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Abstract

The aim of this work is to propose an algorithm to simulate the packed bed structure of mono-sized spheres in cylindrical containers. The

approach employed is called soft spheres algorithm, because it allows some degree of interpenetration between particles. The force balance

accounts for gravity and contact force (to take into account the interpenetration), and neglects the friction force between particles. The

algorithm provides detailed information about packing structure so it can be employed to evaluate local and global properties. The results fit

better the experimental information than previous algorithms from the literature.
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1. Introduction

Cylindrical packed beds are widely used in almost all

chemical process industries. Examples of paramount

importance are catalytic fixed bed reactors with either

single or two phase flow. In such type of units catalytic

particles can have sizes fairly different from fine powders,

often reaching several millimeters. The model employed to

simulate the reactor determines the degree of information

required about packed bed structure. For the nowadays

increasing use of the computational fluid dynamics

technique (CFD) it is necessary to state the positions of

all particles [1].

Many packing structure studies have been made during

the last decades from different points of view. Destructive

and non-destructive techniques have been used to obtain

packing information of different types, but the main interest

has been the evaluation of void fraction [2–4].

With the aim of obtaining a quantitative description of the

packed bed structure, and particularly of the radial void

fraction profile, alternative approaches were carried out [5].
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To predict the overall void fraction or radial void fraction

distribution, empirical expressions have been proposed [3].

Parameters involved in those expressions were obtained by

fitting the experimental data.

Another approach is based on accounting for the radial

particle center distribution [6]. Expressions describing such

distribution provide a more detailed description of the

packing structure, a feature that is essential for certain

models of packed bed processes considering the discontin-

uous nature of the solid phase.

Indeed, packing properties arise as a consequence of the

location of the particles in the bed [7]. Hence, it is clear that

the knowledge of the location of the particles is the more

basic and complete information about the packing structure.

Overall bed void fraction, radial and axial void fraction

profiles, particle center distribution and external surface area

profiles can be readily evaluated from the location of

particles. Therefore, another strategy to conduct the studies

on packed bed structure is the development of computational

tools to obtain the position of each particle in the bed.

There is a considerable literature background on

unbounded 3D spatial arrangements of particles, especially

spheres. Nonetheless, the information is somewhat scarce

when dealing with the arrangement of particles constrained
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Nomenclature

a aspect ratio (=(2Rt/Dp))

Cm
k elasticity parameter at the m-th iteration

(=(kmUm))

Cm
g gravity parameter at the m-th iteration

(=(MgUmD�1
p ))

Dp sphere diameter (m)
~Fi;Bw force exerted by the container’s bottom on the

i-th sphere (N)
~Fi j;C contact force exerted by the j-th sphere on the

i-th sphere (N)
~Fi;Lw force exerted by the lateral wall on the i-th

sphere (N)
~Fi;n net force acting on the i-th sphere (N)

g acceleration of gravity (m s�2)

k elasticity coefficient (N m�1)

L packing height (m)

M sphere mass (kg)

Np total number of particles in the packing

r̂i j unit vector defined from the center of the i-th

sphere to the center of the j-th sphere

Rt cylindrical container radius (m)

Um step-length at the m-th iteration (m N�1)
~W sphere weight (N)

x dimensionless distance from the wall

(=(Rt � r)/Dp)

~xmi location of the i-th sphere at the m-th iteration

(m)

zi axial coordinate of the i-th sphere measured

from the bottom of the bed (m)

ẑ axial unit vector (upwardly oriented)

Greek letters

dij overlapping between i-th sphere and j-th

sphere ¼ Dp � jj~ri �~r jjj2 (m)

diw overlapping between i-th sphere and the lat-

eral wall, ¼ ðri þ Dp=2Þ � Rt (m)

dij,max maximum value out of all dij (m)

diw,max maximum value out of all diw (m)

e0 initial overall void fraction

eF final overall void fraction

ui azimuthal coordinate of the i-th sphere

r radial coordinate measured from the container

axis (m)

ri radial coordinate of the i-th sphere measured

from the container axis (m)

r̂ radial unit vector

jj � jj2 Euclidean norm
by cylindrical vessels. The distinctive attribute of these

systems arises from the presence of the lateral walls and the

floor that induce a highly ordered arrangement of particles

nearby.
A primary classification of 3D algorithms to generate

packed bed structure can be made by distinguishing between

soft and hard sphere approaches, depending on the

allowance of overlapping between spheres or not.

Pioneer works employing the soft sphere approach are

those of Powell [8] and Jodrey and Tory [9] for simulating

the structure of liquids. In such cases, the existence of the

container wall is not taken into account. Hence, this kind of

studies will not be considered later on when comparing

different approaches.

Up to the best of our knowledge, all algorithms specifically

described in the literature for confined packed beds, fall in the

hard sphere category. Some of them will be commented on

next, highlighting the differentways inwhich the dynamics of

the generation of the packed bed is undertaken.

In the procedure known as random settlement [10–12],

spheres are let down one at a time at random cross-section

positions. When a sphere hits an already settled sphere no

momentum transfer is considered, and the impinging sphere

is allowed to slide down until a stable position is reached: on

the base of the container, on three other spheres or on two

other spheres and the cylinder wall. Schnitzlein [13]

proposed a modified random settlement algorithm incorpor-

ating an optimization procedure for the packing.

Reyes and Iglesia [14] described structural properties of

cylindrical packed beds employing a sequential random

approach based on Monte Carlo method.

Mueller [15] analyzed four different deterministic algo-

rithms:modified Bennett [16], layer, alternate and percentage

methods. All procedures are initially assembled from a base

layer at the bottom of the bed. Once the base layer is

completed, there are two possible ways to allocate a new

sphere: resting on three spheres from the lower layer (inner

sites, IS) or resting on two spheres and the containerwall (wall

sites, WS).

It is worth noting that Mueller’s calculations indicate that

percentage model give the best results out of the options

tried by the author. This method selects the lowest vertical

location among all available WS or IS, depending on a given

percentage. No update is made until all possible locations

are filled. The procedure is repeated for additional layers

until the desired number of spheres has been added.

The layer optimization method employed by Nandaku-

mar et al. [17] relies on minimizing the bed height of a given

number of non-overlapping particles. This number of

particles is chosen to match a particle layer number. The

minimization criteria arise from a mechanical analysis of the

packing; without friction forces the system will arrange to

minimize its potential energy, leading to the lowest mass

center of the packing. The spheres belonging to the same

layer do not move after the minimum height value was

reached.

A relatively recent tool to model particulate systems is

the Discrete Element Method (DEM) that has been widely

used in many application fields [18]. However, up to the best

of our knowledge, when dealing with the packing of
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catalytic-type particles in cylindrical containers the DEM

literature is scarce [19,20]. In addition, none of the

mentioned articles deals with the wall effect, which is very

important to evaluate transport processes in catalytic fixed

beds and also, no systematic analysis of the aspect ratio

influence, was carried out.

The basic and most widely used quantity to characterize

packed bed structure is the overall bed void fraction. In this

context, the algorithm predictions should be contrasted with

experimental data for different aspect ratios. A good

agreement turns out to be a necessary condition to guarantee

a reliable tool.

Even when the results obtained with the previously

described algorithms are encouraging, significant differ-

ences in macroscopic properties arise when contrasting with

experimental information [5]. Hard sphere algorithms lead

to loose packed bed, with overall void fraction values

considerably greater than experimental ones.

The main goal of this contribution is to propose an

algorithm to realistically simulate the structure of cylindrical

packed beds with mono-sized spheres, as those employed as

catalytic fixed bed. The algorithm is based on the soft sphere

approach. The results obtained for the overall bed void

fraction are compared with experimental information and

with other simulations from literature.
2. Model formulation

For a packing of spheres in a cylindrical container an

equilibrium condition is reached just when all forces acting

on every particle are balanced. The forces acting on the

particles are the gravitational field, friction and contact

forces. Also, there are two physical restrictions to sphere

accommodation: vessel and bottom walls.

It has been experimentally demonstrated that friction

forces inhibit the compaction of the packing [21]. Besides,

loose packing tend to become more compact by means of

vibration [22] or after some period on operation. For these

reasons, friction forces between particles and between

particles and the vessel wall will not be considered,

expecting that the algorithm formulation will provide

results closer to real situations.

In order to model the effect of normal contact forces, a

certain degree of interpenetration between the spheres will

be allowed. The repulsion force generated from interpene-

tration is assumed to be proportional to the overlapping

magnitude, as in elasticity theory. As described below, the

intensity of this force will be effectively raised in the course

of the procedure envisaged for the generation of the bed. In

an early stage, the intensity of the repulsive force is kept

relatively low, while in the final stage the intensity is

increased so as to produce a very tiny overlap.

It will be shown that the effect gained from this strategy is

the achievement of more compact beds, closer to those found

in practice. At variance, previous models based on rigid
spheres, as discussed in Section 1 of this paper, predict

significantly looser beds.

The lateral wall of the container will also be considered as

a deformable body. The force exerted by the lateral wall on a

contacting sphere will point to the container axis.

The behavior of the base of the bed should also be

defined. Although the base might be considered as being

deformable too, it was checked that no definite effect is

achieved through this assumption. Therefore, a rigid base

exerting an action to balance the axial force on each resting

particle on it will be assumed.

Summarizing, the following hypothesis are stated in

formulating the algorithm to generate packed beds in

cylindrical containers:
1. th
e spheres are mono-sized;
2. g
ravitational field is accounting for;
3. th
e friction forces are neglected;
4. th
e spheres as well as the lateral wall are deformable;
5. th
e base of the container is rigid;
6. th
e contact forces between spheres and between spheres

and the wall are calculated relying on elasticity theory.

The net force ~Fi;n acting on the i-th sphere can be

expressed as:

~Fi;n ¼ ~Fi;Lw þ~Fi;Bw þ ~W þ
X
j

~Fi j;C (1)

where ~Fi;Lw is force exerted by the lateral wall on the i-th

sphere; ~W is sphere weight; ~Fi j;C is contact force exerted by

the j-th sphere on the i-th sphere;~Fi;Bw is force exerted by the

container’s bottom on the i-th sphere.

All forces acting on every sphere pass through the center

of the mass, therefore it is not necessary to set out the torque

balances.

The formulation for every force is:

~Fi;Lw ¼ �kRðdiwÞr̂ (2a)

~Fi j;C ¼ �kRðdi jÞr̂i j (2b)

~W ¼ �Mgẑ (2c)

where R(x) is Ramp function ¼ 0; if x � 0

x; if x> 0

�
; dij is over-

lapping between i-th sphere and j-th sphere ¼ Dp � j
j~ri �~r jjj2; diw is overlapping between i-th sphere and the

lateral wall =(ri + Dp/2) � Rt; r̂ is radial unit vector; ẑ is axial
unit vector (upwardly oriented); r̂i j is unit vector defined from
the center of the i-th sphere to the center of the j-th sphere.

The forces ~Fi;Bw are not formulated because it is

supposed that their values are just enough to make zero

the axial component of ~Fi;n of those spheres contacting the

bottom of the container.

It is worth remarking that ~Fi;Lw and ~Fi j;C are repulsive in

nature and they become nil when there is no overlapping

(Eqs. (2a) and (2b)). For the sake of simplicity the constant k

is assumed to be the same for both, ~Fi;Lw and ~Fi j;C.
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Once the aspect ratio a = 2Rt/Dp and the number of

particles Np are defined, the purpose of the algorithm

described next is to define a set of positions for all particles

that will render ~Fi;n ¼~0 (in an approximate sense) for i = 1,

. . ., Np.
3. Algorithm

The algorithm can be described considering four stages:

generation, initial, intermediate and final stage. A set of

images showing the packing structure in each stage of the

simulation for a = 5, Np = 500 and an initial overall void

fraction e0 = 0.47 is depicted in Fig. 1.

The generation stage is needed to define an initial

distribution of particles, while the other three stages are

characterized by a specific effect on the packing structure

(expansion, compaction, force balancing). Even when the

division into stages is somewhat arbitrary, it arises as a result

of tuning the algorithm to attain robustness and better

convergence speed. The following quantities should be

monitored to identify the transition between each stage:

packing mass center (MC), maximum overlapping between

particles (dij,max) and maximum overlapping between

particles and the wall (diw,max).

Except in the generation stage, the reallocation of

particles is guided by the need to reduce the net force
Fig. 1. Sequence showing the packed bed structure at the end of each

simulation stage a = 5, Np = 500, e0 = 0.47 and eF = 0.433. (a) Generation

stage, (b) initial stage, (c) intermediate stage and (d) final stage.
(~Fi;n) acting on every sphere. From the values~xmi and ~F
m

i;n at

iteration m, the new location ~xmþ1
i of the i-th sphere is

calculated as:

~xmþ1
i ¼~xmi þ Um~F

m

i;n (3)

where Um is the step-length chosen at iteration m. Substitut-

ing ~Fi;n according to Eqs. (2a) and (2b):

~xmþ1
i ¼~xmi � Cm

k

�
RðdmiwÞr̂þ

X
j

Rðdmi jÞr̂i j
�
� Cm

g Dpẑ (4)

where

Cm
k ¼ kmUm; Cm

g ¼ MgUmD�1
p ; (5)

are the elasticity and gravity parameters at iteration m. As

the elasticity parameter will have to be changed in the course

of the calculations, it is also written generically as dependent

on the iteration level, km.

We can appreciate from definitions (5) that Cm
k and Cm

g

can be employed to conduct the iterations, rather than the

original parameters Um and km. This has been the choice

actually made. Both, Cm
k and Cm

g should be large enough to

speed up the procedure towards the solution, but not too

large to promote instabilities and final divergence. In

addition, note that the ratio Cm
k =C

m
g should be made large

towards the end of the calculations in order to relax the

interpenetration between particles and between particles and

the container wall.

It has been learned fromnumerical experience that keeping

Cm
k fixed at Ck = 0.3, while varying Cm

g for the three stages

described below (initial, intermediate and final), constitutes a

simple and efficient approach. In the next section, the effect of

changing the constant value Ck will be discussed.

3.1. Generation stage

To start the simulation, aspect ratio, a, and total number

of spheres in the packing Np are specified. The value ofDp is

also assumed to be specified in the following description,

although its magnitude will be irrelevant for the intrinsic

properties of the generated bed.

An initial overall void fraction (e0) is assigned to evaluate
the initial height of the bed:

L0 ¼
2

3

DpNp

a2ð1� e0Þ
(6)

The Np particles are then allocated, allowing overlapping

between them, by assigning randomly the initial coordinates

of their centers according to:

ri ¼ Rt �
Dp

2

� �
ðRndÞ1=2

ui ¼ 2pRnd i ¼ 1; . . . ;Np

zi ¼ L0 Rndþ ðDp=2Þ

where Rnd 2 [0, 1] is a random number.
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3.2. Initial stage

The packing from the generation stage shows a significant

number of overlapped spheres (see Fig. 1a). To lessen the

degree of interpenetration, the gravity force on the spheres is

suppressed, i.e. Cg = 0 is stated. Eq. (4) are then employed

repeatedly until both, dij,max and diw,max, become less than

1 � 10�4Dp.

3.3. Intermediate stage

In the intermediate stage the packing is compacted under

the gravity action. A control loop is implemented to adjust

Cm
g for bounding the maximum overlapping between

particles, dij,max. An upper bound dU = 1 � 10�2Dp and a

lower bound dL = 0.5 � 10�2Dp are established. Starting

from a null initial value, Cm
g is varied according to:

Cmþ1
g ¼

Cm
g þ DCg; if di j;max < dL

Cm
g � DCg; if di j;max > dU

Cm
g ; if dL � di j;max � dU

8<
: (7)

The recommended step value of DCg is 1.25 � 10�7. A
Fig. 2. Comparison between experimental and predicted radial particle

centre distribution at a = 7.99. (A) Mueller [24]; (B) proposed model.
stationary value of Cm
g is eventually reached, typically

around 2.0 � 10�5. To end the intermediate stage, the

packing mass center MC is evaluated after each set of 100

iterations. If 10 successive values of MC turn out to vary

within 1 � 10�4%, the intermediate stage is terminated.

3.4. Final stage

In the final stage, a slice modification of particle locations

is carried out with the aim of reducing the overlapping up to

the allowed value of 1 � 10�4Dp. This stage is subdivided in

several steps. For each step, Cm
g is maintained constant and

its value is halved for the next step. Each step is terminated

when the criterion on MC (as described above) is fulfilled.

The whole stage is stopped when both, dij,max and diw,max,

become less than 1 � 10�4Dp.

4. Sensitivity analysis of the algorithm’s parameters

A set of simulations was carried out to analyse the effect

of parameter assignment in the packing properties predicted

by the foregoing algorithm. The studied quantities were:

initial overall void fraction, e0, elasticity parameter Ck and

the allowable range [dL, d
U] for dij,max in the intermediate

stage (Eq. (7)). The same particle distribution from the

generation stage was employed in all runs. The number of

particles employed in the simulations was large enough to

avoid end effects. The overall void fraction (eF) was selected
to compare the generated packing structures.

4.1. Initial overall void fraction (e0)

The final packing was found to depend weekly on e0. For
instance, at a = 5, if e0 2 [0.30, 0.55], then eF 2 [0.43, 0.44].
It is worth mentioning that the sensitivity increases as a

decreases. For a > 20 there is no effect of e0 on eF.

4.2. Elasticity parameter (Ck)

By modifying the recommended value (Ck = 0.3) in 50%,

the variation of eF was, on average, only 1%. Nonetheless, it

is important to point out that modifying Ck strongly affects

the time spent by the simulations. By raising the value of Ck

the final solution, when reached, is obtained faster, but the

chance for divergence increases. The suggested value

(Ck = 0.3) arises from a trade off between the number of

iterations and robustness.

4.3. Allowable range [dL, d
U] for dij,max in the

intermediate stage

The range [dL, d
U] employed to bound dij,max according to

Eq. (7) was increased from the standard interval [dL,

dU] = [0.5, 1] � 10�2Dp up to [dL, d
U] = [14, 15] � 10�2Dp.

At a = 5, a reduction in eF from 0.431 to 0.427 was obtained.

Larger values of aspect ratio were tried and it was checked

that the effect on eF becomes less significant.
5. Overall void fraction estimation

Theproposed algorithmprovides the exact location of each

particle in the bed. From this information, all the global and

local properties of the bed can be estimated. As an example of

the results that are currently being obtained [23], Figs. 2 and 3

show the comparison between Muller’s experimental data

[24] and the algorithm prediction for the radial particle center

distribution and radial void fraction profile at a = 7.99. A

remarkable agreement can be appreciated.

Aiming to carry out a systematic comparison among the

proposed algorithm, other literature alternatives and

experimental information, the overall bed void fraction

was selected for two reasons. On one hand, any attempt to

simulate a real packed bed structure should primarily

provide a reliable prediction of eF. On the other hand, overall
bed void fraction is largely the most intensively studied

global property for a wide range of aspect ratios.
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Fig. 3. Comparison between experimental and predicted radial void frac-

tion profile at a = 7.99. (&) Mueller [24]; (—) proposed model.
An important number of simulations were carried out to

cover a wide range of a, from 5 to 30, with the aim of testing

the model performance.

In order to validate the results from the proposed model,

experimental data and results from the proposed model can

be compared in Fig. 4. Two empirical correlations [25]

developed with the specific purpose of setting the boundaries

for close and loose random packing in fixed beds were also

added to Fig. 4. It can be concluded that the proposed

algorithm can suitably represent the trend indicated by the

experimental data. It closely reproduces most of the

experimental data sets; particularly those placed within

the boundaries stated from Zou and Yu [25] correlations.

Out of the whole set of available experimental data, the

results from Fand and Thinakaran [26] and Limberg [27]

provide the lowest values of eF. Note that they fall below Zou
Fig. 4. Comparison between experimental and predicted overall void

fractions (+) Mueller [3]; (~) Benenati and Brosilow [2]; (&) Carman

[30]; (�) Fand and Thinakaran [26]; (^) Dixon [29]; (*) Limberg [27]; (–

*–) proposed model (different values resulting for each simulated aspect

ratio are indicated by an interval); (—) Zou and Yu [25] random dense

packing; (- - -) Zou and Yu [25] random loose packing; (– – –) Onoda and

Liniger’s [28] limiting value.
and Yu [25] random close packing correlation (Fig. 4).

Additionally, for a! 1 (negligible container wall effects),

Onoda and Liniger [28] concluded from the analysis of the

experimental evidence that the minimum attainable value of

eF is 0.363. Nonetheless, some of the values of Fand and

Thinakaran [26] and Limberg [27] at large, but still finite

values ofa, are lower thanOnoda andLiniger’s limiting value.

The results from the proposed algorithm in Fig. 4

correspond to at least 10 runs for every a, each of them from

a random generation stage. The interval markers show the

spread of eF values. As previously pointed out by Mueller

[15], randomness is an important feature to be included in

algorithms for predicting packing structure because it avoids

a strong bias in the generation stage.

Awider spread in the predicted values of eF as the aspect
ratio diminishes is observed in Fig. 4. For lower aspect

ratios, the different configurations that randomly arise for

the packing structure nearby the vessel walls exert a stronger

effect on the average value eF. On the contrary, for high

aspect ratios (i.e. a > 30) random effects become negligible.

A comparison between results from the present algorithm

and some literature algorithms is displayed in Fig. 5. Data

from Reyes and Iglesia [14], Spedding and Spencer [12],

Mueller’s percentage model [15], Nandakumar et al. [17]

and Schnitzlein [13] are included in Fig. 5. The upper

correlation bound given by Zou and Yu [25] is also included

in Fig. 5 as a reference set. It is clearly appreciated that most

results from the literature models predicts higher values of eF
than the reference upper bound. Thus, the mechanisms on

which the literature algorithms are based introduce a strong

bias, favoring much looser beds than supported by the

experimental evidence. Besides, it is confirmed in Fig. 5 that

the algorithm proposed here systematically produces more

compact beds than previous alternatives.
Fig. 5. Comparison between overall void fractions predicted by different

simulations methods (�) Reyes and Iglesia [14]; (*) Spedding and Spencer

[12]; (&) Mueller’s percentage model [15]; (^) Nandakumar et al. [17];

(~) Schnitzlein [13]; (–*–) proposed model (different values resulting for

each simulated aspect ratio are indicated by an interval); (- - -) Zou and Yu

[25] random loose packing.
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6. Conclusions

An algorithm capable to describe the structure of

cylindrical packed beds of mono-sized spheres has been

presented in this work. It is based on stating a force balance

on each sphere under certain assumptions. Friction force

between the involved surfaces is neglected. Spheres particles

and wall containers are considered as deformable bodies

and, therefore a contact force arises. It is supposed that

contact forces can be modeled from elasticity theory.

A particular feature of the algorithm is the randomness

procedure proposed for the initial distribution of the

particles. This feature intends to simulate the uncertainties

associated with loading procedures of real packed beds.

The incidence of algorithm parameters on the predicted

packing propertieswas assessed by comparing the final values

of the overall void fractions, eF. Initial void fraction, relaxation
parameter constant and bounds for the maximum allowed

overlapping in the intermediate stage exert a mild effect on eF.
The quality of the results from the algorithm has been

discussed in terms of the predicted values of eF. These values
are satisfactorily consistent with the experimental data for a

wide range of aspect ratio, taking into account the spread

shown by the results from different sources.

It is also shown that the proposed algorithm performs

definitely better than previous alternatives, due to the fact

that more compact beds are predicted.

The algorithm provides a detailed information about

packed bed structure, so it can be employed to evaluate local

properties, as particle center distribution, radial and axial

void fraction profile, number of particles contacting lateral

wall and co-ordination number. These results are being

currently analyzed and will be reported in due time.

It is worth remarking that real spherical packing will

usually presents some dispersion in particle size. The

algorithm presented here could be readily extended to

analyze a mixture of spheres of different diameters.
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