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Abstract--In this paper, the use of orthogonal factorizations, more precisely the Q-R decomposition, 
to analyze, decompose and solve the linear and bilinear data reconciliation problem is further 
investigated. It is shown that the decomposition provides additional insight in identifying structural 
singularities in the system topology, allowing the problem to decompose into lower dimension sub- 
problems. Energy balances are explicitly considered. Two examples of application are presented. 

1. INTRODUCTION 

In the course of daily operation of a chemical plant, 
it is common practice to adjust the measurements 
taken from the process, so that random measure- 
ment errors can be compensated for. The appli- 
cation of these methods to large-scale complex 
chemical plants creates problems of very large 
dimensionality which are difficult to solve. This last 
feature motivated V~iclavek (1969) to attempt to 
reduce the size of the least-squares problem through 
an elegant classification of the measured and unmea- 
sured process variables for linear systems. Such 
classification allowed the size reduction of the initial 
problem and its easier solution. In a later work 
V~clavek and Loucka (1976) covered also the case 
of bilinear balances. 

A similar approach was undertaken by Mah et al. 

(1976) in their attempt to organize the analysis of 
the process data and to systematize the estimation 
and measurement correction problem. A simple 
graph-theoretic procedure for single component 
flow networks was developed. They later extended 
the treatment, first to multicomponent flow 
networks (Kretsovalis and Mah, 1987) and then to 
the generalized process networks including energy 
balances and chemical reactions (Kretsovalis and 
Mah, 1988a, b). 

Romagnoli and Stephanopoulos (1980) proposed 
an equation oriented approach. Solvability of the 
nodal equations was examined and an output set 
assignment algorithm (Stadtherr et al., 1974) was 
employed to classify simultaneously measured and 
unmeasured variabes. 

t To whom all correspondence should be addressed. 

More recently, a general treatment using projec- 
tion matrices was proposed by Crowe et al. (1983) 
for linear systems and extended later (Crowe, 1986, 
1989) for bilinear systems. Crowe suggested a useful 
method to decouple the measured variables from 
the constraint equations, using a projection matrix 
to eliminate the unmeasured process variables. 
Orthogonal factorization were first used by Swartz 
(1989) in the context of successive linearization 
techniques to eliminate the unmeasured variables 
from the constraint equations. 

In this paper, the use of orthogonal factorizations, 
more precisely the Q - R  decomposition, to analyze, 
decompose and solve the linear and bilinear data 
reconciliation problem is further investigated. A 
sequence of simple expressions to be applied in 
instrumentation analysis and data reconciliation is 
outlined and they are obtained using sub-products of 
Q-R factorizations. Furthermore, the use of this 
method, when energy balances are included in the 
set of process constraints, is also discussed. Results 
of the application for linear and bilinear systems are 
provided in terms of two flowsheeting examples, one 
of them being an existing operating plant. 

2. LINEAR CASE 

2.1. Problem statement 

In the absence of systematic errors, we consider 
the following measurement model 

~ = x + e  (1) 

where x is a (g x 1) vector of measured variables, 
is a (g × 1) vector of measured values and e is a 
(g x 1) vector of random errors. The measurement 
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errors are assumed to be normally distributed with 
zero mean and known variance-covariance matrix 
tttx. A set of m linear balance equations for a 
steady-state process can be written as: 

A I x + A 2 u = 0  (2) 

where u is a (n x 1) vector of unmeasured variables 
and Al(m ×g) ,  A2(m × u) are matrices of known 
constants. 

In the presence of measurement errors, the 
balance equations are not satisfied exactly. To com- 
pensate for random measurements errors, a general 
data reconciliation procedure must solve the follow- 
ing least-squares problem: 

min ( x -  i ) rqJx l (X-  i )  (3) 

s.t. A~x +A2u = 0. 
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of matrix A2 is easily accomplished. From one code 
instruction, matrices Q., R. and the permutation 
matrix l'I. are obtained, such that: 

A21-I. = Q.R.  (7) 

where Q. and R. can be divided into: 

as is indicated in the Appendix, with ru = rank(A2) = 
rank(R.,). 

In the same way, the unmeasured process vari- 
ables can be partitioned into two subsets: 

[ "-I. 
LUn-r.J 

notation, the balance equations (2) with this 
become: 2.2. Solution using Q - R  factorizations 

Several techniques were proposed to reduce the 
size of the reconciliation problem by eliminating 
unmeasured variables (V~iclavek, 1969; Mah et al., 
1976; Romagnoli and Stephanopouios, 1980). An 
elegant and useful way of obtaining this decompo- 
sition was due to Crowe et al. (1983). The method 
was based on the use of a projection matrix P. It was 
defined such that pre-multiplying matrix A2 with P 
yields: 

PA2 = 0 (4) 

where the rows of P span the null space of A2 r, and 
thus the unmeasured variables are eliminated. The 
constrained least-squares problem for the overall 
plant (3) can be replaced now by the equivalent two- 
problem formulation. 

(i) Least-squares estimation of x: 

min (x - ~)TqJx I(X -- ~) (5) 

s.t. G x = 0 .  

The solution of this problem is given by: 

~ = i - q J ,  Gr(GWxGr)-lGi (6) 

where G = P*AI. 
(ii) Estimation of u using ~ and the balance equa- 

tions 
Both the application of Crowe's matrix projection 

method and the solution of the reduced least- 
squares problem can be simplified by using Q-R 
orthogonal transformations. A brief description of 
Q-R transformation is included in the Appendix. 
The application of Q-R factorizations to different 
stages of the data reconciliation problem (3) follows. 

2.2.1. Elimination of unmeasured variables. 
By applying software packages for matrix compu- 

tation, such as MATLAB,  the Q-R decomposition 

The Q,~ matrix is such that its rows span the null 
space of A~'. That is: 

T Q.2A2-O (11) 

so Q,~ works as the projection matrix P proposed by 
Crowe. It differs, however, from P in that the 
numerical values have no physical significance. 
Pre-multiplying the system of equations (2) by Q r 
the unmeasured variables are eliminated. 

Remark 1. In MATLAB,  the Q-R decomposition 
can be easily accomplished through one code 
instruction. Furthermore, Q.r 2 is obtained as sub- 
product of Q-R(A2) without extra computing effort 
for the user. 

2.2.2. Least-squares estimation of x. The follow- 
ing problem must be solved: 

min ( x -  i ) r ~ x l ( X -  i )  (12) 

s.t. Gxx=0 

where 

a x  T = Q,:A,. (13) 

Zero columns of Gx correspond to non-redundant 
measurements; the others belong to redundant 
measurements as indicated by Crowe et al. (1983) 
and Crowe (1989). 

We can solve this constrained problem by the 
Lagrangian approach; however, using Q-R factori- 
zations, it can be transformed into an unconstrained 
problem. The constraints equations may be used to 
solve, functionally, for as many variables as there 
are constraints. Then an unconstrained least-squares 
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problem is solved to estimate the remaining vari- 
ables. The procedure is as follows. 
(i) Computation of the general solution of the unde- 
termined system (G,x = 0): 

A Q-R orthogonal factorization of G. gives 
Q~, R~, H~ and allows one to obtain 
Q~, Qw R~, R~:, x,~, Xg .. . .  such that 

G.I-Ix=Q~R~ (14) 

Q~=[Q~,Q~I] R = JR,, R.~] (15) 

1-ITx = [ xgX~rx] (16) 

with r~ = rank(R~l ) = rank(G 0. The general solution 
of this problem is: 

Xr, = - -  R~ l R~2 x~ _ rx ( 1 7 )  

where xg_~. is arbitrary. 
(ii) Formulation of the unconstrained problem: 

Using the previous results, the vector ( x -  i )  from 
the objective function is modified, as equation (18) 
indicates: 

- - i  ( x - i ) = [ I ~ ,  I~] xg , 

=(I.2-1~,R~'R~2)Xg_,-i (18) 

where 

l l-I~=[I. ,  I,:] I=I.~-I~R~,'R~ 2. (19) 

I is a (g x g) identity matrix and [ is a [g x (g - r0] 
matrix with independent columns. 
(iii) Estimation of x: 

The solution of the unconstrained problem is: 

%_~ = (F~;~i ) -~F~;  ~ i (20) 

with the value of ig_r,, one can solve for xr. using 
(17). 

Remark 2. The previous approach has two advan- 
tages: it avoids the direct use of the constraints into 
the least-squares estimation and reduces the number 
of variables to be simultaneously estimated. The 
process of eliminating part of the variable using the 
constriants is easily accomplished by means of Q-R 
factorizations. 

2.2.3. Estimation of unmeasured variables. 
Matrix R. in the Q-R factorization of the Az matrix 
contains the topological information about the 
system in terms of the available measurements. 

(i) if rank(Ro)= r. = n, all unmeasured process 
variables are determinable from the available 
information. 
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(ii) if rank(Ru) = ru < n, then at least n - ru + 1 
variables cannot be calculated from the avail- 
able information. 

For case (ii), the estimability condition of unmea- 
sured variables can be expressed in terms of Q-R 
decomposition results of A2 matrix. The permu- 
tation matrix FI n allows the division of the unmea- 
sured process variables into subsets ur. and U.-ru. 
The subset u._r. corresponds to ( n -  ru) indetermin- 
able unmeasured process variables. Regarding the 
subset u~., some variables can be calculated using 
only the reconciled measurement values and some 
depend also on the assumption of the u._~u variables. 
This result is obtained by pre-multiplying the system 
equations (10) by Q r  and reordering the first r. 
equations of system (21) as indicated below: 

i  lrxl Qu,A~ Ru~ 
r 2 u~, = 0 (21) 

Q,2A1 0 
I u . . . .  I 

- 1  T - u~ = - R u ,  QulAlx-R~XRu2u . . . .  . (22) 

To classify variables in subset u~., it is necessary to 
look at the rows of the matrix: 

Rw = R u l  I R u  2 • (23) 

The following can be stated: 

(i) A variable in subset ur. is said to be determin- 
able if the corresponding row in the Rw 
matrix is zero. 

(ii) A variable in subset u~ is said indeterminable 
otherwise. 

Remark 3. The classification matrix analysis has 
been done by Crowe (1989) in terms of the projec- 
tion matrix P. Here, similar results are obtained in a 
clearer way using Q-R factorization. In MATLAB,  
inspection of matrix Rm can be easily accomplished 
in an automatic way. 

3.  N O N - L I N E A R  CASE 

3.1. Problem statement 
Let us now consider a process containing K units 

denoted by k =  1 . . . .  , K, and J oriented streams 
j = l , . . . J ,  with C components c =  1 , . . .  C. Plant 
topology is represetned by the incidence matrix L, 
with rows corresponding to units and columns to 
streams. Then lkj= if stream j enters node k, lkj = -1  
if stream j leaves mode k, lkj = 0 otherwise. 

The general process constraints are as follows. 
Total molar balances: 

E l ~ + E E S k ,  rc~k, rc=O. (24) 
j r c  
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Component molar balances: Table 1. Categories of component and energy flowrates 

Category F m/ T 

E l~jFjm/c+E Sk rc~k r = 0 '  (25) 1 M M 
' ' 2 U M 

j r 3 M / U  U 

Energy balances: 

E IkjFjhj+E Hk'r+qk=O" (26) 
I r 

Normalization equations: 

E ~rnjc - ~ = 0 (27) 
c 

where ~ is the total molar flowrate of stream j, Sk, rc 
is the coefficient of the stoichiometric matrix (Crowe 
et al., 1983) of component c for reaction r in unit k, 
~k,• is the extent of reaction r in unit k, mj.c is the 
molar fraction of component c in stream j, hj repre- 
sents the specific enthalpy of stream j, Hk.r is the 
total heat of reaction r in unit k and depends on Sg, r, 
and ~.• ,  qk is the vector of pure energy flows of unit 

k. 
To compensate for random measurements errors, 

the data reconciliation procedure must solve the 
following least-squares problem: 

min ( y - y ) r U j y ~ ( y -  y) (28) 

s.t. W(y, z) = 0  

where W(y, y) represents a subset of balances and 
normalization equations; y and z are the vectors of 
measured and unmeasured variables for bilinear 

problems. 

3.2. Solution using Q - R  factorizations 

A scheme for the solution of the bilinear reconcil- 
iation problem is proposed by Crowe (1986). In this 
work, the application of Q - R  factorizations within 
this scheme is analyzed. Furthermore, total flow- 
rates are separately considered from component and 
enthalpy flowrates and energy balances are explicitly 

taken into account. 
Following Crowe's procedure, the solution to 

problem (28) can be accomplished in four steps. 
3.2.1. Modification of  bilinear constraints. The 

linear terms in W ( y , z ) = 0  remain unchanged. 
Bilienar terms are rewritten using the classification 
of component and enthalpy flowrates. Component 
flowrates are divided into three categories depend- 
ing on the combination of total flow rates and 
concentration measurements in the stream as shown 

in Table 1, where M and U indicate measured and 
unmeasured variables respectively. 

For energy balances, an expression of specific 
enthalpy as function of temperature (T) is obtained 
by using a thermodynamic package, for a stream 
with constant steady-state simulated values of pres- 
sure and composition. Table 1 also represents the 
categorization of energy flowrates when this 
approach is applied. 

Component/energy balances: 

Bl f+  B2 Vd + n3v = 0. (29) 

Normalization equations: 

EIf+E2Vd+E3v+E4FM+EsFv=O (30) 

where f is the vector of component or enthalpy 
flowrates of Category 1; d is the vector of measured 
concentrations and calculated specific enthalpy for 
component or enthalpy flowrates of Category 2; v is 
the vector of component or enthalpy flowrates of 
Category 3, extent of reaction, unknown pure 
energy flows, etc; FM stands for measured total 
flowrates and Fv for the unmeasured ones; V repre- 
sents the diagonal matrix of unmeasured total flow 
rates for component and enthalpy flowrates of 
Category 2. The number of entries for a stream in V 
is equal to the number of elements of d correspond- 
ing to this stream. 

The measured variable d is replaced by a consist- 
ent measured value plus the correction term 6d: 

d = 0] + 6d) (31) 

and a new variable 0 is defined as: 

0 = V6d. (32) 

The terms that contain variable d in equations 
(29) and (30) are replaced by: 

BE Vd = BE0 + B2 Vd 

E2 Vd = E20 + E2 Vd. (33) 

In order to display unmeasured total flow rates for 
specific flowrates of Category 2 (Fuz) from equations 
(33), B4 and E6 matrices are defined as: 

B4(d)Fu2 = B2 Vd 

E6(d)Fu2 = E2 Vt]. (34) 

Each column of B4 and E6 contains the sum of the 
columns of B2 and E2 for the stream multiplied by 
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the corresponding consistent concentration or speci- 
fic enthalpy. To group all unmeasured total flow- 
rates, zero columns are added to B4 and F6 if it is 
necessary. New B5 and E7 are obtained such that: 

Bs(d)Fu = B2 V~I 

ET( d )Fu = E2 Vd. (35) 

Different linearly independent sets of process con- 
straints can be formulated. One of them may include 
total mass balances, C - 1  component balances, 
energy balances and normalization equations. 
Another one may contain all component and energy 
balances and normalization equations. Using pre- 
vious expressions, the last set can be written as: 

=0 (36) 
E4 EI E2 E8 E3 

whereE8 = E7 + Es. If we consider the adjustments 
of total flow rates 8F and the component and 
enthalpy flows dr, the general reconciliation problem 
can be stated as: 

min r - 1  r ( 6 FM Ukl FM O F M -{- (~ T I~I f l o T -~- o Tttl o I O ) 

s.t. [Bn B22 B33] = _ O1 BI 
E4 El 

where 

SFM] "Ox B1 B2 

g r u ,  g t ,  g0  and g ,  are the variance-covariance 
matrices for FM, f, 0 and d. g0  is defined as: 

g0  = v g ,  V. (38) 

Remark 4. By separating total flowrates from com- 
ponent and enthalpy flowrates, clearer expressions 
for instrumentation analysis and data reconciliation 
calculations may be obtained. 

3.2.2. Elimination of unmeasured variables. 
These variables are eliminated from the modified 
constraints using Q - R  orthogonal transformations 
as follows. 
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(i) A Q-R decomposition of (rob × nb) matrix B33 is 
accomplished, then: 

B33II, = [ QB ][ RB ] 

=[QB, QB2][ RB' 7 2 ] (39) 

where, r ,=  rank(RB1) and QB~ is such that its rows 
span the null space of B(3 so: 

QB rB33 = 0. (40) 

(ii) Equation (37) is multiplied by QB~ so the 
unmeasured variables v are eliminated and the pro- 
cess constraints are defined as: 

QB~Bnt+ QBrB22Fu = QBre. (41) 

(iii) A new (max ha) matrix D is defined and equa- 
tion (41) is rewritten as: 

QBrBnt+ DFu= QBre. (42) 

(iv) A Q-R orthogonal trnsformation is performed 
on matrix D: 

D I-IF,= [ QD ][ RD ] 

 43, =[QD1 QD2] 0 

where rf= rank(RDt) and QD r is such that its rows 
span the null space of D r, then the process con- 
straints can be reduced to: 

QD'~QB~Bllt= QD~QBre. (44) 

3.2.3. Estimation of measured variables and 
unmeasured total flow rates. 

After eliminating unmeasured variables, the 
reconciliation of measured variables and the estima- 
tion of unmeasured total flow rates are accom- 
plished by an iterative procedure: 

Step 1: 

Using an estimation of unmeasured total flow 
rates, tlJ0 is evaluated. The following linear reconcil- 
iation problem needs to be solved: 

min t r g t l t  (45) 

s.t. Gt t=b  

where 

Gt= QDrQB~B,, 

b = QD ~ QB re (46) 

with solution given by 

i = Wt Gtr(GtWt G t r )-~b. (47) 

When the Q-R decomposition of Gt is applied to 
estimate [, the calculation has the same advantages 
as indicated for the Linear Case. 
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Step 2: 

The estimation of unmeasured total flow rates is 
done by using the Q-R orthogonal decomposition of 
matrix D. Equation (42) can be written as: 

QBfBui+[QDI QD2] 

X 0 0 kFuu,~_.,tj 

where 

Fv,: q 
I =I-I~.Fo. (49) 

[ Fv,,~ ,iJ 

The subset Fv. d ,: corresponds to the indeterminable 
total flow rates. Regarding the subset Fv,: nothing 
can be said, since some of these variables can be 
calulated directly from the measurements and some 
depends on Fu, d_,. Further information to classify 
variables in subset F% can be obtained pre- 
multiplying equation (48) by QD r and writing the 
vector Fv,: in terms of the other variables: 

Fv, = RDf  lQD (QB~e- RDflQD (Q BfBu t 

- RD{ IRD2 Fu~ ~f. (50) 

Notice that if the last term in the RHS of equation 
(50) is zero, all the Fu,: can be calculated from the 
available information. In order to classify the vari- 
ables in Fv,: a matrix RIF is defined as: 

R~F = RD~IRD2 (51) 

and the following can be stated: 

(i) a variable in subset F% is determinable if the 
corresponding row in R¢F is zero; 

(ii) a variable in subset Fur: is indeterminable 
otherwise. 

At  this point the vector Fv can be divided into: 

F u =  L Fu, J 

where Fvd is the fe-dimensional vector of determin- 
able total flowrates (fe<rf); Fu, is the 
(nd-fe)-dimensional vector of indeterminable total 
flowrates; Fve contains the f~ variables in subset Fv,: 
which satisfy condition (i) while F,, includes the 
variables in subset Fvr: which satisfy condition (ii) 
plus the variables in subset Fv,, ,:. 

After  updating the value of determinable total 
folw rates, the procedure is re-initiated until conver- 
gence is achieved. 

Remark 5. If total flowrates are separated from 
component and energy flowrates, Crowe's specifica- 
tions for the calculation of total flowrates correc- 
tions are not necessary. 

M. SANCHEZ and J. ROMAGNOL! 

2.3.4. Estimation of vector v. In order to estimate 
the unmeasured variables contained in v, the matrix 
B22 is divided in two parts by column permutation. 
The first fe columns correspond to the determinable 
total flow rates and the (rid--re) remaining ones 
belong to indeterminable total flowrates. 

B22= [B2d B2,]. (53) 

Using the Q-R decomposition of matrix B33 , the set 
of constraints (37) is rewwritten as: 

Bui + B2dFv,, + B2iFu, + [ QBl QB2] 

X [  0 RoB2 vn~, : e  (54) 

where 

Vrv 1  55, 
L Vnb-rv d 

The subset vn~ ,, corresponds to the indetermin- 
able variables in v. For the classification of variables 
in subset v,,, additional information can be obtained 
by expressing % in terms of the other variables: 

v,, = RBliQB~e - RBtlQBrBu i - RB?~QB~B2dFud 

- RB~ IQB(B2,Fu,- RB{tRB2v,,~_r. (56) 

The first three terms of the previous equation are 
known, so if the last ones are zero, all the variables 
in % can be evaluated using the available infor- 
mation. In order to classify the variables in vr,, two 
new matrices are defined: 

Rn, = RB? 1RB2 (57) 

RIF, = RB; ~QBrlBzi (58) 

and the following can be stated: 

(i) a variable in subset v,, is determinable if the 
corresponding rows of Rtv and R m are zero; 

(ii) a variable in subset v,, is indeterminable oth- 
erwise. 

At  this time, the vector v can be divided into: 

(') v = (59) 
Vi 

where Vd is the re-dimensional vector of determin- 
able variables in v (Ve~<r,); v~ is the (nb--V,)- 
dimensional vector of indeterminable variables in v; 
vd contains the ve variables in subset Vr, which satisfy 
condition (i) while vi includes the variables in subset 
v,, which satisfy condition (ii) plus the variables in 
subset v,b_, v. 

After the calculation of the elements in Vd, 
unmeasured concentrations and temperatures which 
correspond to component and enthalpy flows in va 



Orthogonal transformations in data classification-reconciliation 

are determinable if the total flowrate of the stream is 
measured or determinable. Otherwise, they are 
indeterminable. The inclusion of intensiive process 
constraints can change the classification but it is not 
on the scope of this paper. 

3.3. Further discussion on energy balances 

Through the above discussion, simplified expres- 
sions of streamspecific enthapy as function of tem- 
perature are used. They have to be updated during 
process operation to consider changes in steady- 
state compositions. 

The application of a more precise expression for 
enthalpy, at least, as a function of temperature and 
composition requires a new categorization of 
enthalpy flowrates. They can be divided into three 
categories depending on the combination of total 
flowrates, composition and temperature measure- 
ments, as indicated in Table 2. 

The problem arises for the last measurement com- 
bination. It is due to the difficulty of adjusting 
temperatue measurement values for streams which 
compositions are unmeasured or partially measured. 
In this context, the temperature of a stream j may be 
adjusted only for the following conditions: 

- -  all component molar fractions are unmeasured; 

- -  rule of mixing: hj = m~chjc; 

- -h jc  is approximated as a linear function of 
temperature for the steady-state operation 
range. 

The following solution scheme can be implemented: 

(i) estimation of unmeasured total flowrates and 
unmeasured species flowrates for streams 
with unmeasured temperatures; 

(ii) simultaneous elimination of unmeasured var- 
iables. A two-stage procedure of decompo- 
sition does not give advantages because 
measurements are involved in Category 3 
flowrates; 

(iii) Least-squares adjustment of measurements; 
(iv) estimation of unmeasured variables; 
(v) iteration until convergence is achieved. 

Hence, factorization methods can be only applied 
to solve particluar cases of data reconciliation when 

Table 2. Categories of enthalpy flowrates 

Category F T m 

1 M M M 
2 U M M 
3 M/U U M 
3 M/U M U 
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energy balances are considered. Other equation 
oriented techniques, such as P L A D A T  (S~nchez et 
al., 1992), can be used to tackle the general prob- 
lem. 

4. EXAMPLES 

4.1. Example I--Linear Case: application to a 
section of  an ethylene plant 

This sector of the Oiefin plant includes the eth- 
ylene refrigeration and compression to C2 splitter 
sections. A simplified node diagram of the process is 
given in Fig. 1. Cracked gases coming out from the 
gas compressor enter the pre-cooling and drying 
sections. The cooled, cracked streams enter the de- 
ethaniser colums (nodes 3 and 4) where C3 and 
higher hydrocarbons are separated as bottom prod- 
uct. The top product of unit 3, consisting of C2 and 
lower hydrocarbons (C2H6, C2H4, C2H2, CH4, H2, 
etc.) enters the acetylene hydrogenation reactor 
where acetylene is hydrogenated to ethylene. The 
hydrogenated gaseous stream enters the cold 
section, where it is passed through a number of heat 
exchangers and separators. A portion of liquid 
stream from unit 10 is used as the recycle stream. 
Hydrogen is separated as a gaseous stream in unit 
12. The liquid streams from separators 7-11 enter 
the de-methaniser column (unit 13). The top prod- 
uct of this column is methane, which is sent to fuel 
gas stream via cold section and drying/pre-cooling 
section. The bottom product enters the Ca splitter 
column (unit 15) as a feed. The top product of this 
column is cooled and compressed and subsequently 
stored as ethylene product. The bottom product of 
the C2 splitter column is ethane, which is sent back 
to the cracking furnace as feed stock through the 
pre-cooling section. 

The Q - R  factorization is applied to adjust mea- 
sured flowrates of the whole sector, such that mass 
balances are satisfied. The section has 31 units and 
63 process variables of which only 29 are measured. 
From the analysis arises that: 

(a) there are eight redundant equations contain- 
ing all the 29 measured variables; 

(b) first the unmeasured flowrates can be divided 
into: 

u , =  [3  5 10 24 34 35 36 38 39 40 41 
42 44 45 48 49 50 51 54 55 56 59 61] 

un_,=[4 6 11 43 47 52 57 58 60 62 63]. 

Furthermore, from the inspection of the Rtu 
matrix, the flowrates of streams 24, 34-36 and 49 are 
determinable. 

CACE 20:5-8 
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Orthogonal transformations in data classification-reconciliation 

Table 3. Data and results for Example 1 

Measured Reconciled 
Stream Variances values values 

1 10.87 70.49 70.105 
2 0.2030 7.103 7.096 
7 2.624 13.04 11.980 
8 0.3970 35.38 35.540 
9 5.76 53.21 53.641 

12 0.922 23.90 23.560 
13 0.608 0.00 - 0.024 
14 5.76 0.0765 - 0.150 
15 0.23 54.59 53.816 
16 1.44 12.78 11.934 
17 0.7060 23.42 23.005 
18 0.017 0.2378 0.229 
19 0.13 8.657 8.618 
20 0.09 5.087 5.413 
21 0.014 1.74 1.787 
22 0.0002 0.0255 0.026 
23 0.018 3.113 3.178 
25 0.09 5.407 5.354 
26 0.014 2.898 2.889 
27 0.36 11.83 13.239 
28 0.563 8.197 8.907 
29 0.023 1.364 1.393 
30 1.103 20.94 19.872 
31 0.008 1.051 1.069 
32 0.397 12.58 13.465 
33 0.152 4.999 5.338 
37 0.09 5.73 5.969 
46 0.13 4.25 4.595 
53 1.232 16.34 19.608 

8 6 

i l l  

9 _ _ ~ ' ~ ]  1 0  _ , , .  

Fig. 2. Simplified amonia plant. 

M e a s u r e m e n t  values,  var iances  and  reconci led 

values for  the  m e a s u r e d  flowrates are included in 

Table  3. 

4.2. Example 2--Nonlinear Case: a simplified 
ammonia plant 

The  process  f lowsheet  is shown in Fig. 2. 

M e a s u r e d  var iables  for  this process  are p resen ted  in 

Tab le  4. S imula t ion  values for process  var iables  are 

Table 4. Measured variables for Example 2 

Measurements Stream numbers 

Total flowrate 3 5 6 
Composition of N2 1 2 3 6 7 8 
Composition of H2 4 
Composition of Ar 4 
Composition of NH3 2 3 5 
Temperature 1 3 4 5 6 7 8 9 

491 

ob ta ined  f rom S E P S I M  Manua l  ( A n d e r s e n  et al., 
1991). It  is cons idered  tha t  all c o m p o n e n t s  (N2, HE, 

A r  and  NH3) are present  in all s t reams except  the  

feed. 

The  set of process  const ra in ts  includes:  compo-  

nen t  and  energy balances  and  normal iza t ion  equa-  

t ions.  Equal i ty  of concen t ra t ions  and  t empera tu re s  

of the  spli t ter  s t reams are not  t aken  into account  in 

this par t icular  example.  Express ions  of s t ream 

entha lpy  as funct ion of t empe ra tu r e  are ob ta ined  

using t he rmodynamic  packages  for s imula ted  values 

of pres ion and  composi t ion.  These  expressions have 

to be  upda ted  to consider  changes  in s teady state. 

Af te r  modif icat ion of  bi l inear  terms,  vectors  FM, f, 

Fv, 0 and  v are: 

r T =  IF 3 F5 F6] 

F~r= [e ,  F2F4FTF8F9F,o]... 

f r =  If3, ,f3.4fh3fh5f6. ,fh6fs, 4] 

o T =  [ 0 1 , 1 0 h l  02, 1 04,2 04,3 

Oh4 07. 1 Oh7 08.1 08 Oh9 02, 4 ] 

~ ' =  ['1"1,2 /21.3 I)2,21'2.3 vh2 v3.2113,3 V4, 1 

1"4,4 116,2 116,3 ~'7,2 117,3 1/8,2 118,3 Vhlo 

vhu ~vs,, v5, 2 vs, 3 116.4 118, 4 117, 4 H,]  

where  f/,n and  fhj are Category  1 c o m p o n e n t  and  

en tha lpy  flowrates, 0r. . and  Ohj s tand for  adjust-  

ments  of Category 2 c o m p o n e n t  and en tha lpy  flow- 

rates,  vj,, and  vh are Category 3 c o m p o n e n t  and  

en tha lpy  flowrates. 

For  variable  classification and data  reconci l ia t ion 

the  following p rocedure  is applied:  

(a) Matr ices  QB~, QB2, RBh RB2, l-I, and  vectors  

Vr, and  V,b-r, are ob ta ined  by the  Q-R 
decompos i t ion  of matr ix  B33. 

(b) Af te r  calculat ing matr ix  D,  a Q-R or thogona l  

decomposi t ion  of D gives QD~, QD2, RD~, 
RD2, FId matr ices  and  FUrd, FUnd-rd vectors.  
R~F inspect ion allows to classify u n m e a s u r e d  

total  flowrates in: 

FTd= [F,  F2 F, F7 Fs ] 

F~, = [F9 F,0]. 

(C) Bzi, Rtv and RtF, are obtained.  The inspection 
of the last two matrices is used to classify 
unmeasured variables in v: 

Vd = [ ~112,3 V4, I V8,4 113, 21)4,4 V3,3 q l l  'lJ2, 2 

115.1116, 4 vh2 v7, 4 Hr] 

v i=  [ ~.' 6,2116,3118,2111,3117,3118.3115,211h10111.2]. 

(d) Matr ix  Gt is calculated and  m e a s u r e m e n t  clas- 

sification is accomplished.  Non  r e d u n d a n t  



492 M. SANCHEa and J. ROMAGNOLI 

Table 5. Measured and reconciled values for Example 2 (F= [mol kg/h) - T= [K]) 

Variable Mes. value Rec. value Variable Mes. value Rec. value 

F 3 174.616 172.720 TI 701.4 701.4 
F5 25.52 25.1423 c (2,1) 0.2419 0.2389 
F6 147.263 147.577 c(4, 2) 0.5821 0.5726 
c(3, 1) 0.1880 0.1957 c(4, 3) 0.0172 0.01749 
c(3, 4) 0.2126 0.2144 T4 270.5 269.16 
T3 700.1 698.3 c(7, 1) 0.2308 0.2306 
T 5 272.7 270.7 T7 267.1 266.7 
c(6, 1) 0.2299 0.2305 c(8, 1) 0.2265 0.2304 
T6 267.1 266.6 T8 272.5 272.0 
c(5, 4) 0.9853 0.9856 T9 282.0 282.0 
c(l, 1) 0.2504 0.2504 c(2, 4) 0.0359 0.0368 

Table 6. Estimated values of unmeasured determinable variables for Example 2 F= [mol kg/h]; 
o = [Mol kg/h]; ohj, q, Q = [MJ/h] 

Variable Estimation Variable Estimation Variable Estimation 

/'1 101.608 v(4, 1) 33.801 0(5, 1) 0.0002 
F2 202.491 v (8, 4) 7.267 v (6, 4) 12.2569 
F4 172.720 v (3, 2) 98.910 vh2 2853.141 
F 7 46.694 v (4, 4) 37.039 v (7, 4) 4.989 
Fg 100.882 v (3, 3) 2.969 Hr 915.220 

14.885 qll 2989.72 
v (2, 3) 2.969 v (2, 2) 143.566 

(e) 

(f)  

m e a s u r e m e n t s  a re  T3, c (5 ,  4), c (1 ,  1), 7"1 and  

Tg. T h e  r e m a i n i n g  m e a s u r e m e n t s  are  r edun -  

dan t .  

A n  i t e ra t ive  p r o c e d u r e  is p e r f o r m e d  to  ad jus t  

m e a s u r e m e n t s  and  to  e s t i m a t e  u n m e a s u r e d  

d e t e r m i n a b l e  to ta l  f lowra tes .  M e a s u r e d  and  

r econc i l ed  va lues  for  this  e x a m p l e  a re  dis- 

p l a yed  in Tab le  5. 

T h e n  the  e s t i m a t i o n  of  d e t e r m i n a b l e  vari-  

ab les  in v is d o n e .  In  Tab le  6 t he  e s t i m a t e d  

va lues  o f  u n m e a s u r e d  d e t e r m i n a b l e  va r iab les  

a re  p r e s e n t e d .  

5. CONCLUSIONS 

In this  w o r k ,  t he  app l i ca t ion  o f  Q - R  f ac to r i za t ion  

to ana lyze ,  d e c o m p o s e  and  solve  the  l inear  and  

b i l inear  r econc i l i a t ion  p r o b l e m  is d i scussed  in t he  

c o n t e x t  o f  C r o w e ' s  p r o j e c t i o n  s c h e m e .  

T h e  p r o p o s e d  a p p r o a c h  has  severa l  c o m p u t a -  

t ional  a d v a n t a g e s  w h e n  c o m p a r e d  wi th  r e spec t  to 

t he  c o n v e n t i o n a l  a p p r o a c h e s .  F u r t h e r m o r e ,  it a l lows 

s t r a i gh t f o r wa rd  i m p l e m e n t a t i o n  wi th in  t he  

M A T L A B  e n v i r o n m e n t .  

T h e  s e p a r a t i o n  o f  to ta l  f lowra tes  f r o m  c o m p o n e n t  

a n d  e n t h a l p y  f lowra tes  has  two  i m p o r t a n t  advan -  

tages:  

(a) T h e r e  is a n o t a t i o n a l  c o n v e n i e n c e .  It a l lows to 

ob t a in  m o r e  c lear  e x p r e s s i o n s  fo r  i n s t r u m e n -  

t a t ion  analysis  and  da t a  r econc i l i a t ion  wh ich  

a re  no t  explici t ly inc luded  in p rev ious  works .  

T h e  e x p r e s s i o n s  a re  wr i t t en  in t e r m s  o f  sub-  

p r o d u c t s  o f  Q-R  fac to r iza t ions .  

(b)  T h e  use  o f  a s s u m p t i o n s  fo r  tota l  f lowra te  

a d j u s t m e n t  is avo ided .  

Resu l t s  o f  t he  app l i ca t ion  for  l inear  a n d  b i l inear  

sys tems  w e r e  p r o v i d e d  in t e r m s  o f  two  f l owshee t i ng  

e x a m p l e s ,  o n e  o f  t h e m  be ing  an  exis t ing  o p e r a t i n g  

p lant .  

NOMENCLATURE 

Linear Case 

x = V e c t o r  of measured variables (g × 1) 
Al = Matrix for measured variables (m x g) 

P = Projection matrix 
Gx = Matrix equation (13) [(m - r .)  x g] 

[Qu, Ru, l-I.] = QR(A2) 
r u = Rank (R.1) 

u,~, un_,. = Partitions of u 
lx~, Ix: = Partitions of I for x,x, xg_,. 

l = [Matrix equation (19) [g x ( g -  r~)] 
u = Vector of unmeasured variables (n x 1) 

A2 = Matrix for unmeasured variables (m x n) 
G= PA1 

1 = Identity matrix 
[Q~, Rx, nd= QR(Gx) 

rx = Rank(R~) 
x,~, xg_ ,=  Partitions of x 

Rw = Matrix equation (23) [r, x (n - r,)] 

Non-linear Case 

K = Number of units 
k = Unit index 
J = Number of streams 
] = Stream index 
F =  Molar total flowrate 
S = Stoichiometrix matrix 
r = Index of reaction 

m = Molar fractions 
h = Specific enthalpy 

B, = Matrices for comp./enthapy balances 
f =  Specific flowrates in Category 1 
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d = M molar fractions and sp. enthalpy 
v = Specific flowrates in Category 3 
V = Diagonal matrix of Fv2 
Ei = Matrices for normalization equations 

Fvrf, Fu d = Partitions of Fu 
" B= QB~Bzz 

C = Number of components 
c = Comp. index 

L = Incidence matrix 
l=  Incident matrix index 

H = Total heat of reaction 
q = Pure energy flow 
y = Measured variables 
z = Unmeasured variables 
T = Temperature 

t, w, e = Vectors equation (37) 
B. = Matrices equation (37) 

i i=1 ,  3 
O = Zero matrix 

[QB, RB, Ho ] = O R (B33) 
[QD, RD, Hd] = O R (D) 

Gt, b = Equation (46) 
v,,, v,b ,, = Partitions of v 

RtF, R~v, R/Fi = Inspection matrices 

Greek letters 

e = Vector of random errors 
Wi = Variance-covariance matrix of i 

= Vector of extents of reaction 
dii = Correction of i 
0 = Vector equation (32) 

Superscripts 
= With measured values 

/~ = With reconciled values 

Subscripts 

M, U =  Measured or unmeasured variable 
d, i = Determinable or indeterminable variable 
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APPENDIX 

Let A be a given m×n matrix with m>~m and n linearly 
independent  columns. Then there exists a m × m unitary 
matrix Q and a m × n matrix R, such that A = QR, where: 

R = [  R~ ] and R1 is an upper trianglular matrix. 

If A is rank-deficient, then at least one diagonal entry in 
Rm is zero. 

Let us examine why the Q-R factorization approach can 
fiai in the case when r a n t ( A ) = r < n .  

The mission of any orthogonalization method is to com- 
pute an orthonormal basis for the range of A, R(A). 
Indeed, if R(A)=R(Q1) where Ql=[ql . . . . .  qr] has 
orthonormal columns then A = Q~N for some Ne3t "×n. 
Unfortunately, if r<n, then the Q-R factorization does 
not necessarily produce an orthonomral basis for R(A). 
However,  the Q-R decomposition can be modified in a 
simple way so as to produce an orthonormal basis for A's  
range. The modified algorithm computes the factorization: 

AII=[Q~ Q2][R~ ~2] 

where Q1, Q2, gll and RIz are matrices of dimension 
(m × r), [m × (m - r)], (r × r) and [r × (n - r)] respectively, 
H is a permutation matrix and R~ is upper trinagular. If: 

A H = [ a q  . . . . .  ac°] and Q=[ql . . . . .  qm] 

then for k = l , . . .  ,n  we have: 

min{r, k} 

ack = Z rikqiE span{q1 . . . . .  q,}. 
i=1 

Also, it follows that for any vector satisfying Ax = b, then: 

T _ C 
F l r x = [ : ]  and Q b - [ d  ] 

where y and e are r-dimensional vectors, z is an 
(n - r)-dimensional vector and d is an (m - r)-dimensional 
vector. 


