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Quantum statistics of classical particles derived from the condition of a free diffusion coefficient
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We derive an equation for the current of particles in energy space; particles are subject to a mean-field effective
potential that may represent quantum effects. From the assumption that noninteracting particles imply a free
diffusion coefficient in energy space, we derive Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein statistics.
Other new statistics are associated to a free diffusion coefficient; their thermodynamic properties are analyzed
using the grand partition function. A negative relation between pressure and energy density for low temperatures
can be derived, suggesting a possible connection with cosmological dark energy models.

DOI: 10.1103/PhysRevE.94.062115

I. INTRODUCTION

Classical particles with the appropriate, local, interaction
can have statistics typically associated to quantum systems.
Kaniadakis and Quarati [1] introduced a nonlinear diffusion
equation for the particle density in a classical system, whose
study was extended in Refs. [2,3]. An appropriate choice of the
transition probabilities, which depend on the particle density,
gives rise to Fermi-Dirac or Bose-Einstein distributions in
equilibrium. Using the analogy between quantum dynamics
and classical dynamics with quantum fluctuations, the authors
argue that the mentioned diffusion equation “can describe a
dynamics very close to the quantum dynamics of a system
of identical particles.” It was shown that this model is useful
to describe Bose-Einstein condensation [4]. Gottesman [5]
presented a model of classical bosons emphasizing the idea that
indistinguishability is not an exclusive quantum property. The
possibility of classical systems composed by indistinguishable
particles is developed in Ref. [6].

A basic assumption in the derivation of quantum statistics
is that the Hamiltonian has no interaction term. This is exactly
the case for photons and approximately for electrons in a
conductor. We know that quantum effects can be reproduced in
a classical system with an interaction potential. For example,
the Pauli exclusion principle for fermions is analogous to a
potential that becomes infinite when two particles occupy
the same state. This hard-core interaction is the cause of a
nonlinear term in the corresponding diffusion equation, see
Ref. [1], Ref. [7, p. 280], or Eq. (10) in Ref. [8]. Nevertheless,
we introduce the interaction only as a mean-field effective
potential in a Fokker-Planck equation.

In our classical system we consider that a particle can
perform transitions to states that are close in energy. The
transition probability from a state of energy ε to a state of
energy ε + δε is given by Pε,ε+δε . It depends on ε and on the
mean-field potential in the involved states. In a nonequilibrium
situation particles diffuse among energy states. Consideration
of the diffusion coefficient in this energy space is central for our
purposes. A system of noninteracting particles is obtained in
the limit of low concentration; they diffuse with a free diffusion
coefficient D0 (for free particles). We may ask what happens
with the diffusion coefficient when the concentration is high.
In general, it depends on the mean-field potential, since the

transition probabilities depend on it. The simplest situation
is when the mean-field potential is zero; in this case the
diffusion coefficient is D0 for any concentration. We explore
the possibility that the diffusion coefficient remains equal to
D0 for any concentration, even when the mean-field potential
is not zero, and find the potentials that satisfy this condition.

We conjecture that a free diffusion coefficient D0 is a
macroscopic manifestation of a noninteracting particle system
at a microscopic level. A zero mean-field potential corresponds
to classical noninteracting particles. We find that a free
diffusion coefficient can be associated not only to that case
but also to quantum statistics of noninteracting particles that
require a nonzero mean-field potential.

In other words, we consider two description levels. In a
microscopic level, the Hamiltonian has no interaction term;
occupation number in energy space may be different from
free-particle statistics due to quantum effects. We do not
enter into the details of the microscopic level but, instead,
develop a classical description based on an effective mean-field
potential that acts on a particle due to the presence of all
the others. We argue that the absence of an interaction term
at the microscopic level is manifested by a free diffusion
coefficient in energy space. In the following, we show that
statistics for fermions, bosons, and free classical particles can
be derived from this assumption. As a bonus, two new statistics
are also obtained. The corresponding grand partition function
is calculated, so that thermodynamic properties of these new
kinds of (hypothetical) particles can be analyzed.

II. DIFFUSION IN ENERGY SPACE

We call nε the number of particles at energy level ε. In this
section we consider a description based on the behavior of one
particle in a mean-field potential. The particle’s energy has
two separate contributions: one of the energy level, given by
ε; the other given by the mean-field potential φε . The potential
is a function only of the number of particles; we use φε as an
abbreviation of φ(nε). It is a local interaction in the sense that
it holds for particles in the same energy level.

We impose the detailed balance condition on the transition
probabilities:

e−β(ε+δε+φε+δε )Pε+δε,ε = e−β(ε+φε )Pε,ε+δε, (1)
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where β = 1/kBT and T is the temperature of a reservoir.
This condition guaranties the evolution to equilibrium, but it
is not enough to specify Pε,ε+δε . Arrhenius equation motivates
the assumption that the transition probabilities can be written
as a combination of exponentials of the energies involved:

Pε,ε+δε = P exp[β (a φε + b φε+δε + c δε)], (2)

where a, b, and c are constants and P may depend on ε, it can
be shown that the combination that fulfills detailed balance is
b = a − 1 and c = 1/2. For later convenience, we introduce a
parameter θ = 1 − 2a, so that

Pε,ε+δε = P exp

[
−β

(
θ + 1

2
φε+δε + θ − 1

2
φε + 1

2
δε

)]
.

(3)

The implicit assumption in Eq. (3) is that the energy barrier
of the Arrhenius equation is a function of the energies of the
initial and final states in which parameter θ is introduced; see
Ref. [9]. There is a clear interpretation for the cases θ = −1, 0,
and 1. For θ = −1, the transition probability depends on the
origin level:

Pε,ε+δε = Pe−β(−φε+δε/2) (θ = −1). (4)

For θ = 0, the transition depends on the energy difference
between target and origin levels:

Pε,ε+δε = Pe−β(φε+δε−φε+δε)/2 (θ = 0). (5)

And for θ = 1 the transition depends on the target level:

Pε,ε+δε = Pe−β(φε+δε+δε/2) (θ = 1). (6)

These are the three cases that we analyze here. They are the
ones for which the grand partition function is calculated, as
we show later.

The current J between levels ε and ε + δε is

J = nε Pε,ε+δε − nε+δε Pε+δε,ε . (7)

We replace Eqs. (3) in (7); the reversed transition probability
is obtained by exchanging ε ↔ ε + δε in Eq. (3). The approx-
imations (nε+δε − nε)/δε � ∂n

∂ε
and (φε+δε − φε)/δε � dφ

dn
∂n
∂ε

are used. After some algebra (see the Appendix for details),
we obtain, in the continuous limit,

J =
[
−D0 e−βθφβ n − D0 e−βθφ

(
βn

dφ

dn
+ 1

)
∂n

∂ε

]
1

δε
, (8)

where D0 = P δε2 is the free diffusion coefficient. The
evolution of the number of particles is given by the continuity
equation in energy space: 1

δε
∂n
∂t

= − ∂J
∂ε

(let us note that factor
1/δε here and in Eq. (8) vanishes when it is constant and
equations are written in terms of the particle concentration
per unit energy: n/δε). Identifying the zero-current state with
equilibrium, it is easy to see that the equilibrium number of
particles is neq ∝ e−β(φ+ε). The proportionality constant can
be written as

neq = e−β(φ+ε−μ), (9)

where we can identify μ with the chemical potential. The
factor in front of ∂n

∂ε
, in Eq. (8), is the diffusion coefficient,

D = D0 e−βθφ

(
βn

dφ

dn
+ 1

)
. (10)

III. STATISTICS FOR D = D0

The condition D = D0 implies

dφ

dn
= eβθφ − 1

β n
. (11)

The free-particle potential, φ = 0, is always a solution of
Eq. (11). It is the only solution for θ = 0. Replaced in Eq. (9),
it gives the Maxwell-Boltzmann distribution:

neq = e−β(ε−μ) (θ = 0). (12)

For θ �= 0 there are other solutions:

φ(n) = − 1

θβ
ln(1 − κ nθ ). (13)

Let us consider the case θ = 1. Replacing Eq. (13) in Eq. (9),
we obtain

neq = 1

eβ(ε−μ) + κ
(θ = 1). (14)

The values κ equal to 1 and −1 correspond to Fermi-Dirac and
Bose-Einstein statistics, respectively. The authors of Ref. [1]
arrive to the same result using a different procedure, and
propose the continuous variation of parameter κ between
−1 and 1 to produce intermediate statistics (see Ref. [10]
for a review on mathematical aspects of parastatistics). The
absolute value of κ may be absorbed in the change of variables
neq → neq/|κ|, μ → μ − β−1 ln |κ|.

For θ = −1, we obtain

neq = e−β(ε−μ) + κ (θ = −1). (15)

As for fermions and bosons, we will consider that only the
sign of κ is relevant, so it takes the values 1 or −1. This is
a result that, as far as we know, was not previously reported.
Since we arrived to it following the same procedure that took
us to Fermi-Dirac, Bose-Einstein, and Maxwell-Boltzmann
distributions, we consider that a deeper analysis is worth it. As
shown in the next section, we can get more information using
the grand partition function.

The necessity of identifying the particles that obey Eq. (15)
with specific names will arise in the next sections. We use the
names ewkons and genkons (the elder and younger sister in
tehuelche language) for the particles obeying Eq. (15) with κ

equal 1 and −1, respectively. There is a problem with genkons,
since for large enough energy the equilibrium particle number,
neq, becomes negative, and this implies a complex mean-field
potential. The proposition of a physical interpretation for
genkons would be rather speculative at this stage. Therefore,
we will focus our attention on the properties of ewkons.

IV. THE GRAND PARTITION FUNCTION

Let us consider a system with a discrete set of energy levels.
The grand partition function for indistinguishable classical
particles in level ε is

Zε,cla =
∞∑

N=0

1

N !
e−β(ε−μ)N = exp[e−β(ε−μ)]. (16)

The Maxwell-Boltzmann distribution Eq. (12) is immediately
obtained using neq = β−1 ∂ lnZε

∂μ
.
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Reservoir

System of
level εT, μ

WN

FIG. 1. Scheme of level ε system in contact with a reservoir with
temperature T and chemical potential μ. The reservoir performs work
WN on the system.

Quantum effects can be introduced by considering that the
system of level ε is in contact with a reservoir with which
not only heat and particles are exchanged but also work; see
Fig. 1. The elementary system in the grand canonical ensemble
consists of all the particles within a given energy level. The
system’s energy is, as always, εN , and the reservoir’s energy
change is −μN − WN , where WN is extra work done on the
system, necessary to accommodate N particles. (The work
done by a reservoir on a system is treated in this way in, for
example, the Gibbs canonical ensemble; see Ref. [11, p. 115].)
Therefore,

Zε =
∞∑

N=0

1

N !
e−β(εN−μN−WN ). (17)

This approach looks more involved than the usual one for
deriving the grand partition function for bosons or fermions.
But, as we show in the next paragraphs, it allows the derivation
of an interesting relation between WN and the effective
potential φ(n), with n = 〈N〉; we omit subscript “eq” in n

for simplicity. And, also, the procedure drives us to the new
statistics for ewkons.

We connect both descriptions—mean-field and grand par-
tition function—by the condition that the equilibrium number
of particles should be the same in both cases. Using Eq. (9) we
have

e−β(φ+ε−μ) = 1

Zε

∞∑
N=0

N

N !
e−β(εN−μN−WN ), (18)

and, after some simplification,

e−βφ = 1

Zε

∞∑
N=1

1

(N − 1)!
e−β[ε(N−1)−μ(N−1)−WN ]

= 1

Zε

∞∑
N ′=0

1

N ′!
e−β[εN ′−μN ′−WN ′ ] e−β(WN ′ −WN ′+1)

= 〈e−β(WN −WN+1)〉. (19)

A physical interpretation is possible using the Jarzynski
equality [12], also called Bochkov-Kuzovlev-Jarzynski equal-
ity [13]. It gives a relation between the variation of the
Helmholtz free energy 	F and the work W ,

e−β 	F = 〈e−β W 〉. (20)

We can see that the effective potential φ(n) is equal to the free-
energy change when the work W = WN − WN+1 is applied.

Let us consider the case of fermions. The state given by
two or more fermions in the same level is forbidden through a
divergence of the energy of system and reservoir. The system’s
energy remains finite and equal to εN due to the assumption
of noninteracting particles. The divergence is carried out by
the reservoir that performs a work on the system that tends to
−∞. We have

WN,fer =
{

0 for N = 0,1

−∞ for N � 2
. (21)

Replacing in Eq. (17) we obtain the corresponding partition
function Zε,fer = 1 + e−β(ε−μ). And replacing in Eq. (19) we
get

e−βφfer = 1

Zε,fer
= 1 − n, (22)

where we used the relation n = 1/(1 + eβ(ε−μ)) for fermions.
Then, we recover Eq. (13) with θ = 1 and κ = 1:

φfer(n) = −β−1 ln(1 − n). (23)

The partition function for bosons, Zε,bos = (1 −
e−β(ε−μ))−1, is obtained when the Gibbs factor 1/N! in Eq. (17)
is canceled with the corresponding work:

WN,bos = β−1 ln N ! (24)

The effective mean-field potential is derived using Eq. (19):

e−βφbos = 〈1 + N〉 = 1 + n, (25)

with n = 1/(eβ(ε−μ) − 1), expression that corresponds to
Eq. (13) with θ = 1 and κ = −1.

Once the procedure is established for the well-known cases
of fermions and bosons, we can move to the new statistics
of ewkons. The effective potential for ewkons, Eq. (13) with
θ = −1 and κ = 1, is

φewk(n) = β−1 ln(1 − 1/n). (26)

Using Eq. (19), we have
n

n − 1
= 〈e−β(WN,ewk−WN+1,ewk)〉. (27)

The problem to determine WN,ewk is that now we do not have
the guide of a known partition function as in the previous
cases. Nevertheless, we can prove that a simple and monotonic
solution of Eq. (27) is given by

WN,ewk = β−1 ln N. (28)

The corresponding grand partition function is

Zε,ewk =
∞∑

N=0

1

N !
e−Nβ(ε−μ)+ln N

=
∞∑

N=1

1

(N − 1)!
e−Nβ(ε−μ)

=
∞∑

N ′=0

1

N ′!
e−(N ′+1)β(ε−μ)

= exp[e−β(ε−μ) − β(ε − μ)]. (29)
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The mean particle number,

n = β−1 ∂ lnZε,ewk

∂μ
= e−β(ε−μ) + 1, (30)

is equivalent to Eq. (15) with κ = 1. In order to check that
expression for the work WN,ewk Eq. (28) satisfies the relation
Eq. (27), we make the replacement and obtain

n

n − 1
=

〈
N + 1

N

〉

= 1

Zε,ewk

∞∑
N=0

1

N !

(
1 + 1

N

)
e−Nβ(ε−μ)+ln N

= 1 + eβ(ε−μ). (31)

It can be seen that this equality is satisfied using the result for
the mean particle number for ewkons Eq. (30).

V. THERMODYNAMIC PROPERTIES

The average energy Eε of level ε can be evaluated with

Eε − μn = −∂ lnZε

∂β
. (32)

The same result is obtained for fermions, bosons, or ewkons,
as expected for noninteracting particles:

Eε = n ε. (33)

To obtain the total energy we need the total grand partition
function given by

Z =
∏
{ε}

Zε, (34)

where the product is performed on all energy levels, repeated
if necessary depending on the degeneracy. Let us consider the
case of ewkons, we have

lnZ =
∑
{ε}

lnZε,ewk =
∑
{ε}

[e−β(ε−μ) − β(ε − μ)]. (35)

The usual approach to derive thermodynamic properties
of an ideal quantum gas of bosons or fermions assumes
a continuous energy spectrum and a density of states g(ε)
proportional to ε1/2. If we try to reproduce the same steps
for a gas of ewkons in a volume V , we obtain divergent
values of energy or particle density at finite temperature. The
divergences can be removed by an appropriate choice of the
density of states, but we do not have arguments to support a
specific one. Nevertheless, some interesting information can
still be extracted form the grand partition function.

Assuming that the energy gaps are small compared to the
average energy, the sum over states is transformed to an
integral, and the total energy, total number of particles, and
pressure are written as

E =
∫

dε g(ε) ε [e−β(ε−μ) + 1], (36)

N =
∫

dε g(ε)[e−β(ε−μ) + 1], (37)

P = 1

Vβ
lnZ

= 1

Vβ

∫
dε g(ε)[e−β(ε−μ) − β(ε − μ)]. (38)

The entropy is

S = kB

∂(T lnZ)

∂T

= kB

∫
dε g(ε) e−β(ε−μ)[1 + β(ε − μ)]. (39)

We note that to keep the entropy—and the other quantities—
bounded in the limit β → ∞, we have to consider the condition
εmin > μ, where εmin is the minimum value of the energy for
which g(ε) �= 0.

Let us consider the situation of small temperature and
εmin > μ. In this case we have

E �
∫

dε g(ε) ε, (40)

PV � −
∫

dε g(ε)(ε − μ). (41)

The relation between pressure and energy density is

w = PV

E
= −1 +

∫
dε g(ε) μ∫
dε g(ε) ε

< 0, (42)

where the inequality comes from the condition εmin > μ. This
result is in contrast with the one corresponding to fermions
or bosons. An ideal nonrelativistic gas of fermions or bosons
has an always-positive relation between pressure and energy
density, w = 2/3; see Ref. [11, p. 189].

VI. EXAMPLES

In this section we evaluate thermodynamic quantities of
an ewkon gas at low temperature for several forms of the
density of states g(ε). As mentioned before, we cannot
support a specific choice of g(ε). The only condition that we
impose is that the thermodynamic quantities do not diverge.
The examples are useful to obtain concrete values of these
quantities, to check general properties, and to have a flavor of
what kind of densities are appropriate for ewkons (the same
approach was implemented in other contexts; see, for example,
Refs. [14,15]). Divergences are avoided with fast decreasing
densities or with nonzero densities in a bounded region of
energy.

A. Exponentially decreasing density of states

Let us consider that the density of states is given by

g(ε) =
{
Be−cε if ε > ε0

0 if ε < ε0
, (43)

with ε0 � 0; constants B and c have dimensions of the inverse
of energy. The total energy, number of particles, and pressure
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are, respectively,

E = Be−cε0

[
e−β(ε0−μ) ε0(β + c) + 1

(β + c)2
+ ε0

c
+ 1

c2

]
,

N = Be−cε0

[
e−β(ε0−μ)

β + c
+ 1

c

]
,

P = Be−cε0

V

[
e−β(ε0−μ)

β(β + c)
+ μ − ε0

c
− 1

c2

]
.

In the limit of low temperature, and taking into account the
condition ε0 > μ, the relation between pressure and energy
density is

w = −1 + cμ

1 + cε0
< 0. (44)

At high temperature, β → 0, the energy and total number
of particles remain bounded:

E → Be−cε0 2(ε0 + 1/c),

N → Be−cε0 2/c,

but the pressure and w diverge.

B. Quadratic density of states

We now consider a density of states that is different from
zero in a bounded interval of energy and has a quadratic form:

g(ε) = 6


ε3
s

ε (εs − ε) �(ε) �(εs − ε), (45)

where 
 = ∫
dε g(ε) is the total number of states and � is the

Heaviside step function. The density is different from zero in
the interval 0 < ε < εs ; we have the condition μ < εmin = 0.
The energy and number of particles are, respectively,

E = 6


ε3
s

[
e−β(εs−μ)

β2

(
ε2
s + 4εs

β
+ 6

β2

)

+ eβμ

β3

(
2εs − 6

β

)
+ ε4

s

12

]
,

N = 
 + 6
eβμ

β2ε2
s

[
e−βεs

(
1 + 2

βεs

)
+ 1 − 2

βεs

]
.

The pressure can be written in terms of the number of particles
giving the equation of state:

PV = N/β − 
 (1/β − μ) − 
εs/2. (46)

The relation between pressure and energy density at low
temperature is

w = −1 + 2μ

εs

< 0. (47)

In the limit of high temperature, all the quantities, E,N , P ,
and w diverge to +∞.

VII. CONCLUSIONS

The conjecture that a free-particle diffusion coefficient
in energy space is a characteristic of a system composed
of noninteracting particles led us to the known particle

distributions of Maxwell-Boltzmann, Fermi-Dirac, and Bose-
Einstein and to two unknown distributions of particles that
we called ewkons and genkons. We focused our analysis on
ewkons, since genkons can have a negative number of particles
whose justification may require a development in a different
context.

The free diffusion coefficient condition might be seen
as a key idea for an alternative method to derive quan-
tum statistics for bosons and fermions. Nevertheless,
from Eqs. (9) and (13) we obtain a family of particle
distributions,

n = (eθβ(ε−μ) + κ)−1/θ , (48)

from which we analyzed the cases θ = −1, 0, 1. We consider
that it is interesting to analyze the properties of these new
distributions from a theoretical point of view. But even more
interesting would be to explore the possibility to find such
distributions in nature. Nature phenomena are described in
terms of only two kinds of particles: fermions and bosons.
However, room for speculation grew since the discovery of
dark energy and dark matter, corresponding to 95% of the
total amount of matter of the universe. Many candidates have
been proposed for the constituent of this dark energy and
matter, but their nature remains elusive. The low-pressure and
low-energy density of the universe suggest the assumption of
an ideal gas in the formulation of a cosmological equation of
state. As mentioned before, an ideal Fermi or Bose gas has a
positive parameter w. But the observed accelerated expansion
of the universe [16,17] implies a negative w. For instance,
using early dark-energy parametrizations (which encompass
features of a large class of dynamical dark-energy models),
Planck collaboration’s latest release implies that w0 < −0.93
with a 95% confidence level, where w0 is the present value
of w. Another interesting case is the dark-energy-coupled
scenarios [18], where there is a fifth force between dark-matter
particles mediated by the dark-energy scalar field. In this case
the results of Ref. [17] show that w0 does not differ from −1
by more that 1%. The result w < 0 for a gas of ewkons at
low temperature is a promising starting point for a candidate
to dark energy or matter. A question for the future would be:
is there any dark-energy model such that the quantum field
theory involved has particles with the statistics of ewkons?
Generic models of slow roll dark energy, such as those studied
in Ref. [19], has varying w given by δw(z) � δw0[Ho/H (z)]2,
where H0 and H (z) are the Hubble constant at present and
at red-shift z, respectively, and δw ≡ w + 1. Anyway, the
conservative model-independent bound δw0 < 0.1 implies for
ewkons with quadratic density of states the upper bound
μ/εs < 0.05.

There are several open problems that deserve further
analysis in the future: a more general study of particle
distributions in terms of θ , the search for a justification of the
possible specific shape of the density of states, and the physical
interpretation of a negative number of particles or a negative
total energy for genkons. We know that quantum effects related
to the parity of a quantum state give rise to fermion and boson
statistics, so it would be very important to determine what are
the corresponding effects at the microscopic level that give
rise to ewkon or genkon statistics. Taking, for instance, the
model we studied with quadratic density of states, we may
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ask: could there be dark energy with a chemical potential [see
Eq. (47)] such that μ(z) has a similar cosmological dependence
as slow-roll dark energy requires? Mass-varying neutrinos are
another candidate for dark energy [20]. Could their statistics
show ewkon-like features? We look forward to answering some
of these questions in the future.
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with H. O. Mártin during preliminary stages of this work.

APPENDIX

More details for the derivation of the current in energy
space Eq. (8) are presented in this appendix. Replacing the
expression for the transition probabilities Eq. (3) in Eq. (7),
we have

J = nεP e−β[(θ+1)φε+δε+(θ−1)φε+δε]/2

− nε+δεP e−β[(θ+1)φε+(θ−1)φε+δε−δε]/2.

In the continuous limit the number of particles for discrete
values of the energy, nε , is replaced by a function n of ε, and
the mean-field potential φε by φ, a function of n. Not only the
discrete energy space becomes continuous, also the number

of particles, which now represents an average over samples;
correlations in nonlinear terms are neglected when taking the
average of the previous equation (Ginzburg criterion). The
following approximations are used: nε+δε � n + ∂n

∂ε
δε and

φε+δε � φ + dφ

dn
∂n
∂ε

δε. Replacing in the previous expression,
we have

J = Pe−βθφ

{
n exp

[
−β

(
(θ + 1)

dφ

dn

∂n

∂ε
+ 1

)
δε

2

]

−
(

n + ∂n

∂ε
δε

)
exp

[
−β

(
(θ − 1)

dφ

dn

∂n

∂ε
− 1

)
δε

2

]}
.

The exponentials inside the brackets are expanded up to
order δε:

J = Pe−βθφ

{
n

[
1 − β

(
(θ + 1)

dφ

dn

∂n

∂ε
+ 1

)
δε

2

]

−
(

n + ∂n

∂ε
δε

)[
1 − β

(
(θ − 1)

dφ

dn

∂n

∂ε
− 1

)
δε

2

]}

= −D0 e−βθφ

{
βn +

(
βn

dφ

dn
+ 1

)
∂n

∂ε

}
1

δε
,

where the free diffusion coefficient D0 = P δε2 was intro-
duced. The factor multiplying ∂n

∂ε
is the diffusion coefficient

Eq. (10). The other term, proportional to n, is a drift term that
drives the particles toward low-energy states.
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