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Chiral-mediated entanglement in an Aharonov-Bohm ring
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We study the orbital entanglement in a biased Aharonov-Bohm ring connected in a four-terminal setup. We
find that the concurrence achieves a maximum when the magnetic flux �B coincides with an integer number of
a half flux quantum �0/2. We show that this behavior is a consequence of the existence of degenerate states of
the ring having opposite chirality. We also analyze the behavior of the noise as a function of � and discuss the
reliability of this quantity as evidence of entanglement.
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I. INTRODUCTION

The increasing interest in quantum information processing
is boosting the search for mechanisms to produce and control
entanglement in devices of different natures.1 Photonic devices
are routinely used for preparing and detecting entangled
photon pairs.2 The main limitations of such devices is
the nonexistence of deterministic sources as well as the
difficulty in controlling the interaction between the photons.
Entanglement mechanisms have also been proposed in solid-
state devices, like quantum dots,3 and superconductors.4

The fundamental ingredient behind all these mechanisms is
a many-body interaction. Recently it was determined that
entanglement is also possible in systems of noninteracting
electrons.5,6 In particular, it was shown that electron-hole
entangled pairs can be produced by biasing a tunneling barrier.

The edge states of systems in the quantum Hall regime
can be employed in solid-state devices to produce electron
beams with properties similar to those of a photon beam
in optical setups. Exploiting this analogy, several theoretical
and experimental proposals of electronic interferometers have
been reported.7 Interestingly, the electronic counterpart of
the Hanbury-Brown-Twiss device has been analyzed in a
configuration of edge Hall states that do not have interfering
orbits.8,9 For this reason, the Aharonov-Bohm (AB) effect
takes place only at the level of two-particle correlation
functions, while the single-particle AB effect is not present.
This entanglement seems to be related with an asymmetry in
the device that favors the internal production of particle-hole
pairs and manifests itself in the behavior of the current-current
correlation functions. The relevance of the current-current
correlation functions as evidence of entanglement has been
also discussed in other fermionic systems.10

The aim of this work is to establish the existence of
orbital entanglement in AB systems where single-particle
interference is present. Using a microscopic model, we show
that when coupling the AB ring to four leads (two on the right
and two on the left), the post-selected two-particle states of
electrons at opposite leads are typically entangled. We name it
“chiral-mediated entanglement” (CME) because its creation is
possible by the existence of intermediate states in the AB ring
that are coherent superpositions of two different chiralities for
the electronic motion. Remarkably, this kind of entanglement
can be also defined in a transport setup, which is identical
to the one that was proposed to define the electron-hole
entanglement.5,6,9,11–13 In fact, we also show here that the noise

current-current correlation function can be good evidence for
the entanglement in our setup.

The paper is organized as follows. In Sec. II we present
the model in detail, and we sketch the formulation of the
theory, where we calculate the reduced density-matrix of a
two-particle system. The results of this work are presented in
Sec. III. The conclusions are presented in Sec. IV.

II. THEORETICAL TREATMENT

A. Model

We consider the AB single-channel ring with a magnetic
flux. The ring is connected to four terminals5,6,9,11,12 as shown
in Fig. 1. Two of the terminals, those labeled α = 1, 2, at the
left side of the ring, are at a higher voltage V with respect to the
ones at the right, labeled α = 3, 4. All terminals are ordinary
single-channel metallic leads where electrons can move either
to the right or to the left. For simplicity, we consider spinless
electrons, and we describe the setup by the Hamiltonian

H =
4∑

α=1

(Hα + Hc,α) + Hring, (1)

where Hα = ∑
kα

εkα
c
†
kα

ckα
are Hamiltonians of noninteracting

electrons representing the leads. For the AB ring we use a
noninteracting model, where electrons move with velocity v

either clockwise (+ chirality) or anticlockwise (− chirality).
The Hamiltonian is

Hring =
∑
λ=±

∫ L

0
dxvλ�

†
λ(x)Dx�λ(x), (2)

where λ is the chirality, Dx = −i∂x − φ, and φ = �/(L�0)
with � = 2π�B , where �B is the magnetic flux, �0 = hc/e is
the flux quantum, and L is the length of the ring. The contacts
between the leads and the ring are modeled by tunneling terms
of the form Hcα = ∑

kα,λ=± wkα
[c†kα

�λ(xα) + H.c.], where
xα define the positions of the ring to which the leads are
attached. We consider the leads to be at zero temperature.
The chemical potentials enforce a bias voltage between left
and right leads, i.e., μ1 = μ2 = μL, μ3 = μ4 = μR , and
μL − μR = eV, which we assume to be very small eV ∼ 0.

B. Reduced density matrix and concurrence

In a setup such as the one in Fig. 1, electrons tunnel from
the left leads to the right ones. We aim to define the effective
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density matrix describing the quantum state post-selected from
the total two-electron state by projecting out the components
where both electrons are either in the right or in the left
leads.6,11,12 We introduce the operators A

†
00 ≡ c

†
k1

c
†
k3

,A
†
01 ≡

c
†
k1

c
†
k4

,A
†
10 ≡ c

†
k2

c
†
k3

,A
†
11 ≡ c

†
k2

c
†
k4

, which create one particle in
one of the left leads and a second particle at one of the right
leads. The ensuing the 4 × 4 density matrix describes a system
of two qubits with elements

[ρ(2)(ε)]ab,a′b′ = 1

N0

∏
α

∑
kα

δ(ε − εkα
)〈A†

abAa′b′ 〉,

where N0 is a normalization factor, while the mean value is
taken in the nonequilibrium state with a net current flowing
from the left to the right. We remark that in our approach
matrix elements of ρ(2) are obtained in terms of operators
appearing in the Hamiltonian H . Expectation values of four
time dependent creation and/or annihilation operators are
computed using the nonequilibrium Green function formalism
and Wick theorem,14

〈c†kα
(t)c†kβ

(t)ckλ
(t)ckδ

(t)〉

=
∫ ∞

−∞
dε

∫ ∞

−∞
dε′[G<

kλ,kα
(ε − ε′)

×G<
kδ,kβ

(ε′) − G<
kδ,kα

(ε − ε′)G<
kλ,kβ

(ε′)
]
, (3)

where G<
kα,kβ

(ε) is the Fourier transform with respect to t − t ′

of the lesser Green function

G<
kβ,kα

(t − t ′) = i
〈
c
†
kα

(t ′)ckβ
(t)

〉
. (4)

We assume that eV ∼ 0, and we are interested in analyzing ε ∼
μ = (μL + μR)/2. We present the corresponding expression
of ρ(2) in the Appendix.

From the above density matrix we compute the concur-
rence, which is a good measure of entanglement.15 In this case

FIG. 1. (Color online) (a) Scheme of an Aharonov-Bohm ring
with two chiralities, attached to four leads. The chemical potentials
are such that there is a bias voltage between the left and right leads.
Electrons incoming from the left can tunnel to the ring and escape
through leads. (b) Linear dispersion relation of an isolated AB ring,
where electrons move with velocity v either clockwise (+ chirality) or
anticlockwise (− chirality). The magnetic flux determines whenever
the Fermi level is two degenerate or not.

it is given by

C[ρ(2)] = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (5)

where λi are the eigenvalues of R := ρ(2)σy

⊗
σyρ

(2)∗σy

⊗
σy

in decreasing order. It is interesting to notice that the
concurrence so calculated is equivalent to the one obtained
by the spin-dependent scattering formalism for a single-mode
conductor,5,6 which is

C = 2

√
τ1(1 − τ1)τ2(1 − τ2)

τ1 + τ2 − τ1τ2
. (6)

Here τ1,τ2 are transmission eigenvalues of the scattering
matrices sα,β(μ) = δα,β − i

√
�β�αGR

α,β (μ), where GR
α,β (μ) is

the Fourier transform with respect to t − t ′ of the retarded
Green function

GR
α,β (t − t ′) = −i�(t − t ′)

∑
λ,λ′

〈{�λ(xα,t),�†
λ′(xβ,t ′)}〉 (7)

evaluated at μ, where xα is the position of the ring at which
the wire α is attached, and �α = 2π

∑
kα

w2
kα

δ(μ − εkα
).16

C. Noise

As pointed out in Refs. 6 and 13 the concurrence can be
expressed in terms of correlators that quantify the degree of
violation of Bell inequalities. In transport setups the latter
can in turn be directly related to current-current correlation
functions, which are amenable to being experimentally de-
tected. We, thus, turn to analyze the connection between these
correlation functions and the above discussed entanglement.
We first outline the procedure to compute the current-current
noise within our treatment. The current passing through
the contact to the terminal α can be expressed by the
operator Jα(t) = (e/h̄)

∑
kα

wkα
[ic†kα

(t)�(xα,t) + H.c.]. The
zero frequency shot noise is a measure of the current-current
correlations in different terminals. It reads

Sα,β (0) = 1

2

∫
dτ 〈{δJα(τ ),δJβ(0)}〉, (8)

where δJα = Jα − 〈Jα〉. We calculate Eq. (8) by evaluating a
bubble diagram in terms of nonequilibrium Green functions.
The corresponding expressions are presented in the Appendix.

III. RESULTS

A. Qualitative analysis

To understand the origin of CME it is useful to begin
by analyzing the electronic states of the isolated AB ring.
The Hamiltonian can be diagonalized in momentum space:
Defining �λ(x) = 1/

√
N

∑
p e−ipxcp,λ with N a normal-

ization factor, p = 2πn/L, and n ∈ Z, we obtain Hring =∑
λ

∑
p εp,λ(�)c†p,λcp,λ, with εp,λ = λv(p − φ) (a cutoff in

the single-particle energy spectrum is assumed). The effect
of the magnetic flux on the energies εp,λ(�) is illustrated in
Fig. 1. Depending on the magnetic flux, there can be zero, one,
or two single-particle states |p,λ〉 with a given energy. States
with different chirality λ = ± are degenerate only when the
flux is an integer multiple of π�0.

Let us consider first the case where two degenerate states
with opposite chiralities exist in the ring. These two states
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behave as an intermediate qubit that couples to the qubits
defined by the leads. We will argue that in this case CME
naturally emerges between electrons at the right and left leads.
The N -particle states with a Fermi energy εF can be obtained
from |0〉, which represents the Fermi sea with N − 2 particles
filling the states with εp,λ(�) < εF , where v(pF − φ) = εF .
Thus, we have |�ring〉 = c

†
pF ,+c

†
pF ,−|0〉. When the ring is in

contact with the four leads, particles can tunnel between the
ring and the reservoirs. For weak coupling we can assume that
each of the chiral levels with pF hybridize with the levels of
the leads having the same energy εF . This is described by the
following effective Hamiltonian:

Heff = w

4∑
α=1

∑
λ=±

eiλpF xα [c†kα
cpF ,λ + H.c.], (9)

where w is the effective tunneling parameter and c
†
kα

creates an
electron in the single-particle state of the α lead with energy
εkα

= εF (we take εF = 0 without loss of generality). This
Hamiltonian has four eigenstates of the form

|ψn〉=
[

4∑
α=1

γn,αc
†
kα

+
∑
λ=±

γn,λc
†
pF ,λ

]
|0〉, n = 1, . . . ,4, (10)

where the coefficients γn are the weights of the eigenstates
in the chosen base. It also has two additional degenerate
states of the form |ψn〉 = ∑4

α=1 γn,αc
†
kα

|0〉, n = 5,6. The latter
correspond to states that do not hybridize with the ring. When
two particles are present, two different such states must be
occupied. It is simple to show that any state of this type has a
sizable projection on states of the form

∑
α �=β �α,βc

†
kα

c
†
kβ

|0〉 for
some nonvanishing coefficients �α,β . This two-particle state
is typically entangled in the orbital indices α,β of opposite
leads. Notice that it is also possible to use two AB rings
with degenerate levels as a two-qubit system coupled by two
conducting leads (intermediate qubit).

On the other hand, if we consider the case of a one chirality
ring (εp = v(p − φ) for example) the situation drastically
changes, and no significant entanglement between left and
right leads is attained. This is can be seen because the effective
Hamiltonian has a different level structure. In fact, Heff can
be naturally written in terms of operators that are linear
combinations of the lead operators c

†
kα

as Heff = w(f †cpF ,λ +
H.c.), with f † = (1/2)

∑4
α=1 eipF xα c

†
kα

, while there are three
additional orthogonal linear combinations of these operators
that do not hybridize with the ring. The two eigenstates of Heff

are linear combinations of a single-particle state of the leads
and a single-particle state of the ring. Thus, a two-particle state
of this Hamiltonian has never the two particles in the leads,
and therefore no orbital entanglement is possible.

The above argument suggests that by varying the magnetic
flux or the chemical potential of the leads (or equivalently a
gate voltage applied at the ring) we can induce the system to
switch from a situation with no orbital entanglement between
the leads into another situation with interlead entanglement.
This is done by varying � and/or μ in order to have degenerate
chiral states of the ring at the Fermi energy. We now present
a rigorous calculation of the entanglement for the states that
are relevant for a transport experiment in the coherent regime

and explain how the CME depends on flux and chemical
potential. We also discuss the way in which it may be detected
in transport experiments.

B. Numerical results

1. Concurrence

The behavior of C as a function of the mean chemical
potential μ and the magnetic flux � is shown in Fig. 2. The
concurrence is maximal at �/�0 = nπ and for values μ close
to the energy of two degenerate chiral states of the ring. The
same type of behavior is observed for other configurations of
the wires, corresponding to contacts at different positions xα .
For this figure we considered wires with a bandwidth Wα and
�α = �α

√
W 2

α − μ2, where �α is a constant, but the same
behavior is obtained for leads with a constant density of states.
For some chemical potentials C exhibits maxima at �/�0 =
0,mod(2π ), which corresponds to the energy of two degenerate
states of the ring, but achieves again the maximum value within
a wide range of fluxes centered at �/�0 = π,mod(2π ). This
feature is analyzed below in more detail.

Instead, if we evaluate C for the Hamiltonian (2) restricted
to a single chirality, we find negligibly orbital entanglement in
the leads within the whole range of � and μ. These results are
presented in Fig. 3. In this case the ring behaves as a single-
level system and prevents the formation of orbital entangled
states at the leads.

2. Noise

We now present results on the behavior of the current-
current correlation functions. Our aim is to analyze if the signa-
tures of entanglement found in the behavior of the concurrence
can be also identified in the behavior of the noise. Results for
the total left-right noise correlations S = ∑

α=1,2,β=3,4 Sα,β (0)
[equal to the self-correlation −∑

α,β=1,2 Sα,β (0)] are shown
in Fig. 4. The left (right) panel corresponds to a chemical
potential μ for which there are two degenerate chiral states
in the ring for �/�0 = 0,(π ),mod(2π ). The behavior of the
concurrence is also plotted for comparison. In both cases, S

along with C exhibit maxima at the fluxes for which the two
degenerate chiral states are resonant at the given μ. This points

FIG. 2. (Color online) Concurrence as a function of �/�0 and
mean chemical potential μ for a ring with length L = 20 with wires
connected at x1 = 1, x2 = 6,x3 = 11,x4 = 16.
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FIG. 3. (Color online) Concurrence as a function of �/�0 and
mean chemical potential μ for a ring with only one chirality. The ring
parameters are the same as in Fig. 2.

to the idea that noise is indeed a reliable witness of orbital
entanglement, as discussed in the context of other electronic
setups.5,6,9,10 In the case of the left panel, both quantities are
maximum at �/�0 = 0, mod(2π ). Within a range of fluxes
that scan the width of the resonant degenerate levels of the
ring, they first decrease and then increase, displaying a dip. As
the flux increases further, the behavior of these two quantities,
however, depart one another. While S tends to vanish around
�/�0 = π , the concurrence displays a wide plateau with
height C ∼ 1. Qualitatively, the same type of behavior is
observed in the right panel. In this case, both quantities
exhibit a sharp maxima at resonance (see the peaks around
�/�0 = π ). The concurrence displays a plateau and another
(lower) maximum around �/�0 = 0,mod(2π ) while S is
vanishing small. On general grounds this is rather surprising,
since one could easily imagine situations with a sizable noise
without entanglement, but here we have the converse situation.

In order to further understand the relation between the
behavior of C and S as well as the connection to the CME,
we analyze the probabilities

PLL =
∏
α

∑
kα

δ
(
ε − εkα

)〈
c
†
k1

ck1c
†
k2

ck2

〉
,

(11)
PRR =

∏
α

∑
kα

δ
(
ε − εkα

)〈
c
†
k3

ck3c
†
k4

ck4

〉

0.20

0.40

0.60

0.80
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0 π/2 π 3π/2 2π
Φ/Φ0

(a) (b)

C
S

0 π/2 π 3π/2 2π
Φ/Φ0

C
S

FIG. 4. (Color online) Shot noise (squares) between left and right
terminals, as a function of �/�0 for two values of the chemical
potentials at which there are degenerate states. (a) μ = 0.3175, (b)
μ = 0.7866. The corresponding plots for the concurrence are also
shown for comparison (circles).

0
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0 π/2 π 3π/2 2π
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0 π/2 π 3π/2 2π
Φ/Φ0

Pr,r
Pl,l

FIG. 5. (Color online) Probability of finding two particles at the
left and right leads as a function of magnetic flux �/�0. Panels (a)
and (b) correspond to the same parameters of Fig. 4(a) and 4(b),
respectively.

of finding two particles at the left (right) leads, respectively.
In Fig. 5 we show the behavior of these two quantities for
the same parameters of Fig. 4. It is clear that PLL and PRR

are both sizable when tunneling through the ring is allowed.
For these chemical potentials, this corresponds to the narrow
window of fluxes around �/�0 = 0(π ), for the case of the
left (right) panels, respectively, within which the degenerate
levels of the ring remain resonant. Beyond these values, the
transmission from left to right is blocked, and the two particles
have a high probability of remaining within the left wires. A
further analysis of Figs. 2 and 4 in the light of the results shown
in Fig. 5 then reveals that the high values of concurrence in
the plateaus away from �/�0 = 0(π ), mod(2π ) in the case of
the left (right) panels of Fig. 4, correspond to states that have
a very low probability of taking place. Instead, the resonant
situation with two degenerate chiral states of the ring at the
Fermi energy leads to a high orbital entanglement, which is
clearly witnessed by a high noise amplitude S.

IV. CONCLUSION

To summarize, we introduced an alternative mechanism for
orbital entanglement. This type of entanglement originated in
the spectral nature of the AB ring and is highly sensitive to
the magnetic field. Orbitally entangled electronic pairs can be
produced by suitably tuning the magnetic field, the chemical
potential or a voltage gate at the ring, in order to have a
degenerate pair of electronic states with different chiralities
at the Fermi energy (intermediate qubit). In fact, if the right
and left leads are mediated by a single-level system (single-
chirality ring) the orbital entanglement is negligible. This type
of entanglement can be detected in transport experiments, the
shot noise being a good witness. The setup of Fig. 1 could
be experimentally realized in an architecture based on the
quantum Hall regime of a 2D electron gas, by substituting
each wire by a pair of incoming and outgoing edge states
and the ring by a pair of edge states with different chiralities,
separated by a narrow circular wall. In such a setup it would
be possible to combine the main system of Fig. 1 with beam
splitters connected at the wires, in order to test Bell inequalities
and even perform the full quantum tomography following the
protocol of Ref. 11. Two interesting possible generalizations
are the combination between static and flying qubits by
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combining with quantum dots,17 as well as the introduction
of dynamical single-particle emitters at the sources.18
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APPENDIX

1. Reduced density matrix

We evaluate the post-selected state of two electrons at
opposite leads, ρ(2), in terms of Green functions [the Fourier
transform of Eq. (7)]. The explicit expression of a general
matrix element, up to a normalization factor, is

4∏
ν=1

∑
kν

δ
(
ε − εkν

)〈
c
†
kα

(t)c†kβ
(t)ckλ

(t)ckδ
(t)

〉
= �2[fα(ε)fβ(ε)GR

λ,α
(ε)GR

δ,β
(ε) − fα(ε)fδ(ε)GR

λ,α
(ε)GA

δ,β
(ε) − fλ(ε)fβ(ε)GR

δ,β
(ε)GA

λ,α
(ε)

]
− i

4∑
γ=1

�3
[
fβ(ε)fγ (ε)GR

λ,γ
(ε)GR

δ,β
(ε)GA

γ ,α
(ε)fα(ε)fγ (ε)GR

λ,α
(ε)GR

δ,γ
(ε)GA

γ ,β
(ε)

] +
4∑

γ,η=1

�4fη(ε)fγ (ε)GR

λ,γ
(ε)GR

δ,η
(ε)

×GA

η,β
(ε)GA

γ ,α
(ε) + �

⎡
⎣−ifα(ε)fβ(ε)GR

δ,β
(ε) + ifα(ε)fδ(ε)GA

δ,β
(ε) − �

4∑
γ=1

fγ (ε)fα(ε)GR

δ,γ
(ε)GA

γ ,β
(ε)

⎤
⎦ δkα,kλ

+�

⎡
⎣−ifδ(ε)fα(ε)GR

λ,α
(ε) + ifλ(ε)fδ(ε)GA

λ,α
(ε) − �

4∑
γ=1

fγ (ε)fδ(ε)GR

λ,γ
(ε)GA

γ ,α
(ε)

⎤
⎦ δkδ,kβ

−
∑
kα

∑
kδ

δ
(
ε − εkα

)
δ(ε − εkδ

)fδ(ε)fα(ε)δkα,kλ
δkδ,kβ

, (A1)

where we considered all spectral densities equal �α = � ∀α.
fα(ε) is de Fermi distribution function of the lead α. Note that
GR

α,β (ε) = ∑
λ,λ′ G

R
λ,λ′ (xα,xβ,ε).The retarded Green functions

are evaluated by solving the Dyson equation,

GR
λ,λ′(x,x ′,ε) = gR

λ′(x,x ′,ε)δ(x − x ′)δλ,λ′

+
4∑

γ=1

∑
λ′′

GR
λ,λ′′ (x,xγ ,ε)�R

γ (ε)gR
λ′(xγ ,x ′,ε),

(A2)

where

gR
λ′(x,x ′,ε) = 1

M

k0∑
k=−k0

e−ik(x−x ′)

ε − εk,λ′ (�) + iη
, (A3)

where k0 is the energy cutoff and M = 2k0 + 1 a normaliza-
tion factor, the uncoupled retarded Green function of the ring,
and �R

γ (ε) = ∑
kα

|wkα
|2gR

kα
(ε) the self-energy of reservoir α.

2. Shot-noise calculation

Here we show the shot-noise expression of Eq. (8) in terms
of retarded Green functions:14

Sα,β (0) = 1

2

∫
dτ [〈{Jα(τ ),Jβ(0)}〉 − 2〈Jα(τ )〉〈Jβ(0)〉] = e2

2h̄

∫
dε

2π
⎩ 4∑

δ,γ=1

(�α�β�δ�γ {[1 − fγ (ε)]fδ(ε)

+ [1 − fδ(ε)]fγ (ε)}GR
β,γ (ε)GR∗

α,γ (ε)GR
α,δ(ε)GR∗

β,δ(ε)) − 2�α�β{[1 − fβ(ε)]fα(ε) + [1 − fα(ε])fβ(ε)}

× Re
{
GR

α,β (ε)GR
β,α(ε)

} − 2�α�βRe

(
iGR

β,α(ε)
4∑

δ=1

GR
α,δ(ε)GR∗

β,δ(ε)�δ{[1 − fα(ε)]fδ(ε) + [1 − fδ(ε)]fα(ε)}
)

− 2�α�βRe

(
iGR

α,β (ε)
4∑

δ=1

GR
β,δ(ε)GR∗

α,δ(ε)�δ{[1 − fβ(ε)]fδ(ε) + [1 − fδ(ε)]fβ(ε)}
)

+ 2δα,β�α

4∑
δ=1

�δ

∣∣GR
α,δ(ε)

∣∣2{[1 − fδ(ε)]fα(ε) + [1 − fα(ε)]fδ(ε)}⎭. (A4)
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103, 076804 (2009).

045442-6

http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1038/1781046a0
http://dx.doi.org/10.1038/1781046a0
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1103/RevModPhys.79.1217
http://dx.doi.org/10.1038/nphys1669
http://dx.doi.org/10.1103/PhysRevLett.91.147901
http://dx.doi.org/10.1126/science.284.5412.296
http://dx.doi.org/10.1126/science.284.5412.299
http://dx.doi.org/10.1038/nature00911
http://dx.doi.org/10.1038/nature00911
http://dx.doi.org/10.1038/nature01503
http://dx.doi.org/10.1038/nature05955
http://dx.doi.org/10.1103/PhysRevB.74.115315
http://dx.doi.org/10.1103/PhysRevB.74.115315
http://dx.doi.org/10.1038/nature05955
http://dx.doi.org/10.1103/PhysRevLett.92.026805
http://dx.doi.org/10.1103/PhysRevLett.92.026805
http://dx.doi.org/10.1103/PhysRevLett.102.100502
http://dx.doi.org/10.1103/PhysRevB.80.235412
http://dx.doi.org/10.1103/PhysRevB.80.235412
http://dx.doi.org/10.1103/PhysRevB.73.041305
http://dx.doi.org/10.1103/PhysRevB.77.153403
http://dx.doi.org/10.1103/PhysRevB.80.201312
http://dx.doi.org/10.1103/PhysRevB.80.201312
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevB.23.6851
http://dx.doi.org/10.1088/1367-2630/9/3/067
http://dx.doi.org/10.1126/science.1141243
http://dx.doi.org/10.1103/PhysRevLett.103.076804
http://dx.doi.org/10.1103/PhysRevLett.103.076804

