symbol distributions and their temporal dependencies,
we compute estimates of various information-theoretical quantities.
Using this approach, we avoid the need to partition the microstate set
and to project the sequences onto a metric space. All quantities used
can be computed for arbitrary state spaces, i.e. for any number of
microstates.

Our analysis starts on the shortest time scales, assessing low-order
Markov properties (order 0� 2) directly, based on well-established sta-
tistical tests (Kullback, 1959; Kullback et al., 1962). We perform an
additional first-order Markovianity test using a method presented in the
context of microstate research (Wackermann et al., 1993). Next, the
transition matrix is tested for time-stationarity, also termed conditional
homogeneity in (Kullback, 1959; Kullback et al., 1962), and for sym-
metry. Finally, global temporal dependencies up to time lags of 2000 ms
are analyzed using the time-lagged mutual information function (auto-
information function). Distinct periodicities found there are further
tested for robustness with respect to individual microstate maps and to
cluster numbers.

The information-theoretical approach presented here lets us conclude
that microstate properties show a behaviour somewhere between mem-
oryless Markov models and possibly long-range correlated random walk
models, adding the unique feature of reflecting the underlying EEG
periodicities.
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2. Material & methods

2.1. Experimental data

A set of EEG recordings from 20 right-handed healthy subjects during
wakeful rest (age range: 19� 27, mean age: 23 yrs) was recorded in an
eyes-closed, wakeful rest condition. Selection criteria for the recordings
used were steady, prominent alpha oscillations in the parieto-occipital
EEG channels, and the absence of artefacts (eye blink, muscle, elec-
trode artefacts) or signs of drowsiness. The 30 channel EEG data sets were
acquired at a sampling rate of 5 kHz using the standard 10� 10 electrode
configuration. Data were band-pass filtered to 1� 40 Hz, down-sampled
to 250 Hz and re-referenced to an average reference. Power spectral
densities were computed with Welch's method using a segment length of
1024 samples, 50% overlap and a Hanning window. EEG recordings have
a total duration ranging from 100 to 312 s, corresponding to lengths of
25000-78000 samples. Written informed consent was obtained from all
subjects, and the study was approved by the ethics committee of the
Goethe University, Frankfurt, Germany.

2.2. Microstate analysis

EEG microstates were computed using the modified K-means algo-
rithm described in (Murray et al., 2008) and illustrated in Fig. 1. Fig. 1
shows a segment of resting-state EEG for a selection of channels as
indicated to the left. In the first step, the global field power time series
(GFP, blue line) is computed as the spatial standard deviation of the EEG
topography at each given time. At local GFP maxima (red dots), the
spatial configuration of the EEG is considered stable and explains most of
the variance of the time series (Wackermann et al., 1993). Therefore, K-
means clusters are initialized with EEG patterns drawn randomly from
algorithm to obtain the (n ¼ 4) microstate maps labelled A-D (bottom panel).
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the set of GFP peaks. During clustering, the algorithm ignores EEG po-
larity (Wackermann et al., 1993; Brodbeck et al., 2012; Kuhn et al.,
2015). As K-means clustering is stochastic, the algorithm was run 25
times, and the optimum set of clusters was selected based on maximum
global explained variance (Lehmann et al., 1987; Wackermann et al.,
1993; Pascual-Marqui et al., 1995). As reported in numerous studies, an
optimum number of 4 microstate maps was obtained (Brodbeck et al.,
2012; Kuhn et al., 2015). An exemplary set of microstate maps along with
their labels A-D is shown at the bottom of Fig. 1.

The sequence of microstate labels has the same length as the EEG time
series. At each time point, the sequence shows the label of the microstate
that has maximum spatial correlation with the instantaneous EEG
topography (Koenig et al., 1999, 2002). This procedure is called
”competitive back-fitting”. We implemented the algorithm as detailed by
(Murray et al., 2008) in Python 2.7.3. A Cþþ implementation for Win-
dows is available from (Brunet et al., 2011) (Cartool Software, http://
sites.google.com/site/cartoolcommunity). The microstate geometries
we obtained and the cross-correlation properties between these maps are
highly similar to the results obtained with the original Cartool software.
The individual cluster geometries are shown in the supplementary data
section (Supplementary Figs. S2–S5). To avoid modifications of the
temporal structure of microstate sequences, no minimum microstate
duration criteria or other temporal post-processing steps were applied to
the microstate sequences.

2.3. Markov surrogate data

Microstate analysis yields a sequence xt of microstates for each EEG
data set. From this sequence, the empirical transition matrix Tij ¼
Pðxtþ1 ¼ Sj

��xt ¼ SiÞ and the equilibrium distribution π are calculated. As a
first-order Markov process is uniquely defined by an initial distribution
and its transition matrix, a Markov process with the quantities T and π
identical to the empirical microstate sequence can be synthesized
(H€aggstr€om, 2002). For each experimentally acquired microstate
sequence xt , we compute n ¼ 1000 surrogate Markov sequences of the
same length as xt . The iterative 2-step algorithm contains an initialization
function and an updating function. The initialization function yields a
random initial state x0 2 S0, in accordance with the equilibrium distri-
bution π. The updating function yields the subsequent value xtþ1 ¼ Sj as a
function of xt ¼ Si and the conditional transition probability Tij. To
implement both functions, we use random variables rt � U½0;1�, uni-
formly and independently distributed on the unit interval. The initial

state index j is given by
Pj�1

i¼0πi � r0 <
Pj

i¼0πi. The state index j of xtþ1 ¼
Sj, the successor of state xt ¼ Si, is given by the random variable rt and the

relation
Pj�1

l¼0Til � r <
Pj

l¼0Til.

2.4. Information-theoretical analysis - motivation and basics

The microstate segmentation algorithm yields a set of representative
EEG topographies, called microstate maps or simply maps, based on a
criterion of maximum explained variance with respect to the underlying
EEG data set. In our case of 30-channel EEG data, each of the four
microstate maps is a unique array of 30 values, representing a given
potential distribution on the skull surface, and labelled with one of the
symbols A-D. This seriously limits the set of applicable time series algo-
rithms. The usual linear characteristics computed for time series, such as
the autocorrelation function and the power spectral density, are not
directly applicable as they involve sums and products of the time series’
values. These metric operations are not defined on the discrete set of
states A-D, for which not even an ordering can be defined in an un-
equivocal way. As an alternative, a mapping of the microstate labels to a
set of real numbers, e.g. f� 1; þ 1g, has been proposed (Van de Ville
et al., 2010). However, the assignment of a certain real number to each
microstate map is a difficult choice. There is no apparent, biologically
motivated relation between a microstate class and the real number that
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should represent it. Thus, the assignment represents an arbitrary choice
and the analysis of all possible assignments in parallel results in an ex-
plosion of data size for larger numbers of microstates. Information-
theoretical methods solve this dilemma by processing the map labels
A-D directly, using the statistical properties of their distributions.

Fig. 2 illustrates the first steps of microstate sequence analysis. The
sequence of microstate labels (Fig. 2A) yields the distribution of micro-
state labels across the microstate sequence PðXt ¼ SiÞ, i.e. the probability
to find the label Si 2 fA; B; C; Dg at time point t. This distribution can be
characterized by the Shannon entropyH of the random variable X, H ¼�P
i
PðXt ¼ SiÞlog PðXt ¼ SiÞ (Fig. 2B) (Kullback et al., 1962). Minimum

entropy (H ¼ 0) is attained by a delta distribution, assigning a probability
of 1 to a given microstate Si and a probability of 0 to all other microstates
Sj≠i. In other words, minimum entropy represents perfect predictability
(minimum surprise) of the symbol Si. The other extreme is a uniform
distribution, in our case assigning PðXt ¼ SiÞ ¼ 1

4 to each of the four mi-
crostates, resulting in the maximum entropy attainable for a four-state
distribution, H ¼ logð4Þ. We will use the natural logarithm to the base
e (Euler's constant) throughout the manuscript, denoting it as log.
Information-theoretical quantities based on the natural logarithm are
expressed as ’nats', just as the usual ’bits' refer to logarithms to the base 2.
One nat denotes the amount of information (surprise) of an event with
probability 1

e.
To measure temporal dependencies within the microstate sequence,

the transition matrix T is calculated (Fig. 2C). The matrix component Tij

contains the transition probability PðXtþ1 ¼ Sj
��Xt ¼ SiÞ. To test the sta-

tistical significance of temporal dependencies, an independence hy-
pothesis between the random variables Xt and Xtþ1 is tested. In
particular, we test the null hypotheses of Markovianity (of order 0, 1 and
2), stationarity of the transition matrix, and symmetry of the transition
matrix (Kullback et al., 1962). The statistics under the given null hy-
potheses are defined and the empirical sequences are tested against
these. The discrepancy between the empirical distribution ðpiÞ and the
distribution ðqiÞ expected under the null hypothesis is quantified by the
Kullback-Leibler divergence Dðp; qÞ ¼ � P

i
pilog pi

qi
(Kullback, 1959;

Kullback et al., 1962). It is observed that Dðp; qÞ is not a metric in the
mathematical sense as it is not symmetric, Dðp; qÞ≠Dðq; pÞ, however Dðp;
pÞ ¼ 0 and Dðp; qÞ � Dðp; rÞþ Dðr; qÞ. Statistical significance is assessed
using G-tests and χ2-statistics using classical convergence theorems
(Anderson and Goodman, 1957; Kullback, 1959; Billingsley, 1961;
Kullback et al., 1962). The test statistics are calculated from the micro-
state sequences directly and do not require Markov surrogate data.

In notation we follow (Kullback et al., 1962) and denote observed
frequencies by f. The estimated probability of symbol Si, denoted as pi, is
given by fi, the number of observations of symbol Si and the sample size n

as pi ¼ fi
n. Indices run over symbols and multiple sums are abbreviated by

a single summation sign and the corresponding indices to sum over.

2.5. Zero-order Markov property

The null hypothesis is that information about the current state Xt does
not affect the transition probabilities to the next state Xtþ1, i.e. that
PðXtþ1jXtÞ ¼ PðXtþ1Þ. The observed number of transitions Xt ¼ Si→Xtþ1 ¼
Sj is fij, fi is the number of observations Xt ¼ Si and fj is the number of
observations Xtþ1 ¼ Sj. The length of the microstate sequence Xt is n. The
G-test statistic

G0 ¼ 2
X
ij

fijlog
nfij
fifj

(1)

is asymptotically distributed as G0 � χ2ðns�1Þðns�1Þ (Kullback et al., 1962).
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Fig. 2. A: From a given sequence of microstate labels, the equilibrium distribution π is calculated. B: The information content of the distribution π is quantified by the Shannon entropy H.
C: For EEG microstates, all transitions between pairs of states including loops (e.g. A→A) are possible and their transition probability is denoted by pij. For better visibility, not all pij terms
are shown. First-order transitions t→tþ 1 between microstates are summarized by the transition matrix T, higher-order transitions t→tþ k by the matrix potency Tk.
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2.6. First-order Markov property

The null hypothesis is that the transition probability PðXtþ1jXtÞ does
not change with information about one state further in the past of the
sequence, i.e. PðXtþ1jXt ; Xt�1Þ ¼ PðXtþ1jXtÞ. Thus, we aim to measure the
divergence between the distributions PðXtþ1 ¼ Si

��Xt ¼ Sj; Xt�1 ¼ SkÞ and
PðXtþ1 ¼ Si

��Xt ¼ SjÞ. The G-test statistic

G1a ¼ 2
X
ijk

fijk log
fijkfj
fijfjk

(2)

is asymptotically distributed as G1a � χ2nsðns�1Þðns�1Þ (Kullback
et al., 1962).

Alternatively, first-order Markovianity can also be assessed based on
the equivalence of the first-order Markov property (the memoryless
property) with a geometric distribution of state durations (Feller, 1971).
For each symbol, its lifetime distribution contains the lengths of contig-
uous segments containing the given symbol. Under the first-order
Markovian null hypothesis, the expected frequency of a segment of
length k containing symbol i follows the geometric distribution

qiðkÞ ¼ ð1� TiiÞ � Tk�1
ii

where Tk�1
ii is the ðk� 1Þ-th potency of the i-th diagonal element of the

transition matrix T. The G-test statistic for each symbol is given by
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G1b ¼ 2
Xm
i¼1

pilog
pi
qi

(3)

where m is the maximum lifetime and pi is the empirical lifetime distri-
bution. The test statistic is asymptotically distributed as G1b � χ2m�1. This
test was applied to short (16 s) microstate sequences by (Wackermann
et al., 1993).

2.7. Second-order Markov property

The null hypothesis is that the transition probability PðXtþ1jXt ; Xt�1Þ
does not change with more information from the past of the sequence, i.e.
PðXtþ1jXt ; Xt�1; Xt�2Þ ¼ PðXtþ1jXt ; Xt�1Þ. The G-test statistic

G2 ¼ 2
X
ijkl

fijkllog
fijklfjk
fijk fjkl

(4)

is asymptotically distributed as G2 � χ2nsnsðns�1Þðns�1Þ (Kullback
et al., 1962).

2.8. Stationarity of the transition matrix

We test the null hypothesis that the transition matrix is stationary
over time. To this end, the microstate sequence is partitioned into r non-



Table 1
Basic microstate properties: sample length T, GFP peaks per second (PPS), ratio of total time
covered (RTT), mean map duration (MMD), global explained variance per map (GEVA�D)
and total global explained variance (GEVT).

Subject T [s] PPS RTT MMD [ms] GEVA;B;C;D GEVT

1 266 28.95 .24, .25, .29, .22 47.5, 49.8, 56.4, 43.0 .15, .16, .27, .09 .67
2 270 27.74 .21, .29, .26, .24 45.5, 63.4, 52.0, 48.7 .10, .31, .17, .12 .70
3 120 31.21 .25, .24, .25, .26 44.1, 39.6, 45.1, 47.9 .17, .12, .18, .19 .66
4 100 31.01 .24, .26, .29, .21 45.4, 47.0, 50.9, 40.0 .15, .19, .25, .08 .67
5 300 27.12 .26, .29, .23, .22 59.9, 64.1, 52.7, 47.1 .20, .25, .12, .11 .68
6 192 24.67 .25, .23, .30, .22 61.3, 57.2, 78.3, 58.9 .18, .11, .29, .12 .70
7 303 29.05 .23, .26, .27, .24 45.4, 51.8, 59.5, 47.0 .10, .17, .29, .11 .67
8 180 31.99 .27, .18, .28, .27 45.8, 37.9, 48.3, 46.8 .17, .08, .20, .18 .63
9 180 30.69 .26, .23, .27, .24 44.3, 44.0, 52.9, 46.2 .13, .13, .26, .14 .66
10 180 34.67 .27, .22, .27, .24 41.8, 37.6, 44.7, 38.7 .18, .09, .22, .12 .61
11 312 28.64 .32, .27, .20, .21 63.5, 56.7, 43.8, 45.2 .30, .25, .09, .11 .75
12 289 29.27 .27, .21, .25, .27 54.1, 42.4, 45.8, 49.2 .26, .10, .12, .17 .65
13 200 39.09 .17, .25, .30, .28 28.2, 36.1, 41.7, 37.9 .08, .12, .25, .14 .59
14 298 30.17 .24, .25, .27, .24 45.8, 45.5, 55.2, 43.7 .12, .14, .27, .12 .65
15 150 26.33 .22, .26, .27, .25 53.9, 59.3, 62.5, 54.0 .13, .21, .24, .14 .72
16 165 29.02 .24, .23, .27, .26 46.6, 45.7, 56.5, 49.4 .13, .13, .25, .14 .65
17 103 24.46 .26, .24, .28, .22 57.4, 57.7, 70.1, 54.6 .18, .13, .27, .12 .70
18 120 28.56 .27, .22, .27, .24 54.6, 44.7, 52.9, 46.0 .19, .12, .22, .13 .66
19 121 23.97 .31, .24, .26, .19 78.6, 54.8, 62.3, 46.5 .33, .16, .22, .07 .78
20 300 27.85 .24, .25, .27, .24 49.7, 50.0, 59.0, 47.1 .14, .13, .28, .12 .67
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overlapping blocks of length L each. Then, the transition matrix for each
data block k ¼ 0; …; r� 1 is calculated. If the transition matrix is sta-
tionary, the observed frequency fijk of the transition Xt ¼ Si→Xtþ1 ¼ Sj in
the data block k is independent of the block index k, i.e. not dependent on

time. Thus, the null hypothesis is PðXðkÞ
tþ1

���XðkÞ
t Þ ¼ PðXtþ1jXtÞ, where XðkÞ

t

refers to the k-th data block and Xt to the non-blocked data. The G-test
statistic is calculated as:

G3 ¼ 2
X
ijk

fijklog
fijkfj
fijfjk

(5)

and is asymptotically distributed as G3 � χ2ðr�1Þðns�1Þns (Kullback
et al., 1962).

2.9. Symmetry

If T is a symmetric transition matrix, the null hypothesis can be
formulated as PðXtþ1 ¼ Si

��Xt ¼ SjÞ ¼ PðXtþ1 ¼ Sj
��Xt ¼ SiÞ. The G-

test statistic

G4 ¼ 2
X
i≠j

fijlog
2fij

fij þ fji
(6)

is asymptotically distributed as G4 � χ2nsðns�1Þ=2 (Kullback et al., 1962).

2.10. The autoinformation function - time-lagged mutual information

For symbolic (non-metric) sequences, e.g. microstate sequences, the
autocorrelation function cannot be calculated because notions such as
sums, means or variances cannot be applied to non-metric symbols.
However, it is possible to compute an analogous quantity that measures
the dependence between different time points with time lag τ. To this
end, we compare the symbol distributions at time points t and tþ τ by
means of the Kullback-Leibler divergence.

We define the autoinformation function (AIF) for time lag τ as:

IðτÞ ¼ HðXtþτÞ � HðXtþτjXtÞ (7)

In words, the AIF is the mutual information between the random
variables Xtþτ and Xt , and can be calculated as the difference between the
entropies of the distributions PðXtþτÞ and PðXtþτjXtÞ. Equivalently, IðτÞ
measures the amount of information about Xtþτ contained in Xt . For the
null hypothesis of a stationary Markov chain, we get PðXtþτ ¼ iÞ ¼ PðXt ¼
iÞ ¼ πi and PðXtþτ ¼ jjXt ¼ iÞ ¼ Tij. Thus, the entropy terms read as
HðXtþτÞ ¼ � P

i
πilogπi and HðXtþτjXtÞ ¼ � P

i
πi
P
j
Tτ
ijlogT

τ
ij. Here, T

τ
ij de-

notes the element ði; jÞ of the τ-th potency of the transition matrix T.
Diagonalization of the transition matrix Tij as

Tn ¼ MΛnM�1 (8)

defines a coordinate transform M; M�1 for which the transition matrix T
is given by the diagonal matrix Λ containing the eigenvalues λ1::n of T in
descending order. The autoinformation function (AIF) for the first-order
Markov process with equilibrium distribution π and transition matrix T is
then given by

IðτÞ ¼ �
X
i

πilogπi þ
X
i

πi

X
j

T τ
ijlogT

τ
ij (9)

¼ �
X
i

πilogπi þ
X
i

πi

X
j

"X
k

λτkMikM�1
kj log

X
k

λτkMikM�1
kj

#
(10)

using the definition of the matrix potency Tτ. This is the analytical form
of the AIF in terms of the constant matrices M; M�1 and the eigen-
values λ0::3.
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It is observed that the expression for IðτÞ consists of a sum of terms
corresponding to each microstate Si. The individual terms correspond to
the autoinformation function of each microstate Si. Using PðXt ¼ SiÞ ¼ πi
and PðXtþτ ¼ Sj

��Xt ¼ SiÞ ¼ Tτ
ij, we get:

IiðτÞ ¼ �πilogπi þ πi

X
j

Tτ
ijlog

τ
ij (11)

The expression IiðτÞ measures the contribution of the microstate with
index i to the global AIF. It is calculated for each microstate map of
each subject.

3. Results

3.1. Basic microstate properties

First, we will review some basic microstate properties, as shown in
Table 1. The first two columns contain the subject index and the length of
the recording, respectively. The third column contains the number of GFP
peaks per second (PPS), across the data sample. The next column contains
four percentage values, normalized to one, representing the ratio of time
covered by each of the microstates A-D, divided by the total duration of
the sample (RTT). Next, column 5 gives the mean duration of each
microstate (MMD) in milliseconds. Durations refer to the lengths of
contiguous blocks of a specific symbol within the microstate sequence.
The last two columns quantify the global explained variance (GEV),
column 6 the contribution of each microstate, column 7 the total
explained variance. All values lie well within the range of previously
published microstate studies (Brodbeck et al., 2012). The ordering of
microstates follows the geometries shown in the supple-
mental Figs. S2–S5.

To test the quality of Markov surrogates, we calculated a distance
metric between the empirical transition matrix T of the microstate
sequence and the transition matrix ~T of the Markov surrogates. We used
the maximum norm d ¼ maxij

��Tij� ~Tij
��. Averaged across all subjects and

surrogates, the mean transition probability error was 0.007, the
maximum error 0.01.

In the following, the statistical tests defined above are applied to the
20 experimental data sets and to nsurr ¼ 1000 first-order Markov surro-
gates matched with each subject. All test results are corrected for mul-
tiple comparisons using Bonferroni correction. Statistical significance is
assessed at the α ¼ 0:01 level.
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3.2. Low-order Markov properties

When testing the zero-order Markov property (Eq. (1)), the null hy-
pothesis is rejected for all EEG microstate sequences. In other words,
subsequent elements of the sequence are not statistically independent
and there is at least some temporal dependency in the microstate
sequence. The first-order Markov surrogates, as expected, show the
same behaviour.

Using the G-test for first-order Markovianity, Eq. (2), we find that
none of the tested EEGmicrostate sequences fulfils the first-order Markov
property. Equivalently, we can state that the current state of the sequence
does not contain the full information about the next future state, as there
is additional information stored further in the past of the sequence. The
first-order Markov surrogates fulfil the tested property, as expected by
construction. Using the alternative test, Eq. (3), we observe that among
80 tests (4 microstate distributions � 20 subjects), the null hypothesis of
a geometric lifetime distribution is rejected in all but three cases.

Similarly, none of the EEG microstate sequences fulfils the second-
order Markov property (Eq. (4)). This result states that the memory ef-
fect in the sequences extends at least 2 time steps into the past. As derived
from the construction of the first-order Markov surrogates, these also
fulfil the second-order Markov property. The results are summarized in
Table 2 where the first three columns contain the results for the Mar-
kovianity tests of order 0, 1 and 2 and boldface values indicate statistical
significance (p< 0:01). The zero-order test produced p-values so small
that a value of 0eþ 0 is given. Column 4 contains the results of the
alternative test for first-order Markovianity testing the geometric distri-
bution of microstate lifetimes for each microstate label A-D. Overall, low-
order Markovianity is rejected for our data sets.

3.3. Stationarity of the transition matrix

To assess time-stationarity of the transition matrix T, the test statistic
G3 (5) is computed using non-overlapping blocks of data. The first step is
to determine the optimum block size L. We tested block sizes of L ¼ 250,
500, 1000, 2500, 5000 and 10000, corresponding to durations of 1, 2, 4,
10, 20 and 40 s, respectively. For each subject, we applied the statio-
narity test to nsurr ¼ 1000 first-order Markov surrogates with equilibrium
distribution π and transition matrix T identical to the given experimental
data set. We find that stationarity is correctly identified in the Markov
data set for block sizes L � 1000. However, the block size L must not be
too large compared to the sample size. For our Markovian data sets, we
Table 2
Markovianity tests for resting state EEG microstate sequences. For each subject, the test
result for Markovianity of order 0, 1 and 2 is indicated. For significant results (p<0:01), the
p-value is given in boldface, non-significant results are marked by n.s. All results are
Bonferroni corrected.

Subject Markov-0 Markov-1 Markov-2 geometric (A, B, C, D)

1 0eþ0 1e-189 1e-130 (1e-38, 3e-23, 9e-21, 3e-35)
2 0eþ0 5e-208 3e-137 (3e-43, 2e-70, 1e-21, 1e-20)
3 0eþ0 1e-72 7e-23 (1e-02, 2e-06, 8e-06, 7e-05)
4 0eþ0 2e-61 6e-28 (6e-13, 6e-06, 1.2e-01, 4e-06)
5 0eþ0 3e-225 3e-151 (3e-36, 6e-84, 1e-44, 2e-59)
6 0eþ0 2e-106 7e-53 (2e-37, 5e-15, 3e-09, 6e-15)
7 0eþ0 7e-128 1e-46 (2e-16, 2e-42, 5e-14, 7e-06)
8 0eþ0 2e-87 4e-25 (3e-05, 1e-09, 4e-28, 2e-10)
9 0eþ0 2e-116 3e-46 (7e-08, 2e-05, 2e-31, 7e-20)
10 0eþ0 8e-116 1e-42 (9e-14, 7e-04, 4e-26, 1e-12)
11 0eþ0 2e-258 2e-112 (3e-49, 2e-51, 1e-04, 2e-60)
12 0eþ0 5e-156 5e-76 (6e-62, 2e-06, 6e-19, 5e-08)
13 0eþ0 9e-221 6e-48 (1e-33, 1e-84, 4e-52, 6e-73)
14 0eþ0 3e-182 2e-47 (8e-22, 8e-03, 1e-36, 7e-35)
15 0eþ0 1e-105 2e-64 (2e-05, 1e-31, 6e-13, 1e-23)
16 0eþ0 2e-70 9e-27 (1e-07, 3e-14, 1e-12, 1e-10)
17 0eþ0 2e-67 6e-28 (3e-32, 2e-07, 2e-13, 3e-03)
18 0eþ0 3e-48 3e-17 (2e-13, 6e-06, 2e-07, 3e-03)
19 0eþ0 2e-100 7e-54 (4e-19, 5e-01, 2e-40, 5e-26)
20 0eþ0 7e-284 6e-183 (5e-63, 3e-30, 1e-50, 2e-59)
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found that a minimum of 3 blocks is necessary to correctly identify sta-
tionarity. In our experimental data set, there are 4 subjects with a length
of n ¼ 30000 samples or shorter. Their Markov surrogates are correctly
classified as time stationary for L ¼ 2500 and L ¼ 5000. However, for L ¼
10000, the test statistic fails to identify stationarity. Therefore, we
excluded the four shorter sequences from the L ¼ 10000 analyses. Sta-
tionarity tests with a block size of L ¼ 2500 and 5000 were applied to all
data sets.

As shown in Table 3, for experimental data and a block size of L ¼
2500 (10 s), the null hypothesis of stationarity is rejected for 16/20
(80%) subjects. For a block size of L ¼ 5000 (20 s), 12/20 (60%) subjects
show a non-stationary transition matrix. Finally, for L ¼ 10000, we found
7/16 (43,8%) non-stationary microstate sequences. These results show
that non-stationarity is a frequently encountered property of empirical
microstate transition matrices. The results are summarized in columns
2–4 (block sizes L ¼ 2500, 5000, 10000) of Table 3. Each column con-
tains the p-values of the corresponding test and null hypotheses rejected
at the α ¼ 0:01 significance level are printed in boldface.

3.4. Symmetry

The column ’symmetry’ in Table 3 shows the results of the symmetry
tests, asking if the off-diagonal elements of the empirical transition ma-
trix are symmetric, i.e. if Tij � Tji for i≠j. Only 6 out of 20 subjects display
symmetric transition matrices whereas the majority of the matrices are
asymmetric. This shows that in 14/20 cases, and for at least one pair of
non-identical states ðSi; SjÞ, the transition Si→Sj occurs with a different
rate than the transition Sj→Si. An example of a symmetric transition
matrix is given by subject S4, for which the null hypothesis of symmetry
is not rejected (p ¼ 0:563)

Tsym ¼

0
BB@

0:760 0:090 0:083 0:067
0:095 0:728 0:102 0:075
0:109 0:085 0:737 0:069
0:092 0:088 0:081 0:739

1
CCA

and the maximum absolute difference in transition probabilities is
���pij�

pji
��
max ¼ 0:026. Subject S1, in contrast, gives an asymmetric transition

matrix (p<0:01) with entries
Table 3
Stationarity and symmetry tests for resting state EEG microstate sequences, block lengths
L ¼ 2500, 5000, 10000. Four recordings were too short to apply L ¼ 10000, indicated by
n.a. All results are Bonferroni corrected.

Subject stationarity
(L ¼ 2500)

stationarity
(L ¼ 5000)

stationarity
(L ¼ 10000)

symmetry

1 2.2e-9 9.4e-8 1.000 3.3e-4
2 1.9e-22 1.7e-21 5.4e-7 2.1e-140
3 4.2e-6 2.3e-4 n.a. 0.198
4 0.051 1.000 n.a. 0.563
5 2.4e-36 4.2e-20 2.3e-11 3.5e-163
6 2.9e-6 0.021 0.274 7.8e-44
7 2.7e-12 4.6e-6 0.106 3.7e-29
8 6.2e-16 6.2e-11 1.5e-10 1.8e-6
9 1.5e-8 7.4e-8 3.6e-5 0.510
10 1.1e-3 0.302 0.0751 1.0
11 1.0e-47 4.3e-25 9.9e-15 3.8e-305
12 2.6e-5 0.035 0.122 1.7e-32
13 0.253 0.227 0.7000 0.278
14 0.115 0.140 0.097 4.2e-16
15 4.4e-3 0.340 0.0259 5.8e-12
16 7.2e-13 2.1e-4 3.6e-4 1.3e-4
17 6.3e-43 9.1e-30 n.a. 3.6e-151
18 1.8e-3 1.2e-3 n.a. 5.6e-14
19 1.6e-3 3.5e-4 3.7e-7 2.7e-80
20 0.028 0.667 0.340 0.023

Statistical significance was tested for alpha ¼ 0.01.
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Tasym ¼

0
BB@

0:759 0:118 0:060 0:063
0:076 0:768 0:096 0:060
0:118 0:064 0:733 0:085
0:105 0:112 0:078 0:705

1
CCA

and a maximum difference in transition probabilities of
���pij�

pji
��
max ¼ 0:058.
This property is important in the light of cycling behaviour, i.e. pe-

riodic occurrences of symbols. The shown asymmetric transition matrix
Tasym, for instance, suggests a cycle of A→B→C→A. Starting with
microstate A and ignoring self-loops (e.g. A→A), the largest transition
rate is to microstate B (pij ¼ 0:118), as read from the first row of Tasym.
From microstate B, the largest transition rate is to microstate C (pij ¼
0:096), as read from the second row of Tasym, and finally, frommicrostate
C, the most probable transition is back to state A (pij ¼ 0:118). The
corresponding transition rates in the reverse direction are all smaller than
the listed forward rates and therefore, cycling behaviour is anticipated.
As we deal with a stochastic process, all other transitions are also
possible, but the probability of the indicated cycle is slightly elevated.
3.5. Periodicities in the microstate transform

Before we analyze periodic information content in microstate se-
quences, we analyze some basic periodic properties of resting state EEG
in the frequency and time domains, respectively (Fig. 3). For each sub-
ject, the 30 channel EEG is compressed into a single time course using the
first principal component (PCA-1) across all EEG channels. Fig. 3A shows
Fig. 3. Oscillatory properties of resting state EEG. For each subject, the 30 channel EEG is
represented by its first principal component (PCA-1). A: The power spectral densities of all
n ¼ 20 subjects (thin grey lines) and the average spectrum across all subjects (thick black
line) are shown in log-log coordinates. All spectra show a distinct peak in the EEG alpha
frequency band around 10 Hz. B: In the time domain, oscillatory properties are found in
the time autocorrelation function (ACF) of each subject (thin grey lines) and in the average
ACF across subjects (thick black line). The alpha frequency peak is represented by the first
local maximum found at a time lag of approx. 100 ms, or 10 Hz.
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the power spectral density of all subjects (thin grey lines) as well as the
average spectrum across the subjects (thick black line). As expected
during wakeful rest, there is a prominent peak in the alpha frequency
band, around 10 Hz. As we will subsequently analyze microstate se-
quences in the time domain, we also show the EEG time autocorrelation
function (ACF) in Fig. 3B. In the time domain, the dominant 10 Hz fre-
quency is represented by the first peak of the ACF around a time lag
of 100 ms.

Next, we aim to track these oscillatory EEG features as the data are
passed through the microstate segmentation algorithm. The results for
subject S2 are exemplified in Fig. 4. Fig. 4A shows the autocorrelation
function of the EEG global field power over time. We observe that the
first peak of the ACF is located near a time lag of 50 ms, or 20 Hz, i.e. at
twice the value of the EEG's principal alpha frequency (approx. 10 Hz). In
Fig. 4B, we show how the correlations of a given microstate map with the
actual EEG topography vary over time. For instance, let CA represent the
correlation of microstate map A with the actual EEG topography over
time, and let CB be the corresponding quantity for microstate B. Fig. 4B
shows the time-lagged cross-correlation between CA and CB. It is
observed that the time series show a preferred phase lag of 50 ms. In
other words, the similarity of the EEG topography with each map varies
periodically over time and at a frequency around 20 Hz. Fig. 4C shows
the plot of CA vs. CB. The oscillatory behaviour of EEG-microstate simi-
larity over time is also recognized in the quasi-periodic trajectory
described by pairs of ðCA; CBÞ-values. In summary, these analyses provide
evidence that EEG periodicities might be partially preserved during
microstate segmentation and may still be present in the symbolic
microstate sequence. This hypothesis is tested in the
following paragraph.

3.6. Periodicities of the autoinformation function

Temporal dependencies within microstate sequences for arbitrary
time lags are quantified by the autoinformation function. The process is
illustrated in Fig. 5. The amount of information (surprise) contained in
the microstate sequence at times t and tþ τ is quantified by the entropies
HðXtÞ and HðXtþτÞ, respectively (Fig. 5A). The amount of information
shared between time points t and tþ τ is given by the time-lagged mutual
information IðτÞ ¼ HðXtþτÞ� HðXtþτjXtÞ and measures the amount of
surprise about the microstate map at tþ τ, given the microstate label that
occurred at time t. In Fig. 5B, these quantities are illustrated using a Venn
diagram analogy. The two circles represent the information content at
time t and tþ τ. Their intersection represents their shared, or mutual
information. We observe that the resulting autoinformation function
shown in Fig. 5C (subject S5) shows periodic peaks at time lags that are
multiples of 50 ms, similar to the autocorrelation function of the GFP
time course shown in Fig. 4A. The value at time-lag zero represents the
entropy of the whole sequence. As the zero term is significantly larger
than the subsequent values, we chose a semi-logarithmic display in order
to show the complete function.

Next, we want to test if the periodicities of the AIF are random fluc-
tuations and how they relate to the Markovian picture. Fig. 6 shows the
empirical autoinformation function of microstate sequences (black line
and circles) as well as the AIF under the first-order Markov null hy-
pothesis (blue line) for two representative resting state recordings.
Fig. 6A shows the results for subject S5 and represents the class of sub-
jects for which the AIF has sustained oscillatory peaks up to time lags of
≈500 ms. It is observed that the analytical AIF for the equivalent Markov
process (blue line) decays monotonically without any local maxima that
would indicate periodic memory content. The Markovian AIF shows the
memory content gathered by considering first-order transitions only, i.e.
the information captured by the classical transition matrix approach. As
the Markovian AIF decays very quickly, the insets show the same curves
for small time lags in more detail. In addition to the analytical AIF, the
inset also shows the 95% confidence interval for the Markovian AIF (grey
shaded area) as obtained from Markov surrogate data. We see that the



Fig. 4. Periodicities in the microstate transform (subject S2). A: the autocorrelation function (ACF) of the global field power (GFP) time course shows clear oscillations with a first peak at
approx. 50 ms, i.e. 20 Hz. B: Time-lagged cross-correlation between CA and CB , where CA represents the spatial correlation of microstate A with the actual EEG topography over time and CB

the analogous quantity for microstate B. The instantaneous correlation between EEG and microstates A resp. B over time has a preferred time lag of approx. 50 ms (20 Hz). C: When CA and
CB are plotted against each other, we observe a quasi-periodic trajectory. These observations lead to the hypothesis that EEG periodicities may be inherited by the microstate sequence.

Fig. 5. The amount of information preserved by the microstate sequence while evolving
from time t to tþ τ is measured by the autoinformation function (AIF). A: For each time lag
τ, the AIF contains the time-lagged mutual information between the random variables Xt

and Xtþτ . B: The shared information is calculated from the entropies HðXt Þ, HðXtþτÞ, and
the conditional entropy HðXtþτ jXt Þ. It quantifies the amount of surprise about the micro-
state label at time tþ τ, knowing the label at time t. C: The autoinformation function for
time lags up to 600 ms. As the numerical values of the function decay quickly, the AIF is
plotted in semilog-y coordinates. Oscillatory peaks are observed around the same time lags
as in Fig. 4, the first peak representing the 20 Hz range.
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analytical AIF and the surrogate data confidence interval coincide
very precisely.

Fig. 6B shows the results for subject S2, which represents the group of
subjects with a rapidly decaying AIF. In these subjects, the most promi-
nent peaks of the AIF are found at time lags 50 ms and 100 ms, followed
by a rapid decay. The deviation from the Markovian null hypothesis
106
however is equally clear as in Fig. 6A, as shown in the inset. Please note
that for visualization purposes, the axes in Fig. 6 are clipped.

Frequency doubling is summarized in Table 4. For each subject
indexed in column 1, the first peak of the PCA-1 autocorrelation function,
corresponding to the subject's alpha frequency in milliseconds, is given in
the second column. The corresponding first peak in the AIF is given in
column 3. Column 4 shows the ratio of columns 2 and 3 and it is observed
that the ratio is centered close to the expected value of 2. Column 5 shows
the average microstate duration, averaged across all 4 microstates. While
average microstate durations lie in the same range as the first AIF peaks,
durations do not correlate linearly with either the location of the first
ACF peak (p ¼ 0.13) or the first AIF peak (p ¼ 0.49).
3.7. Periodicity of individual microstates

Analyzing the contribution of individual microstates to the global AIF
using Eq. (11), we find two types of behaviour. For one subset of subjects,
we find that all microstates show periodic information content. This is
represented by subject S5 in the left column of Fig. 7, where for each of
the 4 microstate maps (S5 A-D), the empirical AIF (thin black curves, Eq.
(11)) and an overlay of the empirical global AIF (light grey curve) are
shown. All microstates contribute similar peaks and are qualitatively
similar to the global AIF. For another class of subjects, not all microstates
have AIFs similar to the global AIF. This case is illustrated in the right
column of Fig. 7 for subject S20. We observe that only the third map
(S20-C), displaying a horizontal pattern, has a periodic memory trace
similar to the global AIF. The other maps show less clear patterns
although individual spectral peaks are observed. Interestingly, for the
second class of subjects, it was always the horizontal map that followed
the global AIF most closely. To focus on the oscillatory part of the AIF, x-
and y-axes are clipped. The corresponding microstate maps are shown as
pseudo-colored insets.
3.8. Long-range behaviour

In Fig. 8 we look at the long-range behaviour of the AIF up to time lags
of 2000 ms. The subject indices are shown next to the label and two
subjects are identical to the ones shown in Fig. 6. To the left, the tail of
the oscillatory regime is shown, with sustained periodicities in the upper
two traces, and a faster decay in the lower two traces. Beyond time lags of
≈1000 ms, the AIF reaches and stays within the first-order Markovian
confidence interval (grey shaded area). This short-range memory phe-
nomenon was also observed in the remaining data sets, not shown here.
This shows that for large time lags, beyond the oscillatory region,
microstate sequences show short-range memory, statistically not
different from an equivalent first-order Markov process.



Fig. 6. The autoinformation function for two exemplary subjects. A: Subject S5 represents the group of slowly decaying autoinformation functions (black line and circles) that show regular
harmonics of the main 50 ms (20 Hz) peak up to the 500 ms range. B: Subject S2 represents the group of AIFs with clear 50 ms and 100 ms peaks followed by a fast decay. In both cases, the
oscillatory behaviour significantly deviates from the first-order Markovian memory decay represented by the theoretical AIF (Eq. (9), blue line) and by the confidence interval constructed
from Markov surrogate data (light grey shaded area in the insets). The insets in A and B focus on the time lags around the first AIF peak that show the deviation from Markovianity most
clearly. To focus on oscillatory properties, x- and y-axes are clipped.

Table 4
Frequency doubling. For each subject indexed in column 1, temporal dependencies are
given as first-peak latencies in milliseconds. Column 2 refers to the autocorrelation function
of the EEG's first principal component (ACF PCA-1), and Column 3 to the autoinformation
function (AIF) of the microstate sequence. Column 4 shows the ratio of column 2 and
column 3, with values close to 2, indicating frequency doubling. Column 5 shows the mean
microstate duration in milliseconds, averaged across all microstates.

Subject ACF PCA-1 [ms] AIF [ms] Ratio ACF-1/AIF-1 average ms lifetime [ms]

1 100 48 2.1 49
2 100 52 1.9 52
3 104 52 2.0 44
4 84 52 1.6 46
5 100 48 2.1 56
6 108 52 2.1 64
7 92 48 1.9 51
8 124 60 2.1 45
9 92 48 1.9 47
10 84 52 1.6 41
11 100 52 1.9 52
12 96 52 1.8 48
13 88 40 2.2 36
14 104 56 1.9 48
15 92 48 1.9 57
16 96 52 1.8 50
17 104 56 1.9 60
18 108 56 1.9 50
19 108 52 2.1 60
20 96 40 2.4 52
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4. Discussion

Information-theoretical analysis of microstate sequences is presented
as a flexible and theoretically well-grounded methodological alternative
to other spatio-temporal EEG analyses. Our systematic analysis of tem-
poral dependencies in microstate sequences reveals several previously
unrecognized features of these signals. The results can be summarized
as follows:
107
1. All sequences show highly significant non-Markovian behaviour. The
Markov properties of low order (orders 0, 1 and 2), are rejected when
tested directly and the empirical autoinformation function of micro-
state sequences is strikingly different from the first-order Markov
version.

2 A large proportion of microstate sequences show a non-stationary and
asymmetric transition matrix T, i.e. the transition probabilities be-
tween microstate maps can change over time and are often not time-
reversible.

3. All sequences display periodic information content at frequencies
related to the underlying EEG power spectral density. The microstate
transform induces frequency-doubling with respect to the EEG spec-
trum. The speed of decay of these periodicities is analogous in the
EEG and microstate sequence spectra.

4. Memory effects in all microstate sequences finally decay to the first-
order Markov confidence interval for time lags larger than τ≈1000
ms, i.e. microstate sequences display short-range memory.
4.1. Memory effects in microstate sequences

Our analysis sheds new light on the question of temporal de-
pendencies in resting state microstate sequences. Given a sequence of
discrete states, one of the first questions that arise is whether the
sequence is random or if the states carry some information about the past
of the sequence. For continuous data, this property is usually addressed
by analyzing the (partial) autocorrelation function. For symbolic data,
autocorrelations can only be calculated if the set of symbols is mapped to
a metric space, whose elements allow the computation of sums and
products. However, if the symbols represent EEG topographies, any such
mapping seems arbitrary and difficult to justify biologically. Moreover,
when mapping EEG topographies to numbers, a linear order of the ele-
ments is created. For EEG topographic clusters as those shown in Figs. 1
and 7, an order relation (�) is not justifiable. Therefore, we computed the
amount of information shared between two time points, using an
information-theoretical quantity that only requires the probability dis-
tributions of the microstate symbols at these times. Applying statistical



Fig. 7. Individual microstates contribute differently to global periodic information. The left column (S5 A-D) shows the individual AIFs for each microstate in subject S5, the right column
(S20 A-D) for subject S20 (see Table 1). Microstate maps are shown as insets. In both columns, the global AIF of the subject is shown as a light grey line. In S5, the individual AIFs (black
lines and circles) of all microstates contribute the same peaks to the global AIF, i.e. all microstates re-appear periodically. In S20, microstate C (S20-C) contributes an AIF that closely
follows the shape of the global AIF. The remaining microstates (A, B, D) contribute AIFs without these clear oscillatory features. Whenever this pattern was observed, the third microstate
type, the ’horizontal map’, always resembled the global AIF most closely. For visualization purposes, x- and y-axes are clipped.
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tests for the Markov properties of low order first, and looking at the
mutual information within sequences subsequently, we find consistent
non-Markovianity for time lags up to 1000 ms in the resting state con-
dition. These results show that microstates are not emitted randomly by a
memoryless mechanism, they rather show extended memory effects. The
same result is obtained when the lifetime distributions of individual
microstates are tested. To summarize, we found strong statistical evi-
dence for the non-Markovian nature of the microstate process. We want
to emphasize that the same methodology can be applied to any micro-
state transform (e.g. K-means, hierarchical clustering, independent
component analysis) and to decompositions into any number of micro-
states. An alternative to simple clustering algorithms is the use of Hidden
Markov Models (HMM) to construct a set of microstates (G€artner et al.,
2015; Gschwind et al., 2015). In HMMs, the Markov process of state
transitions is hidden from observation, and the observable state emitted
by the hidden states follows a certain probability distribution. We do not
study these models in detail here. However, the analyses presented here
can be applied to microstate sequences from HMMs without restrictions.
Whether HMM-derived state sequences have a different information-
theoretical structure than those discussed here remains a subject of
further studies. Another point to mention is the sampling rate during data
108
acquisition. When the sampling rate falls below the autocorrelation time
of the measured process, the process may appear to be memoryless, or
Markovian. As sampling rates above 100 Hz are common practice in EEG
research, this issue should not arise. However, using the same method-
ological approach in fMRI, for example, may require additional efforts.
4.2. The transition matrix approach

The aforementioned methods and results extend the information
provided by the classical transition matrix approach to microstate anal-
ysis. Looking beyond first-order transitions (t→tþ 1) seems necessary as
the implicit Markov model of the transition matrix approach is rejected
when tested directly in empirical data. Although average microstate label
distributions and first-order transition probabilities may convey inter-
esting information about general properties of ongoing EEG patterns, we
should be aware that the approach does not fit the structure of the data.
Not only are microstate processes non-Markovian for short time lags,
they also show very clear periodic features. These oscillatory features
cannot be reproduced by a first-order Markov model, as shown by the
monotonously decaying AIFs in Fig. 6. The case is similar as in autore-
gressive (AR) modeling of continuous EEG data. The transition matrix



Fig. 8. Short-range memory in microstate sequences. To assess the asymptotic information content of microstate sequences, the plot shows the autoinformation function of four exemplary
recordings for long time lags (500–2000 ms). While subjects S5 (A) and S11 (B) represent recordings with strong oscillatory AIFs up to >500 ms, subjects S2 (C) and S6 (D) belong to the
group with rapidly decaying AIFs. In all presented cases, the AIF (black lines) decays to the first-order Markov 95% confidence interval (grey shaded area) for time lags >1000 ms, arguing
against long-range memory. The same pattern is observed in the remaining subjects.
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approach is equivalent to a first-order AR(1) model, whose analytical
ACF is exponentially decaying. To model oscillations, at least an AR(2)
model is needed (Box and Jenkins, 1976). However, our results show that
microstate sequences show temporal dependencies beyond a 2nd order
Markov model also (Table 2). This implies a more careful interpretation
of transition matrix analyses. If transition matrices are different under
variation of the experimental condition, the underlying microstate dy-
namics are probably different. If transition matrices are equal, however,
higher order dynamics may still be different. We propose to use the
autoinformation function to scan for altered microstate dynamics across
different time scales.

4.3. Periodicities, frequency doubling and symmetry

Already in the early years of microstate research, periodicities of the
global field power and its phase-shifted companion, the global dissimi-
larity measure were reported (Lehmann et al., 1987). Both signals
together reflect the spatiotemporal properties of brain electrical activity.
Global field power maxima occur at dissimilarity minima and vice versa.
This reflects the fact that high spatial variance (global field power) is
associated with temporally quasi-stable potential configurations. The
stability of the spatial pattern over short time periods is associated with
low dissimilarity measures. Interlaced with these stable configurations,
unstable, low-variance transition periods are observed. These periods go
along with low global field power and large dissimilarity. Furthermore, it
has been noted that the potential configurations at subsequent GFP peaks
are often inverted with respect to each other (Lehmann et al., 1987;
Wackermann et al., 1993). It has been argued that maps with the same
potential shape but inverse polarity should be assigned to the same
microstate class (Wackermann et al., 1993), and therefore, polarity
should be ignored during microstate segmentation (Wackermann et al.,
1993; Murray et al., 2008). Finally, it is observed that the GFP signal
displays twice the peak frequency of the underlying EEG and that the
50 ms phase lag is preserved during the microstate fitting procedure, as
shown in Fig. 4. To summarize, there is an elevated probability to find
identical microstate cluster assignments at subsequent GFP peaks, i.e. at
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half the EEG wavelength. As a consequence, microstates themselves tend
to occur with a periodicity of twice the EEG main frequency. Moreover,
we show that oscillatory features are invariant with respect to the cluster
number as illustrated in Fig. S1. Our analysis also suggests that micro-
states are not spectrally independent as the sequences inherit their
periodicity from the EEG. This means that the dominant EEG frequency
band will determine the periodicity of the resulting microstate sequence,
and in this sense, microstates do not provide a frequency-independent
tool for EEG characterization.

Periodicity appears to be a basic feature of microstate sequences that
has not attracted attention by the community so far, possibly due to a lack
in methodology for symbolic sequences. We aimed to fill this gap with
the methods detailed in this paper. Using a flexible information-
theoretical approach, we have provided strong evidence that periodic-
ities are an intrinsic feature of resting state EEG derived microstate se-
quences. Periodicities represent one of the main classes of non-
stationarities that should be identified before further analyzing time se-
ries (Box and Jenkins, 1976). Oscillations lead to a very different shape of
the AIF and to a much slower decay of the AIF compared to a pure first-
order Markov model. However, beyond the oscillatory regime (>1000
ms), the AIF is not distinguishable from a Markov model.

The conditions of periodicity and asymmetry of the transition matrix
together suggest that the biophysical process underlying neural activity is
in a non-equilibrium state for the following reasons: If the underlying
process was in equilibrium, the transition rates between the states would
be reversible, and the transitionmatrix should be symmetric. Asymmetric
periodicity however, shows a directed cycling through the set of micro-
states. This is only possible in the case of a source of free energy, a
’driving force’. The mathematical connection between non-reversible
cycling through a discrete set of states and the existence of a free en-
ergy source has been detailed in (Rengifo et al., 2002). In the light of
neural mass models of cortical activity the driving force would be the
constant thalamic input relaying peripheral input (Deco et al., 2008). In
these models, action potentials from the thalamus excite cortical oscil-
lators comprised of coupled excitatory and inhibitory neuronal pop-
ulations giving rise to the oscillatory activity recorded by EEG. Using this



F. von Wegner et al. NeuroImage 158 (2017) 99–111
information, it will be interesting to compare groups with and without
symmetric transition matrices. In simultaneous EEG-fMRI data sets, the
model-derived hypothesis of thalamic input as the discriminating factor
could be tested directly.

Future studies should further test the correspondence between EEG
and microstate oscillatory activity under different experimental condi-
tions, in health and disease.

4.4. Short-range memory

The range of memory effects in microstate sequences is an interesting
question in itself. The presence of long-range temporal dependencies in
EEG time series has been investigated and debated. Often, Hurst expo-
nents of H >0:5 were interpreted as a sign of long-range correlations in
EEG time series and microstate sequences (Linkenkaer-Hansen et al.,
2001; Van de Ville et al., 2010; Gschwind et al., 2015). However, the
Hurst phenomenon (H > 0:5) does not imply long-range correlations by
itself, as it may be reproduced by short-range or even uncorrelated sig-
nals with non-stationary increments (Bassler et al., 2006; McCauley et al.,
2007). Inferring long-range correlations from the Hurst phenomenon is
only valid for sequences with stationary increments. As shown here, non-
stationarity is a frequent phenomenon in microstate sequences (Table 3).
We therefore addressed long-memory directly (Fig. 8) and find that the
AIF decays to the first-order Markov confidence interval, i.e. that
microstate sequences are short-range correlated for large time lags. Our
results are almost identical to resting state EEG analyses obtained with
the diffusion entropy approach (Ignaccolo et al., 2010b, a), where
spurious long-range correlations could be resolved as regimes of transient
periodicities followed by short-memory behaviour at large time lags, i.e.
for time lags >1000 ms. It should also be noted that the preprocessing
filters applied to the EEG do no limit the interpretation of the results. As
the length of a contiguous microstate segment is only determined by its
spatial similarity with the current EEG topography, 1 Hz high-pass
filtered EEG can still yield microstate sequences with autocorrelations
up to more than 10 s (Van de Ville et al., 2010; von Wegner et al., 2016).
While the Hurst approach is useful for mathematically well characterized
processes such as fractional Gaussian noise (Mandelbrot and Van Ness,
1968), a Hurst exponent alone is not enough to infer time-correlation
properties of empirical data. We here provided further evidence that
information-theoretical analysis is a useful and appropriate tool to un-
derstand EEG dynamics.

4.5. Neurobiological interpretation

Microstate analyses allow the characterization of spatio-temporal
patterns of ongoing EEG activity. While oscillatory dynamics of indi-
vidual EEG channels are a prominent and thoroughly investigated
feature, the temporal characteristics of ongoing spatial patterns in the
resting state are little understood. Our analysis shows that spatial EEG
patterns are not generated in a memoryless way, but that these patterns
are replayed in recurring patterns, although Fig. 6 shows that the
robustness of these oscillating motifs differs between subjects.

The classical microstate interpretation is that of metastable network
configurations, where certain scalp potential distributions remain almost
constant on time scales of tens to hundreds of milliseconds (Koenig et al.,
2002). Our results are not in contradiction to these findings but add extra
information about typical microstate dynamics, especially about recur-
rence. We find average microstate lifetimes and right-skewed lifetime
distributions similar to those reported previously, Tables S1–S4 (Brod-
beck et al., 2012; Gschwind et al., 2015). In this context it is important to
note that the information peak around 50 ms does not mean that the
microstate labels change every 50 ms, neither does an average microstate
lifetime of 50 ms predict a 20 Hz periodicity. Both points become clear
using the Markov null hypothesis as an example. The Markovian lifetime
distribution is an exponential that can be parametrized by its mean value,
e.g. τ ¼ 50 ms. This means that the probability p of finding a lifetime
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larger than t is p ¼ exp
�
� t

τ

�
. For instance, we expect 13.5% of the life-

times to be longer than 100 ms and 1.8% to be longer than 200 ms.
Moreover, we do not expect any periodicities of the autoinformation
function, Eq. (9). Looking at our empirical microstate sequences, we find
more complex dynamics than predicted by a first-order Markov process.
In particular, we find average lifetimes around 50 ms and maximum
lifetimes up to several hundreds of milliseconds. We also find that certain
microstates, though not all of them, re-appear regularly and the smallest
time constant for their re-appearance is 50 ms. Adding the frequency-
doubling argument, our results are in line with the classical microstate
interpretation of network activity on the alpha-frequency time scale. The
new information added is that these networks seem to activate periodi-
cally and that transitions between maps do not follow a rigid rule but
change over time (non-stationarity). Another observation that asks for
further investigation is the contribution of different microstates to global
periodicity. In our set of 20 subjects, in most cases (15/20) all microstates
contributed to the global AIF. The pattern shown for subject S20 in the
right column of Fig. 7, where only the horizontal microstate contributes
to global periodicity, was observed in 5/20 cases. As the functional sig-
nificance of different microstate maps remains still discussed, future
studies should investigate the roles and contributions of different to-
pographies to defined experimental conditions.

Interestingly, the peaks of the autoinformation function yield distinct
time scales that can be used to characterize the microstate generating
mechanism. Conceptually, these time scales stand in contrast to a
recently presented scale-free model of microstate sequences (Van de Ville
et al., 2010). The latter proposes that the sequence of microstate maps
does not display any characteristic time scale, and that long-range
(infinite) autocorrelations are present. The differing results can be
explained by the analytic approach chosen. As Hurst analysis is focused
on fitting an asymptotic scaling exponent, it will not detect oscillations in
the intermediate time-scale region. This problem is treated thoroughly in
(Ignaccolo et al., 2010b,a), where spurious scaling behaviour in EEG
resting state recordings is detected and explained. Our argument against
scale-free, long-range correlated microstate dynamics is constructive by
approach, providing explicit time scales for each microstate sequence,
and showing that their long-range memory content is finite.

The presence of characteristic time scales and oscillations is in line
with biophysical models of cortical activity. As these models are based on
time constants from physiological experiments, their output can be
characterized by a set of time scales. Thus, the periods of alpha and beta
oscillations, for instance, can be derived from synaptic time constants and
conduction delays (Robinson et al., 2001). Long-range correlated and
fractal models of brain activity, on the other hand, propose a scale-free
behaviour characterized by a single parameter, the Hurst exponent H.
In summary, our findings point more towards classical biophysical
models than in the direction of scale-free models of global
cortical activity.

5. Conclusion

Microstate sequences represent continuous EEG dynamics based on a
spatial variance criterion. These discrete sequences are the result of a
complex, non-linear dimensionality reduction transform of the EEG
signal. Our results show that EEGmicrostate sequences often exhibit non-
stationarity on the time scale of several tens of seconds. In these cases,
some signal processing strategies assuming time-stationarity may give
erroneous results. For larger window sizes, e.g. 40 s, the fraction of sta-
tionary sequences increases, suggesting a tendency towards stationarity
at these time scales. On the other hand, we know that resting state re-
cordings lasting several minutes often show non-stationarity due to vig-
ilance fluctuations, i.e. intrusions of light sleep, changing spectral EEG
properties severely (Tagliazucchi et al., 2012).

In conclusion, we recommend to explicitly test the stationarity of
microstate sequences shorter than 30 s, and to independently control for
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vigilance fluctuations in EEG recordings with a duration larger than five
minutes. It is quite remarkable that four (and even fewer) topographic
EEG maps capture such important EEG features as periodicity and tem-
poral autocorrelation structure. Using our approach, raw EEG and
microstate sequences can be tested for the same properties and thus,
microstates can be interpreted in the same way as their continuous EEG
source. The methods presented here will hopefully facilitate researchers
in both areas, i.e. continuous EEG and discrete microstates, to compare
results obtained with both methods and to shift between both modalities
while staying within the same theoretical framework.
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