
TB, AB, US, PhysBio/425732, 18/04/2012

IOP PUBLISHING PHYSICAL BIOLOGY

Phys. Biol. 9 (2012) 000000 (10pp) UNCORRECTED PROOF

Optimal cellular mobility for
synchronization arising from the gradual
recovery of intercellular interactions
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Abstract
Cell movement and intercellular signaling occur simultaneously during the development of
tissues, but little is known about how movement affects signaling. Previous theoretical studies
have shown that faster moving cells favor synchronization across a population of locally
coupled genetic oscillators. An important assumption in these studies is that cells can
immediately interact with their new neighbors after arriving at a new location. However,
intercellular interactions in cellular systems may need some time to become fully established.
How movement affects synchronization in this situation has not been examined. Here, we
develop a coupled phase oscillator model in which we consider cell movement and the gradual
recovery of intercellular coupling experienced by a cell after movement, characterized by a
moving rate and a coupling recovery rate, respectively. We find (1) an optimal moving rate for
synchronization and (2) a critical moving rate above which achieving synchronization is not
possible. These results indicate that the extent to which movement enhances synchrony is
limited by a gradual recovery of coupling. These findings suggest that the ratio of time scales
of movement and signaling recovery is critical for information transfer between moving cells.
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1. Introduction

Intercellular communication via direct cell–cell contact allows
the flow of information in tissues during development.
Information is exchanged between cells using a diverse set

6 Authors to whom any correspondence should be addressed.
7 Present address: Logic of Genomic Systems Laboratory, Centro Nacional
de Biotecnologı́a—CSIC, Calle Darwin 3, 28049 Madrid, Spain.

of ligands and receptors expressed on the cells’ surfaces,
including but not limited to Eph–ephrin, Cadherin–Cadherin
and Delta–Notch receptor–ligand pairs [1–3]. This information
is used to coordinate the dynamics of cellular processes
across tissues and establish patterns. During development,
cellular movement can occur within tissues as they undergo
morphogenesis [4, 5]. Our interest is how these cellular
movements affect the emergence of organized spatial and
temporal patterns that yield a reliable developmental program.
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Figure 1. Cells need to recover interactions with their new neighbors after movement. (A1) Cells in a two-dimensional lattice. Two cells
connected with a solid green line can interact with each other. (A2) The red and blue cells exchanged their locations. They cannot interact
with their new neighbors instantaneously. Note that the red and blue cells maintain contact and interact with each other. (A3) and (A4)
Interactions are gradually recovered. (B) Time evolution of the coupling strength defined in equation (1b). (C) Each cell experiences an
exchange of its location every 1/λ time unit on average. The exchange times obey Poissonian statistics.

The vertebrate segmentation clock provides an attractive
model system to address this question, because it involves
intercellular signaling [6–9] together with cell movement
[10–12]. This clock operates during vertebrate embryonic
development and controls the rhythmic formation of somites,
which are the precursors of vertebrae and other tissues that
make the characteristic segmented structure of vertebrates.
The segmentation clock is a tissue level rhythmic pattern
generator consisting of a population of mobile cells in the
presomitic mesoderm (PSM) [13, 14]. Each cell in the PSM
possesses a single-cell genetic oscillator composed by negative
feedback loops [15–17]. These oscillators can interact with
their neighbors through membrane proteins Delta and Notch,
and synchronize their phases locally [6–9].

However, by itself the local coupling through Delta–
Notch signaling may be a poor way to achieve global phase
synchronization across a cell population, as is observed in the
tailbud, the tissue at the posterior of the PSM. The reason
is that locally coupled oscillators have a strong propensity
to form persistent spatial structures that prevent the cell
population from reaching global synchronization [18–21].
Recently, it has been reported that cells in the posterior PSM
move around and exchange their neighbors over time [10–12].
Motivated by these observations, a theoretical study suggested
that cell movement observed in the posterior PSM may be
important for quickly achieving global synchronization of
genetic oscillators across a cell population when cells use a
local coupling mechanism [21]. This result is supported by
further theoretical studies addressing the effects of mobility
on coupled oscillators [18, 22–24]. It has been suggested
that cells moving faster synchronize their oscillators more
quickly by preventing the formation of persistent spatial
structures [18].

An important assumption in these previous studies is
that when a cell arrives at a new location, it immediately
interacts at full capacity with its new neighbors via membrane
proteins (such as Delta and Notch; see [21]). However, it
is reasonable to expect that the association of membrane
proteins between two cells that gradually come into contact
with each other might need some time to reach full capacity
(figure 1(A), see also section 7). Indeed, such a gradual
interaction was recently measured for Delta–Notch signaling
in a cell culture system [25]. Here, we ask whether cellular
mobility still improves synchronization when cells have to
gradually recover intercellular interactions after movement.

To answer this question, we develop a coupled phase
oscillator model in which we take into account both
cell movement and the gradual recovery of intercellular
interactions after movement. We first derive an equation for the
time evolution of the coupling strength between two adjacent
cells after they come into contact, by considering the kinetics
of membrane protein binding events between these two cells.
We use this model to show that the degree of synchronization
depends in a non-monotonic way on cell movement. We
find (1) an optimal moving rate for synchronization and
(2) a critical moving rate above which cell movement destroys
synchronization. We explain these optimal and critical moving
rates in terms of the competition of timescales between the
moving rate and the coupling recovery rate. Our results
indicate that whether the moving rate observed in vivo
can promote synchronization of genetic oscillators critically
depends on the relative speed with which cells establish and
develop interactions with their new neighbors after movement.
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2. Theoretical description of mobile, coupled
oscillators

We model a cell population in the tailbud as a discrete system
in which cells are located on a two-dimensional lattice. The
unit of length is the distance between two adjacent sites in
the lattice. Each cell on the lattice is identified by the index
j ( j = 1, 2, . . . , N). Cells in the bulk can interact with their four
nearest neighbors (figure 1(A)), while cells in the boundaries
interact with their two or three neighboring cells.

To describe the cell movement in the PSM, we allow
cells on the lattice to exchange positions with one of their
nearest neighbors, at random times with a characteristic time
scale 1/λ (see figure 1(C) and section 7 for the procedures of
simulations; see also [21]). The inverse of the characteristic
time scale defines the moving rate λ. For larger λ, cells
exchange their locations more frequently. We assume isotropic
cell movement. With this representation of cell movement, a
single cell performs a random walk in the lattice, as observed
experimentally in the PSM [10, 11] and described in [10].
The details of movement processes, for example cell shape
changes, have not been experimentally characterized in the
PSM yet. Our description of cell movement is a simplification
of more complex processes of movement within the tissue that
allows several analytical treatments, as shown below. At the
boundaries, cells exchange their positions with one of their two
or three neighboring cells. This choice of boundary condition
for cell movement is motivated by the fact that cells in the
PSM are mostly constrained to move within the tissue.

To represent the oscillators, we adopt a locally coupled
phase oscillator model [26], as was done in previous theoretical
studies on the segmentation clock [21, 27, 28]. It was shown
that the phase oscillator model captures the dynamics of more
detailed models that explicitly describe Delta–Notch signaling
for the segmentation clock [21]. Moreover, phase oscillators
were successfully used to fit theory to experimental data in
studies on the segmentation clock [9, 29] and the circadian
clock [30, 31].

We consider the situation in which all cells have
identical intrinsic frequency ω for their intracellular genetic
oscillators. For the segmentation clock, this intrinsic
frequency is determined by the reaction kinetics in negative
feedback loops in the downstream of Delta–Notch signaling
[16, 32]. To include the dependence of the coupling strength—
the interaction rate—on the elapsed time after contact, we
introduce a time-dependent coupling strength. The phase θ j (t)
of cell j at time t obeys
dθ j(t)

dt
= ω + 1

n j

∑

α

κ jα(t jα ) sin(θα(t) − θ j(t)) +
√

2Cξ j(t)

for j = 1, 2, . . . , N, (1a)

where
∑

a
represents summation over nearest neighbors,

κ jα(t jα ) is the time-dependent coupling strength between cell j
and cell α, nj is the number of nearest neighbors for cell j (nj =
2, 3 or 4), C is the noise strength and ξ j (t) is a white Gaussian
noise with 〈ξ j(t)〉 = 0 and 〈ξ j(t)ξ j′ (t ′)〉 = δ j j′δ(t − t ′).
To describe the manner in which a cell takes some time to

interact at full capacity with its new neighboring cells after
movement (figure 1(A)), we introduce the following expression
for coupling strength (see section 7 for a derivation of this
expression where we explicitly consider simple assumptions
on the kinetics of binding processes between ligands and
receptors on two adjacent cells):

κ jα(t jα ) = κ0(1 − e−βt jα ), (1b)

where κ0 is the maximum coupling strength, t jα is the elapsed
time after cell j and cell α made contact with each other, and
β is the coupling recovery rate after contact. Larger β means
a faster recovery of the interaction (figure 1(B)). The coupling
strength between two adjacent cells is zero at the moment
after they contact with each other. It increases with time as
long as these two cells stay adjacent. To focus our analyses on
this interaction-recovery process and to simplify the model,
we assume that a cell that just left its position instantaneously
ceases to interact with its old neighbors. The inclusion of a
gradual coupling decay between old neighbors in equation (1)
is an interesting extension of the model that we leave for future
work.

To measure the degree of synchronization, we use the
order parameter proposed by Kuramoto [33]:

Z(t) =
〈∣∣∣∣∣∣

1
N

N∑

j=1

eiθ j (t)

∣∣∣∣∣∣

〉

ens

, (2)

where i =
√

−1 and 〈· · ·〉ens represents the average over the
different realizations of initial conditions and noise (for initial
conditions, see section 7). If Z (t) is close to unity, the phases
of oscillators are relatively close to each other and the system
is in a synchronized state. In contrast, if Z (t) is close to zero,
phases are scattered and the system is in an unsynchronized
state.

Although the order parameter equation (2) measures the
degree of synchronization, it cannot characterize phase profiles
that emerge in a model that includes space [18]. In order to
characterize spatial phase profiles and to measure the local
phase order, we also consider the correlation between two
sites at distance d in the two-dimensional lattice:

ρ(d, t) = 〈cos(ϑk(t) − ϑk′ (t))〉|k−k′|=d, (3)

where k = (k, l) represents a site in the two-dimensional
lattice, ϑk(t) represents the phase value of site k at time
t (e.g. if cell j is in site k at time t, ϑk(t) = θ j(t))
and 〈· · ·〉|k−k′|=d represents an average over all pairs of
sites between which the distance is d. The value of ρ lies
between −1 and 1. If two sites at a distance d of each other
tend to have a similar phase value, ρ is close to 1. In contrast
if they tend to be opposite in phase, ρ is close to −1. If
there is no correlation between them, then ρ ≈ 0. To obtain
better statistics, we calculated an average of ρ over different
realizations of initial conditions and noise.

The values of parameters in the model for simulations are
listed in table 1. In section 7, we estimate the moving rate λ

of PSM cells as roughly around 0.05–0.1 min−1, from the data
in previous studies on chick somitogenesis [10, 11]. Below,
we explore a wide range of the moving rate λ including these
estimated values.
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Figure 2. Dependence of the degree of synchronization on the moving rate λ is non-monotonic. (A) Snapshots of spatial phase profiles in the
two-dimensional lattice at different moving rates λ observed in numerical simulations of equation (1a) with coupling recovery equation (1b).
The phase ϑ at each site is represented by a color look-up table as indicated. (B)–(D) The symbols indicate the results of simulations of
equation (1a) with coupling recovery equation (1b), while the lines indicate the results of simulations of equation (1a) with the effective
coupling strength equation (5). (B) Time evolution of the order parameter Z(t) defined in equation (2) at different moving rates λ as
indicated. Error bars indicate standard deviations (SD). (C) Dependence of the correlation defined in equation (3) on the distance between
two sites. We plotted the temporal average of the correlation after its value reached a steady state. Error bars for the temporal SD of
correlation are smaller than the size of symbols. (D) Dependence of Z on the moving rate λ. Different symbols and lines correspond to
different time points as indicated. ‘s.s.’ is the steady state. The black horizontal line indicates the steady-state value of Z when λ = 0. Error
bars indicate SD. In all panels, β = 33κ0 and C = 0.25κ0.

Table 1. Parameters in the modela.

Values used in
Parameters simulations

ω Intrinsic frequency 0
κ0 Maximum coupling strength 0.03 min−1

β Coupling recovery rate 3.3κ0 to 333κ0
λ Moving rate 0 to 300κ0
C Noise strength 0.1κ0 to 0.3κ0
N Number of cells in the system 256 (16 × 16)
aSee also section 7 for these choices of parameter values.

3. Optimal and critical moving rates for
synchronization

To study the effect of gradual coupling recovery, we
numerically simulate equation (1) and measure the degree of
synchronization by equations (2) and (3). Figures 2(A) and (B)
show the snapshots of phase profiles and the time evolution of
the order parameter Z (t) defined in equation (2), respectively,
for a fixed coupling recovery rate β = 33κ0 (hereafter, we use
κ0 = 0.03 min−1 as the unit of time, see section 7). When
cells do not move (λ = 0, red triangles in figure 2(B)), the
order parameter increases with time and finally approaches a

steady-state value around Z = 0.5. The standard deviations of
the order parameter Z (t) are large because a single trajectory
of the order parameter fluctuates strongly due to noise, and
the time needed for the trajectory to reach the steady-state
value is sensitive to the initial phase differences (figure S1
available at stacks.iop.org/PhysScr/9/000000/mmedia). As
indicated by the sharp decrease of ρ with increasing
distance d in figure 2(C), these non-mobile cells can reach
and maintain short-range correlation of phases, but they
cannot achieve long-range correlation even after a long
time (see also figure 2(A)). This means that these cells
tend to form local clusters of synchronization between
which phases differ greatly. When cells exchange their
locations every 1/4κ0 on average (λ = 4κ0, green circles in
figure 2(B)), these cells build synchronization more rapidly
compared to when they do not move. Moreover, the steady-
state value of the order parameter is much larger, around
Z = 0.7. In this case, we observe both short- and long-range
correlations of phases (figures 2(A) and (C)), confirming that
these cells achieve global phase order. This result is consistent
with previous work using a gene network model, which shows
that cell movement promotes synchronization for β ( λ (see
supplementary figure S6 in [21]).
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(A) (B)

Figure 3. The optimal and critical moving rates for synchronization depend on the coupling recovery rate β. (A) Dependence of the order
parameter Z defined in equation (2) on β at each moving rate λ. The black solid line shows the order parameter when cells can
instantaneously recover interactions with their new neighbors after movement (i.e. κ ja(tja)≡κ0 in equation (1a)). (B) Dependence of the order
parameter Z defined in equation (2) on β at each ratio λ/β. The vertical dotted line indicates the transition point λ∗/β calculated from
equation (8). In both panels, the symbols indicate the results of simulations of equation (1a) with coupling recovery equation (1b), while the
solid lines indicate the results of simulations of equation (1a) with the effective coupling strength equation (5). The horizontal dotted lines in
both panels indicate the steady-state value of the order parameter when λ = 0. In both panels, C = 0.25κ0. We ran the simulations long
enough for the order parameter Z(t) to reach its steady-state value. We calculated the time averages of Z as described in section 7. Error bars
for the temporal standard deviations of Z are smaller than the size of symbols.

However, if each cell exchanges its position more
frequently than considered above (λ = 40κ0, blue squares
in figure 2(B)), the degree of synchronization is much worse
than when the cells do not move (λ = 0). In this case, we
observe phase-disordered states where neither local nor global
phase order exists, as represented by ρ ≈ 0 for any d in
figure 2(C) (see also figure 2(A)). This indicates that the
dependence of the degree of synchronization on the moving
rate is non-monotonic, suggesting the existence of an optimal
moving rate to achieve synchronization. We systematically
studied the behavior of the order parameter for a range of
moving rates, confirming the existence of an optimal moving
rate (figure 2(D)). In addition, we found a transition point in the
moving rate: if the moving rate is smaller than a critical moving
rate λ∗, global phase order appears, while if it is larger than
λ∗ the system goes to phase disorder (figure 2(D), λ ≈ 23.3κ0).
Thus, cells have to move at an appropriate rate to achieve better
synchronization when they need to recover the interactions
with their new neighboring cells after movement.

Both the optimal and the critical moving rates depend on
the coupling recovery rate β (figure 3(A)). When β is small
(β = 3.3κ0, red filled triangles in figure 3(A)), no apparent
peak is observable, meaning that cell movement cannot
improve the degree of synchronization across the population
of oscillators. In contrast, with the increase of β, an optimal
moving rate for synchronization appears (β = 10.5κ0–333κ0 in
figure 3(A)) and there is a range of the moving rate for
which the degree of synchronization is better than that of non-
mobile oscillators. As β increases, this range becomes wider
and both the optimal and the critical moving rates become
larger. These results indicate that whether cell movement
at a given moving rate promotes the synchronization of
oscillators depends on the coupling recovery rate. Note that
the degree of synchronization achieved at each moving rate
also increases with the increase in β, and eventually saturates
to the value corresponding to instantaneous coupling recovery

(i.e. for κ jα(t jα ) ≡ κ0 in equation (1a), the black solid
line in figure 3(A)). For instantaneous coupling recovery, the
order parameter Z monotonically increases with the increasing
moving rate λ, as was previously shown in [21].

To expose the competition of timescales occurring
between the moving rate λ and the coupling recovery
rate β, we examine how the degree of synchronization in
figure 3(A) scales with the ratio λ/β. The collapse of the
curves is not complete, showing that the order parameter Z
is not a single function of this ratio, but rather it depends on
λ and β independently (figure 3(B)). However, the transition
point from phase order to phase disorder coincides at around
λ/β = 0.7 for large enough β. This implies that the transition
point does not depend on individual values of λ and β, but on
the ratio λ/β if β is large.

We next examined how noise affects optimal and critical
moving rates. As the noise strength C increases, the critical
moving rate becomes smaller (figure 4(A)). This result
indicates that noise reduces the range of λ/β in which cell
movement enhances the degree of synchronization. When C is
small, the maximum degree of synchronization at the optimal
moving rate is not very pronounced in steady states (e.g.
C = 0.1κ0 in figure 4(A)). However, even for small C, there
is an optimal moving rate at which cells synchronize much
faster than non-mobile cells (figure 2(D)). This optimal moving
rate becomes smaller as C increases. In summary, both the
coupling recovery rate β and the noise strength C determine
the range in which cell movement can improve the degree of
synchronization.

4. The origin of optimal and critical moving rates

To understand the optimal moving rate and to estimate the
critical moving rate, we introduce an effective coupling
strength. This effective coupling strength approximates the
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(A) (B)

Figure 4. Noise limits the range where cell movement can improve synchronization. (A) The order parameter Z versus the ratio λ/β of the
moving rate λ to the coupling recovery rate β for different values of the noise strength C. Each colored vertical line indicates λ∗/β
calculated from equation (8) for the corresponding value of C, indicated by the line color. (B) Dependence of order parameter Z on the
scaling parameter λ̃ = 3(λ/β)(κ0/C − 2). The vertical line at λ̃ = 1 indicates the transition point from phase order to phase disorder
calculated from equation (8). In both panels, the symbols indicate the results of simulations of equation (1a) with coupling recovery
equation (1b), while the lines indicate the results of simulations of equation (1a) with the effective coupling strength equation (5). In both
panels, β = 33κ0. We ran the simulations long enough for the order parameter Z(t) to reach its steady-state value. We calculated the time
averages of Z as described in section 7. Error bars for the temporal standard deviations of Z are smaller than the size of symbols.
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Figure 5. The effective coupling strength depends on the ratio of the
moving rate to the coupling recovery rate λ/β. (A) Time series of
the coupling strength between two adjacent sites, k and k′, in a
two-dimensional lattice. The red line indicates the time average of
the time series. (B) Dependence of the time average of the coupling
strength given by equation (5) on the ratio λ/β. The horizontal
broken line indicates the critical coupling strength κ∗ below which
the disordered state is stable. The intersection between κ∗ and the
time average of the coupling strength determines the critical moving
rate λ∗.

time-varying coupling strength between each pair of adjacent
sites in the two-dimensional lattice (figure 5) by its temporal
average.

Let κkk′ (t) be the time series of the coupling strength
between a pair of adjacent sites k and k′ in the two-dimensional
lattice (e.g. k = (k, l) and k′ = (k, l + 1), figures 5(A) and

S2). As long as a pair of cells remains adjacent to each other
in these two sites, κkk′ (t) increases with time according to
equation (1b). This interaction time ends when one of these
two cells moves away from these two sites, and κkk′ (t) is reset
to zero. Note that the length of the interaction time is stochastic
due to random cellular motions.

The time average of κkk′ (t) between t0 and t0 + T is
defined as

〈κ〉T = 1
T

∫ t0+T

t0
κkk′ (t) dt, (4)

where T is the time window for averaging. We can
calculate this time average analytically by using
equation (1b) and the probability density function for
the length of the interaction time, assuming that T is
sufficiently large (see the supplementary data available
at stacks.iop.org/PhysScr/9/000000/mmedia for detailed
calculation). The time average of the coupling strength
between a pair of adjacent sites in the bulk of the two-
dimensional lattice can be written as

〈κ〉T = 1
1 + 3λ/2β

κ0. (5)

Equation (5) shows that the time average of coupling strength
〈κ〉T is a decreasing function of λ/β, the ratio of the moving
rate λ to the coupling recovery rate β (figure 5(B)). Moving
faster and/or recovering the interactions slower reduces the
effective coupling strength between neighboring cells. If
λ/β + 1, then 〈κ〉T ≈ κ0(1 − 3λ/2β). In contrast, if
coupling recovery is very slow and/or cells move very fast
(i.e. λ/β ( 1), 〈κ〉T ≈ 2κ0β/3λ.

Equation (5) agrees with the numerically calculated
time average of the coupling strength between two
adjacent sites in the two-dimensional lattice (figure S2(C)
available atstacks.iop.org/PhysScr/9/000000/mmedia for the
time window T = 300 κ0

−1). Furthermore, the time evolution
of the order parameter calculated from the simulations of
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equation (1a) with κ jα(t jα ) ≡ 〈κ〉T approximates that of the
original model equation (1a) with equation (1b) very well
(colored solid lines in figures 2–4).

Using equation (5), we can explain why a critical moving
rate for synchronization appears (figure 5(B)). For coupled
noisy phase oscillators, it is known that there is a critical
coupling strength κ∗ below which the incoherent (phase
disordered) state becomes stable and global phase order is
not possible [18, 34]. If the ratio λ/β is sufficiently large, 〈κ〉T

becomes smaller than κ∗. Hence, cells moving faster and/or
recovering interaction slower cannot achieve synchronization.

Moreover, equation (5) provides a heuristic interpretation
for the dependence of the critical moving rate on the noise
strength C. The noise strength C determines the critical
coupling strength κ∗, and if C is large, then κ∗ is also
large. Therefore, the effective coupling strength 〈κ〉T becomes
smaller than κ∗ even at smaller λ/β. Hence, synchronization
is allowed only within a reduced interval of λ/β if the
noise is strong. In contrast, if the noise is weak, κ∗ is
smaller. Therefore, the interval in which 〈κ〉T is larger than
κ∗ becomes wider, allowing cells moving relatively faster to
realize synchronization (figure 4).

Finally, the emergence of an optimal moving rate is
explained as follows. If λ/β is sufficiently small, 〈κ〉T can
be larger than κ∗ (figure 5(B)). However, if cells move slowly
enough, spatial structures that tend to hamper the achievement
of global synchronization are more likely to appear (see
λ = 0 in figures 2(A) and (C)). Hence, an optimal value of
λ/β exists where 〈κ〉T is larger than κ∗, yet cells move fast
enough to prevent the formation of persistent spatial structures
(figures 3 and 5).

5. Estimation of the critical moving rate

The critical moving rate λ∗ above which synchronization
breaks down can be obtained from an expression for the critical
coupling strength κ∗, and the expression for the effective
coupling strength 〈κ〉T in equation (5) (figure 5(B)). Therefore,
to calculate λ∗, we first need to know the critical coupling
strength κ∗ of mobile oscillators in a two-dimensional lattice.

Consider cells moving fast enough to meet all the cells
in the two-dimensional lattice in a sufficiently short time.
In such a situation, we speculate that their behavior can be
approximated by that of oscillators with mean field coupling
(i.e. all-to-all coupling; see[22–24]). For oscillators with mean
field coupling, the critical coupling strength κm

∗ below which
the incoherent state is stable is

κ∗
m = 2Cm, (6)

where Cm is the noise strength in the mean field system [34]. We
approximate the critical coupling strength of mobile oscillators
in a two-dimensional lattice as κ∗ ≈ 2C, as long as these
oscillators move very fast. Therefore, the intersection between
equation (5) and κ∗ gives

1
1 + 3λ∗/2β

κ0 = 2C. (7)

From equation (7), we can obtain the critical moving rate as
λ∗

β
= κ0/C − 2

3
(8)

Vertical lines in figures 3(B) and 4(A) indicate λ∗/β calculated
using equation (8) with the corresponding values of κ0 and
C used in simulations, showing that equation (8) is a good
approximation for the transition point from phase order to
phase disorder. Equation (8) further explains the scaling of
the transition point among different values of β observed in
figure 3(B) as β becomes large, for a fixed noise strength C =
0.25κ0. Introducing the rescaled variable λ̃ = 3(λ/β)(κ0/C −
2), equation (8) predicts that the transition point should be at
λ̃ = 1. This is in fact what we see in figure 4(B), where the
collapse of curves with different noise strengths occurs close
to this transition point.

6. Discussion

In this paper, we developed a mathematical model that includes
the gradual recovery of signaling between newly contacted
cells after movement (figure 1) and used this model to
study how this gradual recovery affects synchronization of
genetic oscillators. We showed the existence of an optimal
moving rate for synchronization and a critical moving rate
above which synchronization is not possible (figure 2).
These optimal and critical moving rates depend on the
coupling recovery rate and the noise strength (figures 3
and 4). By considering the time average of the time-
varying coupling strength, we derived an expression for
an effective coupling strength, equation (5). This effective
coupling strength reveals how the optimal and critical moving
rates emerge in the system (figure 5). These interesting new
properties are a direct consequence of the gradual recovery of
intercellular interactions after movement and do not occur
with instantaneous recovery [21]. We confirmed that our
conclusions still hold even in the presence of time delays
in intercellular communication [27, 29] (see supplementary
data available atstacks.iop.org/PhysScr/9/000000/mmedia and
figures S3 and S4). Here, to highlight the effects of the coupling
recovery and make the analysis of equation (1a) simpler, we
neglected coupling time delays.

Our results suggest that by controlling the moving rate or
the recovery rate, the speed and degree of synchronization of
a system can be altered experimentally. Recently, some key
parameters involved in an effective theoretical description of
the segmentation clock have been estimated by fitting theory
to experimental data, including the coupling strength between
cells, and noise strength [9, 29]. This system may offer several
ways to test the effect of movement on synchronization. A
naturally occurring gradient in cellular mobility has been
observed along the PSM [10, 12] and different synchronization
speeds may be found at different locations in the mobility
gradient after experimental desynchronization. It may be
possible to experimentally alter the kinetics of Delta–Notch
signaling in the PSM, for example by changing the affinity
of ligand and receptor [35] and thereby alter the coupling
recovery rate. Moreover, a chemical factor (fibroblast growth
factor) that affects the mobility of these cells has also been
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identified [10, 11]. These studies suggest the possibility of
regulating the ratio of the moving rate and the recovery rate
experimentally and to test whether an optimal and a critical
mobility exist as the current theoretical study predicts.

The finding of synchronization optima also raises the
possibility that a synchronized multicellular biological clock
may have evolved to an optimal ratio of the moving and
recovery rate. For a system sitting in this optimal ratio,
our study predicts that any perturbation to mobility or
coupling recovery would be detrimental to synchronization.
Furthermore, by increasing this ratio beyond the critical value,
synchronization would be severely disrupted.

In other developmental processes like epiboly,
gastrulation and convergence-extension, as well as in
pathological situations such as inflammation and metastasis,
cell movements take place at the same time as cell–cell
signaling [4, 5, 36–39]. In microbial communities and
in pathogen–host interactions, cell-contact signaling and
movement also occur together [40]. In these processes, the type
of cellular movement might differ from that observed in the
PSM. However, the essential point is that cellular mobility can
cause a new contact between cells that were previously distant
from each other. Generally, in cellular systems intercellular
communication is established and developed gradually over a
characteristic time. Our study indicates that the competition
between this characteristic time scale and that given by
mobility is key to the ability of the system to organize
spatiotemporal patterns.

7. Materials and methods

7.1. Coupling strength dynamics

To derive the coupling strength given by equation (1b), we
consider an event in which two adjacent cells begin to interact
with each other through receptors and ligands expressed on
their cell surfaces. We make a few simplifying assumptions
about the kinetics of binding events to obtain an expression
for the resulting coupling strength. Let p (t) be the amount
of receptor–ligand pairs already bound at time t. The time
evolution of p (t) is given by the following equation:

dp
dt

= β(ps − p), (9)

where ps is the saturating capacity (i.e. the total amount of
receptor–ligand pairs available per cell–cell contact) and β

is the rate of binding processes. The difference ps − p is
the amount of receptor–ligand pairs that have not yet bound
together. In reality, ps might change with time due to the
increase or the decrease of the total amount of receptors and
ligands. However, here we assume for simplicity that ps is
constant over time. With this assumption, equation (9) can be
solved analytically with the initial condition p (0) = 0:

p(t)/ps = 1 − e−βt . (10)

Assuming that the coupling strength is proportional to the ratio
p(t)/ps gives us equation (1b).

In the segmentation clock, the coupling strength κ is
related to the number of available receptor molecules, Notch

and ligand Delta [6–9]. Apart from the Delta–Notch signaling
pathway, no other mechanism has been identified in this system
to mediate intercellular coupling.

In a tissue, moving cells come into contact gradually,
and consequently, their contact surface grows gradually [36].
Our model for cell movement does not include such gradual
contact growth, because cells in our model just exchange their
positions in a two-dimensional lattice when they move. Thus,
equation (1b) can be interpreted as an effective description for
gradual contact growth in the context of a lattice model.

7.2. The integration scheme for equation (1)

In this paper, we use a two-dimensional square lattice. Cells in
the lattice exchange positions with their neighbors at random
times. We assume that the probability that each cell changes
its location per unit time is λ. The time interval until the
next exchange event occurs is determined using the Gillespie
algorithm [41]. Equation (1) is then integrated with the Heun
method between two successive exchange events. The time
step +ts for numerical integration is fixed during a single
simulation, and is determined such that for a given value of
the moving rate λ, +ts is smaller than the average time interval
until the next exchange event 1/(λN/2), as 10+ts ≈ 1/(λN/2).
If +ts > 0.01 in this equation, we set +ts = 0.01. In the
simulations, when a time interval until the next exchange event
given by the Gillespie algorithm is smaller than +ts, we accept
this exchange event at the next time point.

7.3. Parameter values

Throughout this paper, we fix ω = 0 without loss of gen-
erality, considering the system from a co-rotating reference
frame. We use κ0 = 0.03 min−1, which is based on estima-
tions of the coupling strength in vertebrate somitogenesis ob-
tained from theory fits to experimental data [9, 29]. However,
our results are not qualitatively sensitive to the value of κ0.
Similarly, we take a typical size of the relevant tissue dur-
ing somitogenesis, a square lattice of 16 × 16, with a total
of N = 256 cells [21]. As the domain size becomes larger,
oscillators need more time to achieve synchronization (fig-
ure S5 available at stacks.iop.org/PhysScr/9/000000/mmedia).
In addition, a steady-state value of the order parame-
ter Z is smaller for a larger domain size than for a
smaller one. However, for different domain sizes, our
main results are qualitatively the same (figure S5 available
at stacks.iop.org/PhysScr/9/000000/mmedia). The choice of
boundary conditions does not affect our conclusions either (fig-
ure S6 available at stacks.iop.org/PhysScr/9/000000/mmedia).

Recent measurements of cellular mobility in the posterior
chick PSM [10, 11] provided values of cellular velocity of
about 0.5–1.0 µm min−1. Assuming the average cell diameter
of 10 µm, these data suggest that cells move about one cell
diameter roughly in 10–20 min, which gives the moving rate
of 0.05–0.1 min−1. This observed cell movement seems rapid
enough compared to the period of the chick segmentation
clock, which is around 90 min [42]. In fact, a previous study
demonstrated that cell movement at the above estimated rates
can improve synchronization even under an oscillatory period
of 30 min in simulations [21].
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7.4. Initial conditions

The initial phase of each oscillator is chosen randomly from
a uniform distribution between 0 and 2π . In this paper, the
order parameter equation (2) and the correlation equation (3)
are calculated from 200 realizations of the initial conditions
and noise unless otherwise indicated. At the initial time, the
coupling strength for each pair of adjacent cells is set to its
maximum capacity κ0. If a cell contacts with new cells after
movement in the simulations, the coupling strength between
them changes according to equation (1b).

7.5. Steady-state measurements

The simulations are run long enough for the order parameter
defined in equation (2) and the correlation defined in
equation (3) to reach steady-state values (figure S7 available at
stacks.iop.org/PhysScr/9/000000/mmedia). The time taken to
reach steady-state values strongly depends on the moving rate
λ. For this reason, we use different calculation times, ranging
from 150 κ0

−1 to 1500 κ0
−1 depending on the value of λ, to

optimize computational costs. The steady-state measurement
we report in figures 2–4 is the temporal average of the
order parameter and the correlation calculated using the last
90 κ0

−1 time span.
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