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ABSTRACT: In this paper, an optimization-based methodology is applied to the design of a reactor—separator—recycle system
based on a measure of the extension of the domain of attraction of the operating equilibrium. The approach consists in maximizing
the radius of a ball in the state space contained in the region of negative definiteness of the time derivative of a quadratic Lyapunov
function. A two-level optimization strategy is proposed that solves a deterministic nonconvex global optimization problem at the
inner level. To cope with the non-differentiability introduced by the inner problem, we applied a stochastic algorithm to manipulate

the design variables at the outer level.

1. INTRODUCTION

Because of their outstanding importance in chemical and
biochemical engineering, reacting systems have received very
much attention from a nonlinear dynamics perspective in the last
decades. Many studies have been presented on continuous
stirred and tubular reactors in order to investigate their dynamics,
from asymptotic stability to chaotic behavior. Most of the studies
are based on simulation and bifurcation theory approaches. More
recently, reactor—separator—recycle systems (RSRS) have also
been addressed because of their unique open loop and closed
loop nonlinear behavior.' ~*

Although the estimation of the domains of attraction of single
reactors has motivated several studies,” "’ according to the best of
our knowledge, no contributions on the analysis of the stability
region of integrated RSRS have been presented so far.

The domain of attraction (DOA) or region of asymptotic
stability of an asymptotically stable equilibrium point of a
dynamic system is the portion of the state space where trajec-
tories that converge to such equilibrium point originate. Some
knowledge of its size and shape is usually required for the proper
design and operation of the system.® From a practical point of
view, the extension of the DOA can be related to the robustness
of the dynamic system to restore its original operating condition
once the disturbances that altered its steady-state condition are
removed.

For the general case, however, the DOAs of equilibrium points
of general nonlinear systems are complicated sets that do not
admit analytical representation.

While the estimation of the DOA of a given asymptotically
stable equilibrium has been largely addressed, the design of the
nonlinear system with a specific focus on the extension of the
DOA has been less studied. This is indeed a challenging problem
because it is related to other two important underlying problems:
the “design-for-stability-problem” and the “DOA estimation
problem”.

The design-for-stability problem essentially seeks to find an
operating equilibrium point which is asymptotically stable while
optimizing some appropriate objective function, typically eco-
nomical. Such an important problem has been addressed
with different approaches in many disciplines. In Kokossis and
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Floudas,” an iterative strategy to bound the eigenvalues of the
Jacobian matrix was applied to the synthesis of reactor networks.
In Ringertz,' different problems of the mechanical engineering
discipline were addressed through an eigenvalue optimization
technique that relies on an interior point/logarithmic barrler
transformation approach. Monningmann and Marquardt,'" pre-
sented a steady-state design methodology which addressed the
robust stability issue making use of bifurcation theory elements.
The proposed approach was applied to a continuous polymer-
ization process in that work, to the notable HDA process in
Monningmann and Marquardt'* and to a biosynthesis model in
Gerhard et al." In Blanco and Bandoni,'* eigenvalue optimiza-
tion techniques, which make use of standard NLP solvers to
constrain the real part of the eigenvalues were described, and
applied in Matallana et al."® to a fermentation process. In Chang
and Sahinidis,'® the design under stability problem was formu-
lated as a bilevel optimization problem and its solution addressed
with global optimization algorithms. The approach was illu-
strated through several metabolic pathways of different complex-
ity. More recently, in Lu et al,'” the robust stability design
problem was addressed as an eigenvalue assignment problem. A
stochastic algorithm was adopted in that work to solve the
resulting nonconvex, nondifferentiable optimization problem.
The common framework of the above-described work is the
optimization of a certain “cost” objective function while guaran-
teeing local dynamic asymptotic stability of the equilibrium at the
solution.

Regarding the estimation of DOAs, many techniques have
been proposed so far. The interested reader is referred to
Genesio et al."® for a clear classification of the techniques and a
review of classic work on the topic. In particular, the Lyapunov
stability theory provides a methodology whose rationale is to
approximate the DOA by a level set of a Lyapunov function.
Usually, polynomial type Lyapunov functions are adopted.
Basically, the idea is to find the largest level set of the Lyapunov
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function fully contained in the region of negative definiteness of
its time derivative.

Recently, a design problem was proposed in order to find an
asymptotically stable equilibrium point whose DOA is the largest
in some sense.'” The estimation of DOAs based on appropriate
level sets of Lyapunov functions were adopted, while the stability
issue was addressed by forcing the eigenvalues of the Jacobean
matrix of the dynamic system to belong to the left half of the
complex space. A two level optimization approach was proposed
to solve the resulting “bi-level” optimization problem.

In this contribution, such methodology is applied to the design
of the important RSRS. The remainder of the paper is organized
as follow. Section 2 introduces basic definitions and theorems
used along the paper. In section 3, the design formulation based
on the optimization of the DOA is presented. In section 4, the
RSRS is described. In section S, the design methodology is
applied to the system under study. A conclusions section closes
the paper.

2. BACKGROUND DEFINITIONS AND THEOREMS

In this section, the basic definitions and theorems required to
support the proposed contribution are introduced. All of these
can be found in classic texts on nonlinear systems analysis such as
Khalil,® Vidyasagar,20 and Hahn.!

Consider the following autonomous nonlinear dynamic system

dx
dt
where x = x¥, an asymptotically stable equilibrium point of 1.

Definition 2.1. (Equilibrium point). A point x*€ 77" is called
an equilibrium point of system 1 if f(x*) = 0. The equilibrium
points of system 1 correspond the intersection of the null clines
of the system, meaning the curves given by f(x) = 0.

Remark 2.1. In the sequel, we assume without loss of general-
ity, that the equilibrium point under study coincides with the
origin of the states space of 7", (x* = 0).

Definition 2.2. (Asymptotic stability). Let x(t, xo) denote the
trajectory initiated at state x, in time #,. Equilibrium x* = 0 of
system 1 is asymptotically stable if there exists a 0 > 0 such that:
lim;—..x(t,xy) = 0, whenever llx]l < 0

Definition 2.3. (Positive and negative definite functions). A
continuously differentiable real-valued function ¢(x) defined on
a domain R(0) € 9" containing point x = 0 is called positive
definite if the following conditions hold:

®(0) =0

f(x),x € 2" x(t) = xo (1)

¢(x) >0V x € {R(0)\0}

Function ¢(x) is negative definite if -¢»(x) is positive definite.

Remark 2.2. In the remaining, the symbol >0 (<0) is used to
denote positive (negative) definiteness of functions.

Lyapunov stability theory provides the basis of a family of
techniques for estimation of regions of asymptotic stability
whose rationale is to approximate the DOA(0) by a level set of
a Lyapunov function of the equilibrium point.

Definition 2.4. (Lyapunov function). Let V(x) be a continu-
ously differentiable real-valued function defined on a domain D
C A" containing equilibrium x = 0. Function V(x) is a Lyapunov
function of equilibrium x = 0 of system 1 if the following
conditions hold:

V(x) is positive definite on R(0)

The time derivative of V(x), (dV(x))/(dt) = [VV(x)]"f(x), is
negative definite on R(0).

Theorem 2.1. (Asymptotic stability in the Lyapunov sense). If
there exists a Lyapunov function V(x) for equilibrium point x = 0
of system 1, then x = x* = 0 is asymptotically stable.

Definition 2.5. (Domain of attraction). The DOA of the
equilibrium point x = 0 is given by:

DOA(0) = {xo € " : tlgn x(t,x9) — 0} (2)

Theorem 2.2. (Estimation of the domain of attraction). Let
V(x) be a Lyapunov function for equilibrium x = 0 of system 1.
Consider that dV(x)/dt is negative definite in the region

$(0) = {x:V(x) < ¢c>0} (3)

Then, every trajectory initiated within region S(0) tends tox =0
as time tends to infinity.

Theorem 2.3. (Jacobean matrix spectrum). If equilibrium x = 0
of system 1 is exponentially stable, then the real part of the
eigenvalues of the corresponding Jacobean matrix, A, are strictly
negative.

Theorem 2.4. (Lyapunov identity). If equilibrium x = 0 of
system 1 is asymptotically stable, then there exists a Lyapunov
function of the quadratic type, V(x) = x" Px, where P is a positive
definite matrix that can be be calculated from the so-called
Lyapunov identity

ATP+PA = —-Q (4)

where Q should required to be positive definite. A common
choice is to set Q = I where I is the identity matrix.

Theorem 2.5. Consider the following representation of sys-
tem 1: f(x) = Ax + f,(x), where f,(x) comprises the nonlinear
part of function f(x). It can be shown™ that if the following
condition holds:

16, (1 Zin (Q)
I~ 2Amex(P)

, Vx € B, ()

V(x) and its time derivative are positive and negative definite,
respectively, within the ball B, of radius r. It is clear that the larger
the ratio Amin(Q)/2(Amax(P)), the larger the possible choice of r.

3. DESIGN FORMULATION BASED ON THE
OPTIMIZATION OF DOA ESTIMATIONS

If dynamic stability constraints are introduced in an economic-
al design formulation, the resulting equilibrium point is guaran-
teed to possess a certain DOA. However, if no explicit
consideration on the extension of such stability region is in-
cluded, the operating equilibrium might lie close to some of its
boundaries. If this is the case, even modest disturbances in certain
directions might drive the state variables beyond such bound-
aries, preventing the system to return to the original steady state
once the disturbances are removed. In this section, the metho-
dology presented in Matallana et al." to account for extension of
DOA estimates within the design problem is introduced. The
interested reader is referred to the original paper for the details.

Whereas for the general case the DOA of a stable equilibrium
is a set of complex shape and possible infinite size, estimations
based on quadratic Lyapunov functions are always hyper-ellipses
contained in the ball B, previously defined in eq 5. The radius r of
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Step 1 - Generate an initial population for design variables [d, X,]

Step 2 - FFor each member of the population calculate the equilibrium X,

Step 3 - Evaluate merit function r as follows

a. If x, does not exist then set r = 0

b. If x, does exist then evaluate the eigenvalues of Jacobean matrix A(d, x)

i. If the real part of some of the eigenvalues is positive then set r = ()

ii. If the real part of all the eigenvalues is negative then solve problem (6¢) to evaluate radius r

Step 4 - Check the stopping criterion

a. If the stopping criterion is not verified then generate a new population based on the value of the

objective function of the individuals and return to Step 2.

b. If the stopping criterion is verified then terminate

Figure 1. Resolution procedure of problem 6.

such a ball is used in this work as a merit function for the design
optimization problem.

The rationale behind such an approach is that the enlargement
of the radius of the described ball has a “push away” effect on the
actual boundaries of the DOA no matter their shape and
localization. Such boundaries are usually the stable manifolds
of saddle nodes and limit cycles. Moreover, an enlarged ball can
be also obtained at the expense of a shift of the equilibrium in the
state space. Therefore, the effect of seeking an optimized radius is
a net increase in the actual region of asymptotic stability. The
problem is stated as follows

max r
ryXgyd

stf(x,d) =0 (a)
Re{A;[A(x,,d)]} <0

min r
ryx, P

stikl—r =0

Ax)"P+PA(x,) = —1 (c)

Iy (x)I 1
Il 2Ama (P)

r>0

d"<d=d

X <x=<xY

A

Equation 6a is the dynamic system in steady state version. x; is the
equilibrium point and d is the vector of design variables.
Constraint 6b stands for the asymptotic stability constraint of
the equilibrium point x; by imposing that the real part of the
eigenvalues of the Jacobean matrix A(d, x;) be strictly negative.
Constraint 6¢ is an optimization problem for the calculation of
the radius of ball B,. Variable r represents the distance between
the stable equilibrium x; and the point in the states space, x,
where the surface of the ball B, and the surface defined by
(N /MK — (Ain(Q))/ (2Amax(P)) = 0 intersects. Con-
straint (6¢) is an optimization problem itself, which has to be
solved to global optimality because local solutions are not
appropriate as thoroughly discussed in Matallana et al."**
Because the real part of the eigenvalues of a matrix do not
possess explicit expressions to be written down for the general
case in 6b, and subproblem 6c¢ does not admit an analytical

solution either, a two-level solution strategy was proposed to
address problem 6.

In the “outer level” a stochastic “derivative free” optimization
engine is adopted to explore the design variables space. The
stochastic engine is based on the evolution of a population of
solutions according to a set of rules. For each individual of the
population of design variables, an equilibrium point x; is
calculated from 6a and its feasibility with respect to constraint
(6b) verified. If the equilibrium is asymptotically stable, problem 6¢
is solved at the “inner level” to find the ball which verifies S and its
radius is returned as the objective function value to the stochastic
optimizer. A deterministic solver is adopted at the “inner level”. In
order to avoid issues introduced by steady state multiplicity, the
design variables vector is enlarged with the starting point vector, x,
for the Newton-type search adopted to solve system 6a. The
pseudocode in Figure 1 summarizes the proposed procedure.

If no equilibriums exist or they are unstable, then no DOAs
exist and their radiuses are set to zero (steps 3a and 3b-i). If stable
equilibriums exist, their merit function assumes the actual value
of the radiuses (step 3b-ii). In this way, stable equilibriums with
the largest radiuses are favored in the search.

In this contribution, a standard implementation of a genetic
algorithm is adopted.”® It should be mentioned that a major
drawback of stochastic solvers is the lack of a general technique
for the handling of constraints other than upper and lower
bounds on the variables. However, in this application not such
constraints exist since the search space is only box constrained in
problem 6 because constraints 6a—c are calculated in a sequential
fashion (Figure 1).

It should be noted that 6c is a nonlinear optimization model
and therefore it may have many local solutions. In order to avoid
trivial solutions, problem 6c has to be solved to global
optimality."”** Global optimality is ensured in this work by
using state of the art global optimization software. In particular,
the GAMS platform® with the global optimization solver
BARON™ is adopted. BARON implements a deterministic
global optimization algorithm of the branch and bound type,
which guarantees to provide the global optima under fairly
general assumptions. For a complete presentation of the theory
behind the BARON solver, see Tawarmalani and Sahinidis.*

The main requirement of the BARON>® solver is essentially
the provision of appropriate lower and upper bounds for every
variable and expression of the model. Regarding the type of
nonlinearities, BARON can handle most nonlinear functions
typically found in chemical engineering models, including
multiplication, division, and exponentiation. Regarding the
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Figure 2. Schematic diagram of the RSRS.

architecture,”* BARON implements a branch and bound algo-
rithm with additional components (domain reduction, relaxation
strategies, branchlng decisions, etc.). The computational
performance®® of the solver has been tested with various sets
of nonlinear models. The overall conclusion is that computa-
tional requirements increase with problem size and are highly
dependent on the type and number of nonlinearities present in
the model as well as on the adopted formulation.

Experimental evidence with problem 6 indicates that the
maximization of the radius of ball B, “pushes away” the bound-
aries of the DOA which are close to the equilibrium under study.
Moreover, a shift in the position of the equilibrium inward the
stability region may also occur. These are indeed desired effects
since the equilibrium point “moves away” the boundaries of the
DOA, which translates into an effective “enlargement” of the
region of stability. However, it should be emphasized that, in fact,
an estimation of the DOA is being optimized rather than the
actual region of stability. For simplicity “optimized DOA” is used
in the following to refer to the solution corresponding to the
optimized DOA estimation.

4. REACTOR—SEPARATOR—RECYCLE SYSTEM

In this section, the adopted RSRS is described (Figure 2).
The model is an adapted version from the one presented in
Vetukuri et al,,* which was used in many articles to study different
aspects of the nonlinear behavior of this type of systems. Fresh
reactant A is fed (F,, x,) to the continuous stirred tank reactor
where a first order exothermic reaction A — B takes place. The
reaction mixture (F, z) enters a flash operated at constant pressure
and temperature (T, Pq). The flash vapor stream (V, y,), rich in
product B, leaves the system, whereas the liquid stream (L, x.), rich
in reactant A, is recycled back to the reactor. It is assumed that the
temperatures of the flash inlet and recycle streams can be perfectly
controlled by means of heat exchangers (HX1, HX2).

It is assumed that the fresh flow-rate of reactant A, F, is
externally specified and that the reactor holdup is perfectly
controlled by the reactor effluent flow-rate, F. In dimensionless
fashion, the model equations for the integrated reactor-flash-
recycle system are

dz

P D,zexp(0) (7)
do e —
O ol =9 gp | 4 BDuzew(0)  (8)
dt (z—xe)

Table 1. Model Parameters

parameter description value units
Fy feed flow rate 1.0 mol/seg
Xaf mole fraction of A in feed stream 1.0
Py flash pressure 101325 Pa
ko preexponential factor 10 x 10*  seg™"
E activation energy 40000 J/mol
R gas constant 8.3144 J/(mol K)
Com molar heat 209.836  J/(mol K)
T¢ feed temperature 298 K
T, refrigerant temperature 298 K
P density 1200 mol/m?
U heat transfer coefficient 567.82 J/(seg m* K)

Ahy heat of vaporization of A 38331.15  J/mol

Ahg heat of vaporization of B 28748.16  J/mol
Aa Antoine constant —21.4611 Pa
Ba Antoine constant —3974.04 K
Ag Antoine constant —26.0821 Pa
By Antoine constant —4366.82 K

where 6 stands for dimensionless reactor temperature, B repre-
sents the dimensionless heat of reaction, f represents the
dimensionless heat transfer coefficient in the reactor, and D' is
the Damkohler number according to the following definitions

(- AH)E 5= UA,
" (ComRT?) —-E ’
P f V.koexp RT ComPrn
vhen ()
0exp m
E(T-T,

Fo RT}

Variable ¢ stands for dimensionless time by scaling the time variable
with the molar holdup to fresh feed ratio (M,/F,). The vapor—
liquid equilibrium in the flash is described through relations 9—13,
which relate the vapor and liquid compositions with the operating
temperature and pressure of the unit. For the purposes of this study,
the process is operated at atmospheric pressure (101 325 Pa). The
parameters for this model are shown in Table 1.

Ye — KA(Tﬂ)xe)xe (9)

1= KA(Tﬂ) xe)xe + I<B(Tﬂ: xe)(l - xe) (10)
P,

K, = ’Tﬂ i:A/B Ideal gas phase (11)

1 = h ! it A,B Clasi Cl ti
n| —— - T A, — n n
2 i asius apeyron equatio

(12)

B;
In(P) = A —|—? i:AB Antoine equation (13)

5. DESIGN STUDY

Two design studies are performed: (i) a classic design problem
with an economic objective function and eigenvalue stability
constraints and (ii) problem 6 as described in section 3.
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The economic-based design problem 14 seeks to optimize a
cost objective function while requiring dynamic asymptotic
stability of the resulting operating equilibrium. Problem 14 is
solved in this contribution using the GAMS/BARON plat-
form. For this two-states system, constraint 14b on the real
part of the eigenvalues is reformulated in terms of the trace
and the determinant of matrix A,>’ leading to classic a NLP
problem.

min ¢
Xy d
s.it. f(x;,d) = 0 (a)
Re{A[A(x,d)]} <0  i=1,.,n (b) (14)
d"<d=<d’

X <x=<xY

For both problems, 6 and 14, the design optimization variables
are the reactor volume, the flash drum volume and the areas of
the heat exchangers HX1 and HX2 (V,, Vy, Apux; and Apxo,
respectively). Because the objective of the RSRS is to produce
component B, a product quality constraint is imposed on the
product stream (vapor stream of the flash), by limiting the
concentration of component A (y.), to be within a small range.

The economic objective to be minimized in problem 14 is the
capital cost of the process

1
ﬂpay
where f3,,y is the payback period (3 years) and Cieactors Chiashs

and Cexchangers are the costs of the individual units. The capital
cost of the reactor depends on its size and is calculated as

¢ = (Creactor + Cﬂash + Cexchangers) (15)

Creactor = 17639(Dr)1‘066 + (ZDr)o_goz (16)

where D, is the reactor diameter in meters. Assuming that the
height of the reactor is twice its diameter the relationship
between the diameter and the volume is:

D, = (0.6366V,)"/? (17)

The heat transfer reactor area depends of the reactor diameter
D, according to the equation

J
A, = 27D? +7 D? (18)

The capital cost of the flash separator depends on its
diameter, Dy, according to 19

)1.066

Cﬂash - 730826(Dﬂ —+ 548-8(Dﬂ)1'55 (19)

The diameter is affected by the incoming flow rate, through
the following relation

E 1/3
Dqg = 3.9929 <—> (20)

P

The capital cost of the heat exchangers depends on its heat
exchange areas Ay, and Ayx,, which are, in turn, related to
the energy balances

)065

Cexchangers - 8701(AHX1 + 8701(AHX2)0.65 (21)

The energy balances in heat exchangers HX1 and HX2 are

Table 2. Data and Results for RSRS

B=14,F =1 optimal cost (14) optimal DOA (6)
D, [0.5; 1.5] 0.6485 1.4157

. [0; 0.15] 0.15 0.1194

B 16.0595 7.3564

Xe 0.8283 0.7954

Ty 34835 343.5032

T 319.12 303.78

v, 0.4283 4.4569

A, 2.9726 14.1669

Da, 0.5008 52112

Dy 0.5048 0.3765

Qu 4.0687 x 10* 3.8278x 10*
Apnxt 1.7365 3.5017

Ao 0.5807 0.0047

F 2.3562 1.0061

L 1.3562 0.0061

1% 1.00 1.00

z 0.5404 0.1235

0, 1.1442 0.3133

A1s(A) —0.0366 + 2.8969i —13.6992
Jag(A) —0.0366 - 2.8969i —20.4433
215(P) 7.1696 0.0150

Aas(P) 140.9489 0.5711

cost 12.5154 x 10° 27.1627 x 10°
r 0.5307 x 10> 1.7393 x 1072

Qux1 = VAh—FCPm(T— Tﬂ) = UAHXI(ATmI)H)q (22)

Qixz = LCym(Tn — T) = UAuxa (ATm1)ux, (23)

where AT, is the logarithmic mean temperature for the heat
exchangers. It is supposed that a large flow-rate of the service
fluid is used in both cases such that its temperature, T,, can be
assumed constant for the calculations.

Table 2 presents the results of design problems 14 and 6 for
the RSRS. The corresponding solutions are depicted on the state
space in Figures 3 and 4.

In panels a and b in Figure 3 are shown the null clines of
system 7—8 (solid and dashed lines) together with the actual
DOAs of the operating equilibrium point (white regions). In
panels a and b in Figure 4 are shown ball B, (solid line) together
with surface (Ilf;(x)Il)/(Ixdl) — (1)/(2Amax(P)) = 0 (dashed
line) in the deviation variables state (x; =z — z,and x, = 6 — 6,).
It is also explicitly indicated the intersection point between both
level sets.

By inspection of the cost variable in Table 2 and the
comparison of panels a and b in Figure 3, it can be concluded
that, as expected, model 14 provides a cheaper design, whereas
model 6 generates a more robust one from the point of view of
the extension of the DOA.

From Figure 3a, two equilibrium points in the state-space can
be observed: the stable one and a saddle node. It is clear that the
boundary of the DOA in this case is the stable manifold of the
saddle. In the solution of problem 6 (Figure 3b), on the other
hand, the boundary of the DOA is the region of the states space
where the singularity of the denominator of eq 8 takes place. The
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second equilibrium point is not a saddle anymore but an unstable
node and lies beyond the boundary. Evidently a significant
change in the topology of the system has occurred as result of
the optimization.

It can be observed that a significant increase in the DOA
regarding the one of the economic design has taken place. Such
an enlargement has to do with the optimization of the size of ball
B,. It can be seen that the radius of the ball B, is sensibly enlarged
in Figure 4b regarding the one of Figure 4a, as expected. Besides
the enlargement of this DOA related measurement, there has also
been a significant shift of the operating equilibrium point
between both solutions.

As a general conclusion it can be noted the conflicting
nature between the economic and the operability objectives.
In this case, operability is related to the extension of the
stability region. A larger stability region (Figure 3b) can be
obtained at the expense a worse economic objective func-
tion value. This trade-off between economics and operability
of chemical processes has been extensively acknowledged
by the process systems engineering community in the last
years.”

From a physical point of view, the reactor corresponding to
the optimal economic design is much smaller than the one
resulting from the optimized DOA. Therefore, although the
reactor works at a relatively high temperature level, its conversion
is low. For this reason larger internal flow-rates (F and L) have to
be processed, increasing the required size of the heat exchangers
and flash drum. However, the reduced cost of a small reactor
compensates the large costs of the other units.

Because the reactor of the optimal DOA design is larger than
its economically optimal counterpart, the downstream equipment

is therefore less expensive, because a large conversion takes place
in the reaction step and a small recycle is required.

The relationship between the extension of the DOA and the
levels of the design variables at the solution is not obvious due to
the presence of complex nonlinearities in the balance equations.
However, it is clear for example, that the reaction temperature
produces a large effect on the system because it is amplified by the
exponential terms of eqs 7 and 8. The small reactor volume in the
optimal economic design requires a relatively high reaction
temperature to achieve a significant conversion. On the other
hand, the larger reactor of the DOA optimized design converts
enough at a lower temperature level. At low temperatures and
conversions, the system operates far from the boundaries of the
DOA, making the process more robust to disturbances.

It can be also observed from Table 2 that the real part of the
eigenvalues is close to the imaginary axis for the economically
optimal design, whereas they are deep inside the stable hyper-
plane for the DOA optimized design. The magnitude of these
figures provides an intuitive measure of the robustness of the
system regarding asymptotic stability. If the real part of the
eigenvalues of the original operating point are relatively large in
absolute value, the system is far from a bifurcation point. There-
fore, in the face of a small disturbance on some of the parameters,
the new steady state is likely to remain stable.

To illustrate the practical effect of an enlarged DOA, the
operation for both process designs is disturbed with a step in the
feed temperature Ty from 298 to 290 K. After a lapse of 0.5
(dimensionless time), temperature T is restored to its original
level. The results of the simulation are shown in Figure S. In
Figure Sa, it can be observed that for the optimal cost design, the
trajectory has left the DOA of the operating equilibrium after
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(b) Optimal DOA

At = 0.5 (dotted arrow). Once the disturbance disappears, the
initial condition of the system is outside the DOA of the original
equilibrium and the system evolves toward a new operating
condition (solid arrow). In the new situation the composition z
approaches x., flow-rate V tends to zero and flow-rate L tends to
flow-rate F. This very low production state is clearly undesirable
from an operating point of view.

The optimal DOA counterpart (Figure Sb), on the other hand,
presents a slight shift in the state space due to the step
disturbance (dotted arrow). Once the disturbance disappears,
the system returns to the previous equilibrium because the
originated trajectory never left its DOA (solid arrow). Note that
panels a and b in Figure S are in different scales for better
resolution.

6. CONCLUSIONS

In this contribution, a design methodology based on the
optimization of the domain of attraction has been applied to
the design of a reactor—separator—recycle system. The idea is to
simultaneously ensure asymptotic stability and an optimum
domain of attraction of the resulting operating point in a certain
sense. Specifically, the proposed merit function to be maximized
was the radius of a ball in the states space within which negative
definiteness of the time derivative of a quadratic type Lyapunov
function can be ensured. Within such a ball it is possible to
inscribe an invariant elliptic set which can be considered an
estimation of the actual DOA of the equilibrium.

DOAs of stable equilibriums of nonlinear systems are usually
complex shaped sets that can be hardly described precisely.
However, the enlargement of the radius of the described ball
has a “push away” effect on the actual boundaries of the DOA no
matter their shape and localization. Such boundaries are usually
the stable manifolds of saddle nodes. The enlargement of the
DOA can be also achieved by a shift of the operating point in the
state space.

From a mathematical point of view, the resulting is a bilevel
optimization problem with nondifferentiable inner sub problems,
in general. In order to address such potential nondifferentiability,
a stochastic (derivative free) algorithm was adopted in the outer
level to explore the design space.

To illustrate the proposed procedure, a RSRS was analyzed. In
each case, the DOA optimized design was compared against a
more classic cost optimized design under stability constraints.
The typical conflicting trade-off between economics and oper-
ability was verified, since an enlarged DOA could be obtained at
the expense of more expensive design.

From a physical point of view, the enlargement of the DOAs
was achieved by working at low temperature and conversion
levels. Because temperature has a large effect on the balances due
to the exponential terms, it results evident that working at low
temperatures provides larger “buffer zones” in the state space for
the system to evolve under disturbances, before crossing “no
return” points. This was demonstrated by dynamic simulation in
the context of reaction runoff.

As future work, the application of the methodology to larger
systems in the design and parameter spaces will be addressed.
Although the methodology is general and not limited to small
scale examples, the major limitation to address large scale models
is the solution of the difficult inner optimization problem.
Because global optimality is a must, expensive calculation is in
general required for each function evaluation, hindering the
efficient resolution of the design problem.
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B NOTATION

A = Jacobian matrix

Apx; = heat exchange area exchanger 1 (m”)

Apx, = heat exchange area exchanger 2 (m?)

A, = heat transfer area of reactor (m?)

A; = Antoine constant (Pa)

B; = Antoine constant (K)

B = dimensionless heat of reaction (—)

S = dimensionless heat transfer coefficient (—)
Bpay = payback period (3 years)

Cexchangers = Capital cost of heat exchangers ($/year)
Creactor = capital cost of reactor ($/year)

Cyash = capital cost of flash ($/year)

D, = reactor diameter (m)

Dy = flash drum diameter (m)

E = activation energy (J/mol)

I = identity matrix

Cpm = molar heat capacity (J/K/mol)
D, = Damkohler number

F = reactor flow-rate (mol/s)

F, = reactor feed flow-rate (mol/s)
¢ = cost objective function ($/year)
Ah; = heat of vaporization (J/mol)
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AH = heat of reaction (J/mol)

ko = pre-exponential factor (mol/(m? s))

K; = distribution constant (—)

L = recycle flow-rate (mol/s)

A = eigenvalue

M, = reactor molar holdup (mol)

Pg = flash pressure (Pa)

P, = pure component saturation pressure (Pa)

o = molar density (mol/m?)

R = gas constant (J/(K mol))

T = temperature (K)

T; = boiling point temperature (K)

T, = reference temperature (K)

T, = refrigerant temperature (K)

T¢ = feed temperature (K)

t = dimensionless time

0 = dimensionless temperature

U = heat transfer coefficient (J/(m* K))

V, = reactor volume (m”)

V = flow rate of the vapor from the flash (mol/seg)

x. = mole fraction of reactant A in the liquid from the flash (—)

x,¢ = mole fraction of reactant A in the feed (—)

¥ = mole fraction of reactant A in the vapor from the flash (—)

z = mole fraction of reactant A in the liquid from the mixing
tank (—)

Subscripts

f =feed

fl = flash

i = component

r = reactor

HX1 = heat exchanger 1
HX2 = heat exchanger 2
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