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An electronic circuit device, inspired on the FitzHugh–Nagumo model of neuronal excitability,
was constructed and shown to operate with characteristics compatible with those of biological
sensory neurons. The nonlinear dynamical model of the electronics quantitatively reproduces the
experimental observations on the circuit, including the Hopf bifurcation at the onset of tonic
spiking. Moreover, we have implemented an analog noise generator as a source to study the
variability of the spike trains. When the circuit is in the excitable regime, coherence resonance is
observed. At sufficiently low noise intensity the spike trains have Poisson statistics, as in many
biological neurons. The transfer function of the stochastic spike trains has a dynamic range of
6 dB, close to experimental values for real olfactory receptor neurons.
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1. Introduction

Ever since the pioneering work of Hodgkin and
Huxley [1952], the biophysical mechanisms underly-
ing the generation and propagation of action poten-
tials (spikes) in neurons have been described with
increasing detail, ranging from the discovery of new
types of ion channels to the study of intracellu-
lar calcium dynamics [Hille, 2001]. No matter how
interesting, these new findings have helped little
in our understanding of collective neuronal phe-
nomena, which remain a daunting task in face of
the interplay among high-dimensionality, noise and
nonlinearity (see e.g. [Chialvo, 2010] for a recent
review). The challenge should nonetheless be faced:
the solution of issues at the frontiers of current-day
neuroscience, like e.g. grandmother cell [Barlow,
1972] versus population coding [Young & Yamane,
1992], or firing rate versus spike-time coding

[Rieke et al., 1999] will likely be grounded on our
success in this endeavor.

In fact, theoretical progress in this front has
been achieved in recent years with very simple
models. One such example is the proposed solu-
tion for the century-old problem of the origin of
psychophysical response curves [Copelli et al., 2002;
Kinouchi & Copelli, 2006]. Steven’s psychophysical
law states that the psychological perception F of a
physical stimulus (e.g. light, or odorant) of intensity
h is a power law F ∝ hs, with experimental values of
the Stevens exponent s fluctuating around s � 0.5.
Compared to a linear response, psychophysical non-
linear responses have at least one evolutionarily
favorable property: they amplify weaker stimulus,
i.e. they have a larger dynamic range. But how
do the Stevens exponents arise in the nervous
system?
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At first, this question seems puzzling because
single neurons typically have small dynamic ranges
[Rospars et al., 2000]. A theoretical solution
recently proposed involves a collective phenomenon:
excitable waves are generated by the incoming
stimuli and propagate “laterally” among excitable
neurons, thereby amplifying the system response
(in comparison to what would be observed in
the absence of the coupling). Interestingly, this
amplification mechanism is self-limited: under
intense stimulation, for instance, a large number
of excitable waves can be created, but owing to
refractoriness they annihilate upon collision. The
enhancement of dynamic range in this model is
therefore governed by the low-stimulus amplifica-
tion [Copelli et al., 2002; Kinouchi & Copelli, 2006].
Robustness of these results has been tested at differ-
ent modeling levels [Copelli et al., 2005; Ribeiro &
Copelli, 2008; Assis & Copelli, 2008; Publio et al.,
2009], showing that the degree of biophysical real-
ism in the model of each neuron is less relevant to
the global dynamics than the topology of the net-
work [Copelli & Kinouchi, 2005; Copelli & Cam-
pos, 2007; Ribeiro & Copelli, 2008; Assis & Copelli,
2008; Gollo et al., 2009]. This phenomenon has also
been studied analytically [Furtado & Copelli, 2006;
Larremore et al., 2011] and was recently confirmed
experimentally in cortical slices [Shew et al., 2009].

The appeal of a sensory system with large
dynamic range based on a network of simple
excitable units, each with small dynamic range, goes
beyond basic research in neuroscience. The idea
could be reversed, leading to biologically inspired
artificial sensors, which have been used in a variety
of scenarios (see e.g. [de Souza et al., 1999]).

There are several electronic circuits reported
in the literature which have been designed to
present a neuron-like dynamical response. The
rationale behind those efforts was to dynamically
interact with biological neurons rather than
stimulating them using response independent
current commands. In this way, electronic circuits
which analogically integrated the Hindmarsh and
Rose equations [Szucs et al., 2000] were coupled to
the neurons of a preparation of lobster pyloric CPG
neurons. This allowed to show that regularity could
emerge as a collective dynamical property of units
which individually presented complex dynamics.
In another set of experiments, electronic neurons
interacting with a biological preparation were used
to unveil which dynamical properties of a neural

network depend on the bifurcation leading to exci-
tation for the units, rather than on the details of the
neural dynamics. To carry out this program, a stan-
dard form for class I excitable dynamics was ana-
logically integrated with a circuit, which was used
to replace a neuron in a midbody ganglion of the
leech Hirudo medicinalis [Aliaga et al., 2003]. The
responses under the stimulation of both the nat-
ural preparation and the one with a replaced neu-
ron were found to be similar. Beyond the possibility
of interacting with neurons through a dynamically
sensible way, these efforts provide empirical support
to the program of studying neural processes through
simple and relatively low-dimensional dynamical
systems. Depending on the question under study,
it might be desirable to be able to establish a closer
link between the device and a neuron. In this spirit,
a device implementing a conductance model was
recently proposed [Sitt & Aliaga, 2007].

These circuits, however, have two limitations
for our purposes. First, they are still too com-
plex to be replicated in large scale. Second, they
do not have a controllable noise source to produce
stochastic spike trains, a feature that is common to
both models [Copelli et al., 2002] and real neurons
[Dayan & Abott, 2001; Mainen & Sejnowski, 1995;
Petracchi et al., 1995]. The present work is a first
step in this direction. We propose an excitable elec-
tronic circuit which can serve as a building block of
an electronic sensor. The advantages of its extreme
simplicity are two-fold: it allows for scalability and,
at the same time, simple mathematical modeling.

The paper is organized as follows. In Sec. 2,
we describe the electronic circuit and the equations
that model its dynamics. In Sec. 3, we introduce
noise from a simple analog noise generator at the
input of the excitable circuit and study the sta-
tistical properties of the resulting spike trains and
show that it can exhibit Poisson statistics as well as
coherence resonance, as expected. In Sec. 4, we eval-
uate the dynamic range of the excitable circuit and
show that it is comparable to that of single sensor
neurons.

2. Dynamic Model

The circuit we propose is shown in Fig. 1. It is com-
posed of five resistors, one capacitor and one opera-
tional amplifier. The voltage Vin corresponds to an
external stimulus, which can be e.g. a constant or
the sum of DC and noise voltages. In our electronic
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Fig. 1. Excitable electronic circuit. Va and Vb = −Va are the
operational amplifier supply voltages. Vin is an input voltage,
corresponding to an external stimulus. We describe the cir-
cuit as a two-dimensional dynamical system on the variables
V− and Vout [see Eqs. (2)].

neuron, the operational amplifier behaves as a sim-
ple comparator circuit, for which we use the follow-
ing nonlinear model:

dVout

dt
= S sign[Vb − Vout

+ (Va − Vb)Θ(V+ − V−)], (1)

where Θ is the Heaviside function and S is the op-
amp slew rate (whose datasheet value for the simple
TL071 in the circuit is S = 16 V/s). As usual, sym-
metric supply voltages Vb = −Va were used.

Assuming R3 � R4, R5 and applying Kirch-
hoff’s laws, we arrive at a two-dimensional dynamic
model on the variables Vout and V−:

dVout

dt
=

Vc

ε
sign[Vb − Vout

+ (Va − Vb)Θ(αVout − V−)], (2a)

dV−
dt

=
1

R3C
[βVout + γVin − V−]. (2b)

where α ≡ R1/(R1 + R2), β ≡ R4/(R4 + R5) and
γ ≡ R5/(R4 + R5). Vc = 10 V is a characteristic
voltage of the same order of magnitude of the sup-
ply voltages, and we have defined ε ≡ Vc/S as a
characteristic (short) time scale. To avoid the pos-
sibility that the system (2) has more than one fixed
point, we require β > α. In terms of the variables

v ≡ Vout

Vc
, (3a)

w ≡ V−
Vc

, (3b)

the equations can be rewritten in dimensionless
form

v̇ = sign
(

b − v +
(a − b)

1 + e−(αv−w)/x0

)
, (4a)

ẇ = φ[βv + γj − w], (4b)

where we defined the dimensionless groups:

τ ≡ t

ε
; a =

Va

Vc
; b =

Vb

Vc
;

φ =
ε

R3C
; j =

Vin

Vc
,

(5)

and replaced Θ by the continuous function

Θ̃(x;x0) =
1

1 + e−x/x0
(6)

for the purpose of numerical integration and deriva-
tion (see below). Note that Θ̃ → Θ as x0 → 0.
The constant φ � 1 sets the ratio between the fast
and slow time scales as in the FitzHugh–Nagumo
model, so that R3C ultimately controls the overall
time scale of the problem.

As shown in Fig. 2(a) (black lines), the null-
clines v̇ = 0 and ẇ = 0 of Eqs. (4) resemble
those of the FitzHugh–Nagumo model for neuronal
excitability, with one fast (v or Vout) and one slow
(w or V−) variable. In the limit x0 → 0, the cubic-
like v̇ = 0 nullcline becomes piecewise linear. When
the fixed point sits at its outer branches, it is stable.
It loses stability in a Hopf bifurcation as the w null-
cline crosses the v nullcline at its central branch, so
trajectories are attracted to a limit cycle (red line)
with nonzero frequency f (i.e. f changes discontin-
uously at the bifurcation). Below the Hopf bifur-
cation, the circuit is said to be type-II excitable
[Rinzel & Ermentrout, 1998].

There is good quantitative agreement between
experimental data from the circuit and the numeri-
cal integration, as can be seen in Figs. 2(b)–2(e).
Note that through an analog subtraction Vm ≡
1.5V− − 0.67Vout [see also Fig. 3(b)] the circuit
exhibits the spikes typical of neuronal membrane
potentials [Fig. 2(e)]. We emphasize that in Fig. 2
experimental and numerical data agree without any
fitting parameter, as long as x0 is sufficiently small
(� 10−4).
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Fig. 2. (a) Nullclines of system (4) for a = 1, b = 1, α = 0.0909, β = 0.5, γ = 0.5, j = 0, φ = 0.01 and x0 = 9 × 10−3:
solid black line for the v̇ = 0 nullcline and dashed black line for the ẇ = 0 nullcline. The fixed point is unstable and the
trajectories are attracted to a limit cycle (red solid line). (b) Experimental limit cycle (black dots) and numerical integration
of the model (red solid line) for x0 = 1 × 10−5, Va = 10 V, Vb = −10V, Vin = −6V and φ = 5 × 10−4 (other parameters are
the same as in (a)). (c) Experimental frequency response f to the external DC stimulus Vin (black dots) and the same for the
numerical integration of the model (red line). (d) Comparison between experimental time series of Vout and V− (black circles
and triangles, respectively) with numerical integration of the model (red and green lines, respectively). (e) Experimental (black
dots) and numerical (red line) spike trains obtained from the analog subtraction Vm of the dynamical variables (see text for
details).

3. Noise Addition and Coherence
Resonance

So far we have discussed the response of the
excitable circuit under DC stimulation. Biologi-
cal neurons, however, can show highly variable
responses, even when subjected to a presumably
constant stimulus. Examples range from highly vari-
able responses of olfactory receptor neurons (ORNs)
to the presentation of identical puffs of odorants
[Rospars et al., 2000], to cortical cells stimulated
with a constant current via an intracellular elec-
trode [Mainen & Sejnowski, 1995]. In an attempt
to endow our excitable circuits with the variability
in the spike trains observed in biological neu-
rons, we propose the simple analog noise genera-
tor shown in Fig. 3(a). Once more, its simplicity
allows one to attach independent noise generators
to each excitable circuit when connecting them in a
network.

The circuit in Fig. 3(a) provides a two-stage
amplification control via two operational amplifiers
to the thermal noise produced by the KN2222 tran-
sistors. Its output voltage Vnoise is approximately
a Gaussian white noise voltage with a cutoff fre-
quency around 1 kHz.

To obtain variable spike trains, the stimulus Vin

consists in the analog addition of VDC and Vnoise

[see blocks 1 and 2 in Fig. 3(b)]. In the model, this
corresponds to replacing Eq. (4b) with

ẇ = φ[βv + γj + Dξ(t) − w], (7)

where D grows linearly with the gain in the noise
amplification A (which in turn is controlled by the
variable resistors shown in Fig. 3).

Setting VDC below the Hopf bifurcation, the cir-
cuit sits at a stable fixed point at the right branch
of the v̇ = 0 nullcline, from which it eventually
departs owing to noise [Fig. 4(a)]. This generates
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Fig. 3. (a) An analog noise generator based on the amplification of transistors thermal noise. Noise amplification is given by
A = [(RA1 + RA2)/RA1](RA4/RA3). (b) Block diagram of the circuit used to verify the excitability of the circuit presented
in Fig. 1. Analog addition and subtraction (see text for details) are performed with standard TL074 op-amp operations
[Senturia & Wedlock, 1981].

spike trains with variable interspike intervals tp, as
shown in Figs. 4(b) and 4(c).

We now show that the interplay between noise
and excitability behaves as expected in our simple

circuits. Pikovsky and Kurths [1997] have shown
the coherence of the spike train of the FitzHugh–
Nagumo model peaks at an intermediate noise
value, in a phenomenon which has been called

-8
-4
0
4
8

V m
 (

V
) experimental
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0 0.1 0.2 0.3 0.4 0.5

V m
 (

V
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0
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w

v

100

101 102 103 104

R p

noise amplification A
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Fig. 4. (a) Numerical phase plane trajectory (red line) due to noise excitation. Without noise, the system would stay in a
resting state at the fixed point (white circle). (b) Experimental and (c) numerical spike train series are shown when the system
is in the excitable state (stable fixed point as shown in (a)). (d) Experimental coherence resonance curve for C = 50 pF,
Va = 12 V = −Vb and VDC = −7.826 V (see Fig. 1). Each point corresponds to an average over 10 s time series.
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“coherence resonance”. In other words, the normal-
ized standard deviation

Rp ≡
√

〈t2p〉 − 〈tp〉2
〈tp〉 (8)

should have a minimum as a function of the noise
intensity. This is precisely what we observe in our
circuit when VDC (= −7.826 V) is close to the
Hopf bifurcation (VHopf = −7.82 V), as displayed
in Fig. 4(d). Note that Rp close to zero means that
the time series is approximately periodic.

For small noise amplitudes [Vnoise ∼ 50 mV,
or A ∼ O(1) in Fig. 4(d)], spikes are sparse and
Rp approaches unity. This suggests a Poisson pro-
cess in which the interspike interval distribution
approaches an exponential

P (tp) = re−rtp , (9)

where r is time rate constant. This Poisson limit is
interesting because it is observed in different neu-
ronal preparations [Dayan & Abott, 2001; Petracchi
et al., 1995], so we performed a detailed statistical
analysis of the small Vnoise regime.

In Fig. 5(a) the statistics of a 100 s experimen-
tal time series was compared to the accumulated
distribution

D(t) ≡
∫ ∞

t
re−rtpdtp = e−rt, (10)

showing good agreement for a fitted rate r �
10.0(3) s−1. To check for consistency, we divided the
time series in small time windows of size T and
sampled the number n of spikes per window. In
a Poisson process one has the linear relationships
〈n〉 = rT , σ2

n ≡ 〈n2〉 − 〈n〉2 = rT which are con-
firmed in Figs. 5(b) and 5(c). The unit slope in the
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Fig. 5. Spike train statistics of a 100 s duration series from the circuit of Fig. 3(b). (a) Interspike interval (isi) accumulated
distribution in log-linear scale. Inset: corresponding histogram of isi. The dashed line corresponds to an exponential fit of a
Poisson distribution with mean firing rate r = 10.0(3) s−1. The deviation from the Poisson distribution for small isi is due to
the refractoriness of the excitable circuit. In the following graphs we have divided the series in time windows of duration T .
(b) The mean number of spikes 〈n〉 and (c) the variance σ2 are shown as functions of T . In (d) we have σ2 as a function of
〈n〉. The dashed lines are fits of σ2 = 〈n〉 = rT according to the Poisson distribution.
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σ2
n versus 〈n〉 plot is also verified [see Fig. 5(d)].

These results show that our circuit can be used
to mimic not only deterministic dynamics, but also
simple statistical properties which appear in biolog-
ical neurons.

4. Dynamic Range

In this section, we study the response of our
excitable system to varying input voltage VDC,
considering the noise amplitude Vnoise constant.
Although in real neurons the background noise may
have a dependence on the stimulus, it is a fair
approximation to treat the noise amplitude as con-
stant and focus on the dependence on input signal
as a control parameter of the dynamics. In what
follows, the response of the circuit is defined as

the mean firing rate F measured over a fixed time
interval Tm. This so-called “rate coding” is also a
longstanding approximation [Adrian, 1926], which
seems to fit data in several cases [Koch, 1999; Arbib,
2002].

For fixed Tm and noise amplification A, the
response F of our circuit is an increasing func-
tion of the stimulus VDC because larger values of
VDC amounts to increased excitability, lowering the
“effective threshold” to noise-induced spike genera-
tion (there is no real threshold in type-II excitable
neurons [Izhikevich, 2007]). Conversely, for fixed
VDC, the response F also increases with increas-
ing noise intensity A. These results are shown in
Fig. 6(a), where we plot (for different noise inten-
sities) the responses F (VDC) of our excitable cir-
cuit with a 1 nF capacitor. This choice sets the time
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Fig. 6. Experimental response curves F (VDC) measured at different values of the noise amplification A. Supply voltages
Va = 12 V = −Vb. (a) C = 1nF (φ = 5 × 10−4 and Tm = 10 s). (b) C = 50pF (φ = 0.01 and Tm = 0.2 s). (c) Response curve
for C = 1nF (A = 1000), and relevant parameter for calculating the dynamic range. (d) Dynamic range as function of noise
amplification for C = 50pF (black squares) and C = 1nF (white circles).
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scale of the neuron in the millisecond range (i.e. that
of biological neurons). Note that in the absence of
noise (A = 0) the response is null up to the Hopf
bifurcation [so the lowest curve in Fig. 6(a) is simi-
lar to Fig. 2(c)].

Results in Fig. 6(b) correspond to a circuit
with a 50 pF capacitor. This single change renders a
much faster circuit, now operating in the microsec-
ond range, but with its dynamical features oth-
erwise preserved. This has potential applications,
because a faster circuit requires shorter measure-
ment intervals Tm (= 0.2 s in our example) for a
reliable estimation of the firing rate.

Given a response curve, we can calculate its
dynamic range, which roughly speaking corresponds
to the range of stimulus intensity that the firing
rate can “appropriately code”. Measured in deci-
bels, this is arbitrarily defined as [Rospars et al.,
2000; Copelli & Kinouchi, 2005]

∆ ≡ 10 log10

(
V ∗

0.9

V ∗
0.1

)
, (11)

where V ∗
x ≡ Vx − V0 are measured relative to the

voltage V0 at which the response becomes nonzero
and

F (Vx) = xFmax (0 ≤ x ≤ 1), (12)

where Fmax is the firing rate at the Hopf bifurcation.
In other words [see Fig. 6(c)], ∆ measures the range
of stimulus VDC which are neither too small (VDC <
V0.1) to go undetected nor too close (VDC > V0.9) to
the autonomous oscillations that emerge at VHopf .

As shown in Fig. 6(d), the dynamic range is
a rather robust feature of our excitable circuit: it
changes little as the noise intensity is varied, regard-
less of the time scale at which it operates. In both
cases, ∆ � 6 dB, which is closer to the values
obtained experimentally (∆ � 10 dB for olfactory
sensory neurons [Rospars et al., 2000], ∆ � 14 dB
for retinal ganglion cells [Deans et al., 2002; Fur-
tado & Copelli, 2006]) than results obtained the-
oretically for discrete models of excitable elements
(∆ � 14 dB in [Furtado & Copelli, 2006] and ∆ �
19 dB in [Assis & Copelli, 2008]).

5. Concluding Remarks

In summary, we have presented an excitable elec-
tronic circuit whose simplicity allows for scalability
and accurate mathematical modeling. Its dynamical
equations lead to time series which quantitatively

reproduce experimental results without fitting
parameters.

In addition, we have shown that the introduc-
tion of noise from a simple analog noise generator
at the input of the circuit produces variable spike
trains. The statistics of the interspike intervals is
shown to exhibit coherence resonance. Furthermore,
by analyzing long time series under low noise inten-
sity, the spike trains were shown to behave as a
Poisson process, like some biological neurons.

In the excitable regime, with fixed noise ampli-
tude, the firing rate response of the system to a
VDC input — the stimulus — was shown to have a
dynamic range of about 6 dB, which is also compa-
rable to some biological sensory neurons. Together
with its scalability, these properties render the sys-
tem a potential building block for artificial sensors
based on collective properties of excitable media.
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