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ABSTRACT: One of the most important biological processes
at the molecular level is the formation of protein−ligand
complexes. Therefore, determining their structure and under-
lying key interactions is of paramount relevance and has direct
applications in drug development. Because of its low cost
relative to its experimental sibling, molecular dynamics (MD)
simulations in the presence of different solvent probes
mimicking specific types of interactions have been increasingly
used to analyze protein binding sites and reveal protein−ligand
interaction hot spots. However, a systematic comparison of
different probes and their real predictive power from a quantitative and thermodynamic point of view is still missing. In the
present work, we have performed MD simulations of 18 different proteins in pure water as well as water mixtures of ethanol,
acetamide, acetonitrile and methylammonium acetate, leading to a total of 5.4 μs simulation time. For each system, we
determined the corresponding solvent sites, defined as space regions adjacent to the protein surface where the probability of
finding a probe atom is higher than that in the bulk solvent. Finally, we compared the identified solvent sites with 121 different
protein−ligand complexes and used them to perform molecular docking and ligand binding free energy estimates. Our results
show that combining solely water and ethanol sites allows sampling over 70% of all possible protein−ligand interactions,
especially those that coincide with ligand-based pharmacophoric points. Most important, we also show how the solvent sites can
be used to significantly improve ligand docking in terms of both accuracy and precision, and that accurate predictions of ligand
binding free energies, along with relative ranking of ligand affinity, can be performed.

■ INTRODUCTION

One of the most important biological processes at the molecular
level is the formation of protein−ligand complexes. Proteins
need to recognize, bind and discriminate properly among a
universe of possible ligands in order to perform their function,
and thus determining the structure and underlying key
interactions of particular protein−ligand complexes is of
paramount relevance.1,2 This knowledge is also very important
for the rational design of new and more effective drugs,3−6

therefore several experimental and in silico tools have been
developed in the last decades to determine and analyze them.7,8

Together with X-ray crystallography (and NMR to a lesser
extent) of protein−ligand complexes, small molecular fragments
and/or water miscible solvents can be used to identify specific
types (e.g., hydrophilic, hydrophobic, charged) of potential
protein−ligand interaction sites.9−12 For example, solvent

mapping, as used in the multiple solvent crystal structures
(MSCS) technique,9,10 consists in solving crystal structures of
proteins in the presence of several organic cosolvents, enforcing
the idea that small molecules binding to specific sites on the
protein reveal key interaction sites. Therefore, optimal ligands
should be built displaying a chemical structure that is able to
perform these same interactions. Although these methodologies
successfully contributed to the identification and characterization
of several protein pockets,13,14 they are demanding and require
significant resources, thereby limiting their applicability to a
wider range of cases.
Molecular dynamics (MD) simulations in the presence of

different solvents with functional groups that probe specific type
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of interactions are also able to reveal protein−ligand interaction
hot spots,15−18 in a sort of in silico version of theMSCS approach.
However, these simulations are much faster and cheaper than
their experimental sibling, and thus of wider applicability. To
have a high concentration of probe molecules and thus maximize
their capacity of revealing protein−ligand interaction sites, small
water miscible molecules, like ethanol or acetonitrile, are
commonly used. The apoprotein of interest is immersed in
these solvent mixtures, and plain MD simulations are performed
to allow the probe molecules to interact properly with the
protein. As shown by us and others19−22 for pure water, due to
the presence of specific protein−solvent interactions, probe
molecules are not placed randomly on the macromolecule
surface, but instead tend to occupy specific positions and
orientations thereby revealing relevant interaction sites. This is
particularly evident in regions such as protein active sites and
ligand binding regions.23−26 Moreover, these probe revealed
“solvent sites” can be characterized structurally and thermody-
namically, using for example the inhomogeneous fluid solvation
theory,27 a knowledge that can be later used for the design of
new, more active, ligands.28

Given its potential, several works have used solvent mixture
MD simulations to study protein ligand complexes in a variety of
proteins using a bunch of different probes.29,30 However, to our
knowledge, most of them focused on a small set of proteins or

solvents and a systematic comparison of different probes and
their real predictive power is still lacking. Also, most studies
looked at the relation between protein−ligand complexes and
the sites revealed by the probes only qualitatively, excluding,
except for some particular cases,31,32 a statistical or thermody-
namic type of analysis. Therefore, to analyze further the potential
of this approach to reveal protein−ligand interaction hot spots, in
the present work we have performed MD simulations of 18
different proteins in pure water as well as water mixtures of
ethanol, acetamide, acetonitrile and methylammonium acetate,
leading to a total of 5.4 μs simulation time. We analyzed the
resulting protein−solvent interactions sites in relation to 121
different protein−ligand complex structures and showed how
they can be used to identify protein hot spots, improve molecular
docking and make accurate ligand binding energy predictions.
The proteins were selected in order to cover a wide variety of

binding/active sites, as well as several well characterized protein
targets from the DUD-E data set.33 The solvent probes were
chosen in order to cover the most important types of molecular
interactions usually established between proteins and their
ligands. Briefly, water has been shown to be a very good probe for
polar interactions, especially those established between ligand
hydroxyl/carbonyl groups and the protein. Ethanol was chosen
because it is highly miscible in water and can probe both polar
and nonpolar interactions, the later by means of the methyl end.

Table 1. Protein−Ligand Complexes Dataset

protein complex pdb codesa pocket descriptorsb
DUD-E33

target?

acetylcholinesterase 1E66, 1EVE, 1GPN, 1H22, 1VOT, 1W4L, 1W76,
1ZGC, 2CKM, 2V96

druggability, 0.75; volume, 1160;
hydrophobicity, 26.3

yes

adenosylmethionine-8-amino-7-oxononanoate
aminotransferase

3LV2, 3TFU druggability, 0.77;c volume, 3768;c

hydrophobicity, 27.8c
no

β-lactamase 1IEL, 1FSY, 1LL5, 1LL9, 1MY8, 1O07, 1XGJ, 2HDU,
2R9X, 4OLG

druggability, 0.42; volume, 2002;
hydrophobicity, 16.5

yes

cGMP phosphodiesterase 5a 1RKP, 1T9S, 1XOZ, 1XP0, 2CHM, 2H44, 3HDZ,
3SIE, 3TGE, 3TSF

druggability, 0.65; volume, 1195;
hydrophobicity, 41.5

yes

coagulation factor XA 1F0R, 1KSN, 1LPG, 2J34, 2J94, 2UWP, 2VH6, 2Y7X druggability, 0.51;c volume, 3237;c

hydrophobicity, 15.9c
yes

cyclin-dependent protein kinase 2 1CKP, 1PXN, 2BTS, 2DS1, 2FVD, 2R3P, 2XMY,
3LFS, 4ACM

druggability, 0.66; volume, 1773;
hydrophobicity, 37.0

yes

cytochrome P450 125 2XC3, 3IW1 druggability, 0.82; volume, 2192;
hydrophobicity, 33.3

no

dihydrofolate reductase 1DIS, 3DFR, 3M08, 3SA2, 3SRQ, 3TQB, 4ELE,
4FGG, 4LAE

druggability, 0.69; volume, 1183;
hydrophobicity, 37.2

yes

DNA gyrase B 1AJ6, 1KZN, 4DUH druggability, 0.71; volume, 872;
hydrophobicity, 22.9

no

estrogen receptor α 1GWR, 1QKM, 1YIN, 2AYR, 2IOG, 2IOK, 2QE4,
2R6Y, 3ERD, 3ERT

druggability, 0.95; volume, 1480;
hydrophobicity, 51.6

yes

fibroblast growth factor receptor 1 1AGW, 1FGI, 2FGI, 3C4F, 3JS2, 3RHX, 3TT0, 4F64,
4F65, 4NK9

druggability, 0.70; volume, 1045;
hydrophobicity, 21.4

yes

glucocorticoid receptor 1M2Z, 1NHZ, 3BQD, 3E7C, 3K22, 3K23, 4CSJ, 4LSJ,
4P6W

druggability, 0.82; volume, 785;
hydrophobicity, 45.8

yes

glycogen phosphorylase b 1P4G, 3MRT, 3NP9, 3T3G druggability, 0.02; volume, 447;
hydrophobicity, 13.7

yes

hen egg white lysozyme 1LJN, 1LZB druggability, 0.65; volume, 539;
hydrophobicity, 28.8

no

integrin α L 1RD4, 1XDG, 1XUO, 2O7N, 3BQM, 3BQN, 3E2M,
3M6F

druggability, 0.92; volume, 880;
hydrophobicity, 44.7

no

map kinase p38 α 1A9U, 2YIX, 2ZAZ, 2ZB0, 3D7Z, 3IW5 druggability, 0.69;c volume, 3613;c

hydrophobicity, 20.4c
yes

peroxisome proliferator activated receptor γ 1FM6, 1FM9, 1K74 druggability, 0.84; volume, 1955;
hydrophobicity, 35.1

yes

trypsin 1K1J, 1K1M, 1OYQ, 1QBO, 1V2R, 1XUJ druggability, 0.06; volume, 615;
hydrophobicity, 16.2

yes

aThe reference structure used in MD simulations is highlighted in bold. bObtained with Fpocket.34 cThe default Fpocket parameters were modified
in order to get a single pocket for the binding site, thus obtaining rather big cavities.
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Acetamide was selected to test its capacity for mimicking amide
groups of ligands, whereas methylammonium acetate was used to
probe ionic interactions. Finally, we also tested acetonitrile as an
alternative hydrophobic probe (methyl end).
Our results provide a comprehensive view of how MD

simulations in mixed solvents are able to reproduce protein−
ligand interaction hot spots, showing which are the best solvent
probes and what is their predictive power. We also show that
combining just two types of sites (hydrophilic and hydrophobic)
derived from water/ethanol simulations, significant improve-
ments in docking calculations and accurate estimations of ligand
binding free energies can be achieved.

■ COMPUTATIONAL METHODS

Protein Data Set. The protein−ligand data set used in the
present work was defined in order to achieve a high diversity in
size, shape and polarity of the binding sites. It includes selected
proteins from the DUD-E database,33 which are useful for
benchmarking virtual screening procedures. For each protein,
several complex structures (with up to 10 different ligands) were
analyzed. Table 1 lists the protein complexes structures with their
PDB ids and binding site characteristics.

Starting Structures and Setup for Molecular Dynamics
Simulations. Starting structures for all studied protein−ligand
complexes were downloaded from the Protein Data Bank (PDB)

Table 2. Molecular Interaction Assignment for Solvent Sites

solvent probe\type of solvent
site

hydrogen bond donor
(HBD)

hydrogen bond acceptor
(HBA)

aliphatic/aromatic hydrophobic
(HS) ionic + (PI) ionic − (NI)

water x x
ethanol (−OH) x x
acetamide (−NH2) x
acetamide (=O) x
ethanol (−CH3) x
acetonitrile (−CH3) x
methylammonium x
acetate x

Figure 1. (Scheme A) Solvent site identification workflow example using ethyl alcohol as cosolvent. After removing the ligand and all non-protein atoms
from the complex PDB structure, triplicates of explicit water−ethanol solvent MD simulations were performed (20 ns each). Ethanol hydrophilic and
hydrophobic sites were obtained by post processing MD trajectories with the clustering algorithm described in the text. (Scheme B) Two possible
applications for the detected solvent sites. Upper side: docking ligands to protein receptor using a modified scoring function that combine the
conventional AutoDock4 scoring terms with the solvent sites free energy (see eq 7 and Figure S1). Lower side: Estimation of protein−ligand free energy
of binding by superposition of the cocrystallized ligand with the solvent sites and summing theΔG from the replaced solvent sites (see eq 8 and Figure
S2).
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database35 (www.rcsb.org). For each protein, one of the complex
structures was selected to perform the molecular dynamics
(MD) simulations (the ones highlighted in bold in Table 1). All
nonstructural ions, solvent and ligand molecules were removed
in silico in order to define the starting protein structure. Missing
side chains as well as hydrogen atoms were subsequently added
using the LEaP module from Amber 12 package.36 Standard
protonation state at physiological pH was assigned to all
ionizable residues unless otherwise explicitly stated. The
resulting structures were immersed in a truncated octahedral
box of solvation extending at least 10 Å from any protein atom
using MDMix.29 Besides pure water, the following water/solvent
mixtures were tested: ethyl alcohol, acetamide, methylammo-
nium acetate and acetonitrile using in all cases 20% v/v mixtures.
TIP3P model was used for all water molecules. Force field
parameters used for the other solvents can be found in Table S1
from the Supporting Information. For all protein residues,
Amber ff99SB force field was used.37

MD Equilibration and Production Procedure. All
solvated systems were subjected first to a geometry optimization
procedure to adjust solvent orientation, eliminate local clashes
and stereochemical inaccuracies. The following equilibration
protocol consisted in 0.8 ns of constant volume MD, where
temperature was slowly raised from 100 to 300 K, after which 1
ns of constant pressure and temperature MD was performed (1
bar, 300 K) to allow the system to reach proper density. In all MD
simulations, temperature and pressure control was achieved
using the Langevin thermostat and Berendsen barostat,
respectively. Systems were simulated using periodic boundary
conditions and Ewald sums (grid spacing of 1 Å) for treating
long-range electrostatic interactions with a 9 Å cutoff for direct
interactions. The SHAKE algorithm was used to keep bonds
involving H atoms at their equilibrium length, allowing the
employment of a 2 fs time step for the integration of Newton’s
equations. Simulations were performed with the PMEMD
implementation of SANDER from the Amber 12 program
package.36,38,39 Finally, the system was subjected to 20 ns MD
production run. For each protein, three independent MD
simulations starting from the minimization (geometry opti-
mization) step were done for each solvent mixture and pure
water to enhance sampling. No restraints were applied to protein
atoms. To verify protein stability during the MD simulations, the
backbone rmsd was monitored over time for each simulation,
using as reference the corresponding crystal structure. Results
presented in Supporting Information (Table S2) show that
average rmsd is below 2 Å in all cases, having the samemagnitude
in mixed solvents simulations when compared with those of pure
water, confirming that proteins remain properly folded and in a
stable conformation.
Determination of Solvent Sites. The method used to

detect protein−solvent interaction sites is derived and inspired in
previous works from our group19,40 and others41 that developed
ways for obtaining the so-called water sites (WS). First, each type
of solvent site is defined as being probed by a functional group or
atom of the solvent molecules. Thus, for example, water
molecules define polar sites that can be further assigned as
hydrogen bond donor or acceptors, ethanol methyl group defines
hydrophobic, and also aromatic, sites, whereas charged solvents
define ionic interactions. Table 2 lists which solvent probes are
used to define each type of sites. In the present work, in addition
to the traditional WS we will define ethanol −OH based
hydrophilic sites with both hydrogen bond donor and acceptor
capabilities (HBD/HBA), ethanol −CH3 based hydrophobic

sites (HS), acetamide −NH2 based hydrogen bond donor
(HBD) sites, acetamide =O based hydrogen bond acceptor
(HBA) sites, methylammonium positive ionic (PI) sites and
acetate negative ionic sites (NI). Assignment of both aliphatic
and aromatic interactions to aliphatic probes was sustained by
previous findings.29

After we defined which probe atoms define each type of site,
the solvent sites were determined from the corresponding
explicit solvent mixture MD production simulations using a
clustering algorithm.19 The solvent site identification workflow is
schematically shown in Figure 1, Scheme A, for ethyl alcohol as
an example. Solvent sites are defined as space regions adjacent to
the protein surface where the probability of finding a probe-atom
is higher than that in the bulk solvent. The strategy starts from a
set of snapshots derived from the whole MD simulation. A
structural alignment of all the protein conformations from the
different snapshots is performed, based on a selected group of
protein residues, usually those forming the binding/active site.
This group of residues also defines the protein surface region
near which the solvent sites will be determined. To identify the
solvent site, a clustering algorithm is used. Only probe molecules
interacting with the surface of interest along the whole MD
simulation are considered. The positions of the probe atom of
interest (e.g., C1 from ethanol for hydrophobic sites, see Table
S1 of the SI) are the ones considered for the clustering. The
algorithm starts with the first probe atom from the first snapshot
and finds all other probe atoms that are closer than a threshold
distance in all subsequent snapshots. This procedure is
performed iteratively and a new round of search is performed
for each of these newly found probe atoms until no more of them
are found within the threshold in any snapshot. Then, all probe
atoms found are clustered together. If the number of probe atoms
belonging to the cluster is larger than that expected for a piece of
bulk solvent bearing the same volume, the cluster defines a
solvent site. Each snapshot can contribute with nomore than one
probe atom to the cluster. All the probe atoms from the cluster
(whether or not they are stored as a solvent site) are then
removed from further evaluation and the process starts again for
the remaining probe atoms. Once there are nomore probe atoms
left, the process is completed and all solvent sites have been
identified. The site center coordinates correspond to the center
of mass of all probe atoms that are found inside the site along the
MD simulation. Further applications for the determined solvent
sites are shown in Figure 1, Scheme B, and explained below.

Calculation of Statistical Parameters Associated with
Each Probe Predictive Power.The following parameters were
defined to establish the capacity of each type of solvent site for
predicting protein−ligand interactions:
True positives (TP) correspond to solvent sites that match a

corresponding type of protein−ligand interaction (according to
Table 2).
False positives (FP) correspond to solvent sites that fail to

match a corresponding type of protein−ligand interaction.
True negatives (TN) are those protein−ligand interactions

that are not reproduced by a non corresponding probe.
False negatives (FN) are those protein−ligand interactions

that are not reproduced by a corresponding probe.
We define that a solvent site and a protein−ligand interaction

coincide whenever the distance between the solvent site center
and the ligand atom responsible for the interaction is less than 1.5
Å apart.
For the pharmacophore centered analysis, solvent sites were

limited to only those matching (or not) a pharmacophoric

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.6b00678
J. Chem. Inf. Model. 2017, 57, 846−863

849

http://www.rcsb.org
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.6b00678/suppl_file/ci6b00678_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.6b00678/suppl_file/ci6b00678_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.6b00678/suppl_file/ci6b00678_si_001.pdf
http://dx.doi.org/10.1021/acs.jcim.6b00678


protein−ligand interaction of any type. Thus, FP are redefined as
those sites that match a pharmacophoric protein−ligand
interaction of inadequate type.
Sensitivity or true positive rate (TPR) is defined as the ratio

between true positives and the total number of real positives:

= =
+

sensitivity TPR
TP

TP FN (1)

Precision or positive predictive value (PPV) is defined as the
ratio between true positives and the total number of predicted
positives:

= =
+

precision PPV
TP

TP FP (2)

Specificity or true negative rate (TNR) is defined as the ratio
between true negatives and the total number of real negatives:

= =
+

specificity TNR
TN

TN FP (3)

Accuracy is defined as the ratio between correct results and the
total number of results:

= +
+ + +

accuracy
TP TN

TP FP TN FN (4)

Calculation of Solvent Site Properties. Once identified,
for all the solvent sites we compute the following parameters:

(i) Probe finding probability, PFP, corresponding to the
probability of finding a probe atom in the region defined
by the solvent site, using the arbitrary volume value of 1 Å3

and normalized with respect to that of the bulk solvent.
The PFP is directly related to the probability density

function and is obtained from a radial 3D histogram of the
occurrence of probe atoms in each space region using the
described clustering algorithm. The PFP is calculated by
evaluating this occurrence between the center of the
solvent site and a radius value of approximately 0.6 Å
(volume of 1 Å3) and dividing by the occurrence obtained
for the probe in the bulk solvent (eq 5). Thus, the probe
finding probability is not simply a probability, but
corresponds to the relative probability of finding a probe
atom in the solvent site with respect to that of the bulk
solvent. Therefore, it can be interpreted as a molecular
approximation to an equilibrium constant between the
solvent site and the bulk solvent, as shown in eq 5.

= =_N
N

KPFP solvent  site

bulk (5)

where Nsolvent_site corresponds to the number of frames
from the MD simulation in which a probe atom is found
inside the solvent site, and Nbulk corresponds to the
number of frames in which a probe atom is found in the
bulk, inside a sphere whose volume equals that of the
solvent site (1 Å3). By using the inverse Boltzmann
relationship, we obtain eq 6 and the estimated ΔG thus
corresponds to the difference in free energy of a probe
atom being inside the solvent site with respect to that of
being in the bulk solvent.

Δ = −G RT ln(PFP) (6)

(ii) R90, corresponding to the radius the solvent site should
have in order to contain 90% of the probe atoms that

define the site. This value is a measure of the solvent site
dispersion.

(iii) The nearest distance of the solvent site to any protein
atom, NPD.

(iv) The site solvent accessible surface area (siSASA).

Molecular Docking. To analyze the improvement of
docking results using the information derived from the solvent
sites we compared, as in our previous works,26,42 the perform-
ance of the Autodock4 program using its usual parameters, which
we call conventional autodock docking method (CADM), with
that of a modified protocol that includes information derived
from the solvent sites, the solvent site biased docking method
(SSBDM).

Conventional Autodock Docking Method (CADM). The
CADM was performed with the AutoDock 4.2 program43 using
the default parameters. Briefly, based solely on the protein
structure, the energy maps were computed as usual. The grid size
and position was chosen considering the reference ligand
coordinates: it was centered in the ligand geometric center and
extended to reach a cubic box with an edge distance equal to 2
times the maximum distance between any two ligand atoms. The
spacing between grid points was set at 0.375 Å. 100 docking runs
were performed and the resulting poses were clustered according
to the ligand heavy atom rmsd using a cutoff of 2 Å, thus defining
a population for each cluster. The genetic algorithm was kept at
their default values.

Solvent Site Biased Docking Method (SSBDM). The SSBDM
is based on the protocol developed and thoroughly tested in our
previous works for water sites and carbohydrate type of
ligands19,26,42 and extended here to include hydrophobic sites
derived from ethanol/water MD simulations and any type of
ligand. To take advantage of the fact that ligand polar groups tend
to occupy the same positions than the MD derived water or
ethanol hydrophilic sites and that ethanol hydrophobic sites tend
to probe hydrophobic interactions, especially those involving
aromatic rings, we modified the corresponding AutoDock4 grids.
For this sake, for each ligand heavy atom that could be involved in
hydrogen bond interactions (OA/NA/N atom types), an
additional energy term was added to the original autodock
function, according to eq 7.

∑Δ = Δ −

×

=

− + − + −

G G RT [ln(PFP)]

e

i

N

i

x x y y z z R

SSBDM CADM
1

( ) ( ) ( ) /i i i i
2 2 2

90, (7)

where ΔGSSBDM corresponds to the resulting modified scoring
function, ΔGCADM is the original AutoDock4 scoring function, R
is the gas constant,T is the temperature (298 K), the sum extends
over the total number N of water or ethanol−OH sites
interacting with the protein in the binding site, PFP is the
probe finding probability of the solvent site, (x, y, z) are the grid
points coordinates, (xi,yi,zi) are the solvent site coordinates and
R90,i is the solvent site dispersion parameter. Thus, for each
identified water or ethanol−OH site an energy well is created in
the OA, NA and N grid maps. The well deepness (i.e., energy
reward) increases with the solvent site PFP and its width (i.e.,
extension through space away from the solvent site center)
increases with the solvent site R90. Figure S1 schematically shows
how the modifications to the grid maps are applied.
To include the hydrophobic bias, a slightly different scheme is

applied. We first created for each ligand aromatic ring a new
dummy atom located in the ring center. We then created a new
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grid map for the dummy atomwhose energy is calculated by eq 7,
with ΔGCADM = 0 and using ethanol determined hydrophobic
sites. We tried also other possibilities that involved using directly
the aromatic carbon map, but the performance was less
satisfactory. In summary, the biased docking potential will
favor those ligand poses where hydrogen bond donor/acceptor
atoms of the ligand replace water or ethanol−OH sites and where
aromatic rings replace ethanol hydrophobic sites, with a strength
that is directly related to the solvent site PFP.
The SSBDM was then employed in the same manner as the

CADM but using the modified grid maps. For strict comparison
purposes, all other docking parameters were the same as those
used in the CADM. All scripts to analyze crystal structures,
determine and characterize the solvent sites and modify the
Autodock4 grid maps are available upon request.
Docking Experiments and Analysis of Results. We

performed three different molecular docking experiments for
two representative proteins from our set: FGF receptor 1 and
AmpC β-lactamase. The first experiment consisted in a redocking
experiment in which a cocrystallized ligand (with randomized
position and torsions) was docked against its own crystal
receptor. The second strategy used different receptor structures
taken from MD simulations of the protein in explicit water.
Finally, we also performed cross-docking experiments, in which a
representative cocrystallized receptor was chosen and a set of
different ligands were docked against it. In particular, for the FGF
receptor we docked all the ligands from the original data set
(Table 1), whereas for β-lactamase we only kept noncovalent
ligands and added all ligands from the PDB with reported Ki
below 100 μM to enrich the final set (Table S5). All three
experiments were performed independently with the conven-
tional and biased docking methods. To compare both methods,
we considered two main issues. First, the equivalence between
the reference ligand structure and the ligand pose predicted by
the docking method, computed by the ligand heavy atoms rmsd.
Second, the method capacity to discriminate the correct ligand
pose (i.e., that with rmsd < 2 Å when compared with the
reference structure) from wrong predictions, by using the
predicted binding free energy score (ΔG) and the population,
which is the number of individual docking results that predicted
the same ligand pose in the whole docking experiment (100
runs). A successful method should find the correct pose with low
binding energy and high population, while also significantly
differing in these both parameters from the other poses. As
shown in the Results section, this can be easily analyzed by
plotting population vs binding free energy score for all the
predicted complexes in a given docking calculation.When several
ligands are docked against the same receptor, the method
discriminating capability for each ligand is tested by calculating
the differences in the predicted binding free energy score (ΔΔG)
and in the population (Δpopulation) between the correct ligand
pose, that with rmsd < 2 Å, and the best ranked, that with lowest
energy, of the remaining poses. A negative ΔΔG value implies
that the correct complex is found and has better binding energy
score than any other predicted pose, whereas a positive ΔΔG
means that the correct pose is less tightly bound than other
predicted complexes or is not found at all. In the same way, a
successful method should obtain positive Δpopulation values,
meaning that the correct complex has the most populated cluster.
Thus, results located in the upper left quadrant of the plot
correspond to successful predictions where the correct complex
has the lowest energy and highest population, whereas results in
the lower right quadrant represent wrongly predicted poses.

Solvent Site Contribution to Ligand Binding Free
Energy. Binding free energy calculations were performed on
human coagulation factor Xa (Uniprot ID P00742) and
Escherichia coli AmpC β-lactamase (Uniprot ID P00811), due
to the large number of ligands with available high resolution
complex X-ray structures and thermodynamic binding data (Ki).
The complete set of PDB IDs that were analyzed, 75 for factor Xa
and 28 for β-lactamase are reported in Tables S6 and S7 in the SI.
The predicted binding free energy was obtained using the above-
mentioned X-ray protein−ligand complexes and the MD derived
solvent sites as described in eq 8, which is similar to that used for
the modified docking protocol but without the weight related to
the R90 (because it did not provide any improvement). The use of
X-ray structures for free energy estimations avoids introducing
possible bias and permits the evaluation of the solvent site
potential for this task, independently of their performance for
docking, which was evaluated in the previous section.

∑Δ = −
=

G RT ln PFP
i

N

ipred
1 (8)

where PFPi is the probe finding probability of the i-th solvent site
replaced by a ligand group capable of establishing the same type
of interactions as the solvent site and N is the total number of
replaced solvent sites. A hydrophilic solvent site is considered
replaced when its position coincide with a nitrogen or oxygen
atom from hydrogen bond donor/acceptor groups of the ligand,
whereas hydrophobic solvent sites were considered replaced
when overlaying aliphatic or aromatic carbon atoms from the
ligand. The distance threshold was set at 1.5 Å. All complex
structures were aligned according to the active site with the
reference structure used to obtain the solvent sites. A schematic
representation of the calculations done with eq 8 is shown in
Figure S2.
To analyze the performance of our free energy estimates, we

built predicted vs experimental free energy plots, computed the
linear regressions and calculated the resulting determination
coefficient (R2) and root-mean-square error (rmse). For the
ligand group based analysis, a Tanimoto index based cutoff of 0.7
was used to cluster similar ligands either in pairs for computing
ΔΔGpred between them or in groups of more than three members
for comparing their absolute ΔGpred values. The similarity
groups/sets are presented in Tables S6 and S7 of the Supporting
Information.

■ RESULTS
Solvent Interaction Sites Predict Protein−Ligand

Interactions. We begin our analysis by looking at how many
protein−ligand interaction sites, of each type, are sampled by the
solvent probes inside the ligand binding site of all 18 analyzed
proteins. For this sake we first analyzed, for each studied protein,
a set of selected protein−ligand structures with wide range of
molecular interactions and Ki values, which together add up to
121 different complexes (Table 1 in Computational Methods),
and determined the corresponding protein−ligand interaction
sites, classifying them by type as shown in Table 3. As expected,
most observed interactions correspond to hydrogen bonds,
followed by hydrophobic (aliphatic and aromatic) interactions,
whereas only a minor number of ionic interactions are present in
the current data set.
In parallel, we performed, for each protein (in absence of

ligand), a series of three independent 20 ns long MD simulations
in pure water as well as the following 20% v/v water mixtures:
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ethanol, acetamide, methylammonium acetate and acetonitrile.
Altogether, we performed over 5.4 μs of production MD
simulations. Subsequently, for each case, and with the same
approach used to define water sites (WS) in our previous
works40,42 (see Computational Methods for details), the
following solvent sites as defined by the corresponding probe
atoms were determined: hydrogen bond donor (HBD) sites,
hydrogen bond acceptor (HBA) sites, hydrophobic sites (HS),
positive ionic (PI) sites and negative ionic (NI) sites. Analysis of
each probe performance for predicting both general and
pharmacophoric protein−ligand interaction sites, classified by
their type, is shown in Table 4, whereas particular examples
illustrating the relation between probed identified sites and
ligand structure are shown in Figure 2.
To perform a comparative statistical analysis (see Computa-

tional Methods for details), we defined true positives (TP) as
those solvent sites that reproduce protein−ligand interactions of
their own type (according to Table 2 in Computational
Methods), whereas false positives (FP) correspond to solvent
sites that fail to do so. In this context, the precision (or positive
predictive value, PPV)measures howmany of the probe detected
sites are able to predict adequately protein−ligand interactions.
On the contrary, false negatives (FN) are those protein−ligand
interaction sites that fail to be reproduced by a solvent probe
bearing the same type of interaction. Thus, the sensitivity (or true
positive rate, TPR) measures how many of the observed
protein−ligand interactions are actually sampled by a corre-
sponding probe. True negatives (TN) are protein−ligand
interaction sites not reproduced by a mismatching probe (e.g.,
a protein−ligand hydrogen bond that is not detected by

acetonitrile −CH3 probe). Thus, the specificity (or true negative
rate, TNR) shows each probe capacity to avoid detecting sites
corresponding to other types of interactions. Finally, the
accuracy is a summary measure that relates the correct results
(true positives and true negatives) with the total number of
results (either true or false). When analyzing only pharmaco-
phoric interaction sites (values in parentheses in Table 4),
positives and negatives were redefined accordingly.
Looking at all the revealed protein−ligand interactions, data

from Table 4 shows that most probes display a reasonable
accuracy, with most values close or above 0.5. Water remains
somewhat behind the rest (accuracy = 0.39) mainly due to its
increased number of false positives. Also, for most probes
sensitivity is higher than precision because more sites are
sampled by the probes than those corresponding to protein−
ligand interactions. The best probes are able to detect about two
out of every three protein−ligand interactions of their own type
(sensitivity > 0.64), whereas about half of the detected solvent
sites correspond to these protein−ligand interactions (precision
> 0.48).
Comparative analysis of polar probes shows that water,

through the identification of water sites (WS), which can be
HBD, HBA or both, is significantly better at predicting hydrogen
bond interactions than ethanol or acetamide (sensitivity of 0.64
vs 0.36 or less). Moreover, there is significant redundancy in the
detection of WS with respect to these other probes, thus little
predictive power is added by combining all of them. However, its
lower specificity show that WS also significantly overlap with
other type of protein−ligand interaction sites. Ethanol−OH, on
the contrary, is a less sensitive probe, but its solvent sites rarely
appear in regions where no apparent protein−ligand hydrogen
bond interaction can be established, thus significantly enhancing
the probe specificity. Moreover, its higher precision value
indicates that ethanol−OH sites are enriched in those that
actually reproduce hydrogen bond interactions from the ligand
set. Finally, for acetamide, both the low sensitivity and precision
diminish its predictive capacity. Thus, although water or
ethanol−OH do not allow direct, a priori, differentiation of
donor and acceptor sites, both outperform the acetamide probes.
Concerning nonpolar interactions, both ethanol−CH3 and

acetonirile−CH3 show similar and very good performance, being
able to detect more than 70% of the protein−ligand hydrophobic
interactions, while also achieving high precision and specificity.
The results are similar if nonpolar interactions are divided in
aliphatic or aromatic, although detailed analysis of which ligand
functional groups coincide with the identified solvent hydro-

Table 3. Number of Protein−Ligand Interaction Sites
Identified in all 121 Protein−Ligand Complexes Classified by
Their Interaction Type

type of interaction
sitea

# total interaction
sites

# pharmacophoric interaction
sitesb

hydrogen bond donor 47 18
hydrogen bond
acceptor

71 22

aliphatic hydrophobic 51 19
aromatic hydrophobic 28 9
positive ionic 5 1
negative ionic 5 0
aThe type of protein−ligand interaction site is described from the
ligand point of view. bPharmacophoric interaction sites are defined as
those protein−ligand interaction sites present in half or more of the
analyzed complexes for each protein.

Table 4. Performance of Solvent Probes for the Prediction of Protein−Ligand Interactions

solvent probe type of solvent sitea sensitivity precision specificity accuracy

water HBD/HBA 0.64 (0.73) 0.33 (0.64) 0.24 (0.43) 0.39 (0.60)
ethanol (−OH) HBD/HBA 0.36 (0.48) 0.48 (0.63) 0.56 (0.61) 0.45 (0.53)
acetamide (−NH2) HBD 0.34 (0.39) 0.18 (0.29) 0.62 (0.66) 0.56 (0.59)
acetamide (=O) HBA 0.27 (0.36) 0.25 (0.38) 0.62 (0.72) 0.51 (0.60)
ethanol (−CH3) HS 0.72 (0.86) 0.58 (0.96) 0.72 (0.98) 0.72 (0.93)
acetonitrile (−CH3) HS 0.77 (0.89) 0.54 (0.83) 0.68 (0.88) 0.71 (0.88)
allb HBD/HBA/HS 0.53 (0.64) 0.39 (0.64) 0.56 (0.73) 0.55 (0.69)
all cosolventsc HBD/HBA/HS 0.49 (0.61) 0.42 (0.64) 0.65 (0.77) 0.59 (0.71)

aHBD = hydrogen bond donor, HBA = hydrogen bond acceptor, HS = hydrophobic site. b“All” includes water, ethanol, acetamide and acetonitrile
probes. c“All cosolvents” include ethanol, acetamide and acetonitrile probes (it excludes water). Values in parentheses are computed considering only
protein−ligand pharmacophoric interaction sites (see text for details).
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phobic sites shows that there is slight preference for aromatic
rings vs aliphatic rings or side chains.
Finally, although the number of observed ionic protein−ligand

interactions is small (Table 3) and no statistic parameters can be
derived, about half of both positive and negative ionic
interactions are revealed by the corresponding solvent sites

(Table S8 in the Supporting Information). It is worth

mentioning that due to their hydrogen bond capabilities, ionic

probes also reveal HBA or HBD sites, although they are highly

redundant because all but one of these protein−ligand
interactions (94%) were already detected by water.

Figure 2. Examples of solvent predicted protein−ligand interaction sites. For each panel, the left side shows the predicted solvent sites superimposed to
the protein−ligand structure, whereas the right side shows a simplified interaction scheme according to the detected solvent sites: hydrogen bonds are
indicated as dashed lines, hydrophobic aliphatic interactions are shown as thick lines and aromatic π−π interactions are depicted as consecutive parallel
bars. (A)Water sites for CDK2 superimposed on PVB ligand (PDB ID 1ckp). Red and green spheres correspond to true positive and false positive water
sites, respectively. (B) True positive ethanol hydrophobic sites (light blue spheres) for coagulation factor Xa superimposed on FXV ligand (PDB ID
1ksn). (C) True positive negative ionic site from acetate (red sphere) in DHFR active site superimposed on MTX ligand (PDB ID 3dfr).
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Figure 2 illustrates the above-described results for particular
cases. For example, the WS found in the active site of CDK2
(Figure 2A) replace polar interacting ligand groups such as the
amine hydrogen bond donor and the purine acceptor N7, both
interacting with Leu83 backbone (these WS are depicted in red).
Also, as inferred from the low specificity value for water (Table
4), some WS such as those shown in green in Figure 2A seem to
be false positives. Figure 2B shows the ethanol revealed
hydrophobic sites and how they are able to sample adequately
the position of aromatic rings in the Factor Xa−FXV complex.
Finally, in Figure 2C we show how a negative ionic site is able to
reproduce a ionic interaction between a ligand carboxylate group
and an arginine side chain from DHFR active site.
We now focus not on all possible interactions, but only on

those that are known to be critical for the protein−ligand
binding. These interactions, which are present in half or more of
the analyzed complexes for each protein, define thus the basic
pharmacophoric framework for those ligands that bind the target
tightly. Table 3 enumerates these pharmacophoric interactions
classified by type for the present protein−ligand set. To analyze
the probe performance in this context, we redefined positives and
negatives only considering the match/mismatch between solvent
sites and protein−ligand pharmacophoric sites. The results
(presented in Table 4 as values in parentheses) show, as could be
expected, that all probes increase their overall performance.
For hydrogen donor and acceptor interactions, water still

achieves the highest sensitivity, being able to detect over 70% of
the protein−ligand sites. Also important is the fact that sensitivity
is increased for all the probes, being ethanol−OH the one
achieving the highest increase (12%). For nonpolar interactions,
ethanol and acetonitrile show again similar outstanding perform-
ance, being able to sample ca. 90% of the key protein−ligand
interactions. This means that all the probes are better
reproducing pharmacophoric protein−ligand interactions and
thus generating a relative decrease in false negatives when
compared with general protein−ligand interaction points. In
addition, it is clear that when analyzing pharmacophoric sites, a
high precision is achieved by all probes except acetamide,
showing that more than 60% of the polar solvent sites and more
than 80% of the apolar solvent sites reproduce an interaction of
adequate type. Finally, cosolvent probes also reveal as highly

specific. These facts are important for their applications in
prospective analysis as will be shown in later sections.

When Do Probes Fail? As already mentioned, it is clear that
there is a number of solvent sites that do not correspond to
potential ligand interactions (as revealed by low/moderate
precision values). To examine if there was any systematic
behavior related to this observation, we analyzed in detail the
corresponding false positives. The analysis showed three main
causes. First, when the protein displays, for example, an hydrogen
bond acceptor such as a carbonyl group, sometimes the
immediate environment allows the presence of two polar solvent
sites interacting from different orientations with the same
carbonyl group. That is the case, for example, of CDK2 Leu83
backbone as shown by ethanol polar sites 1 and 2 depicted as red
spheres in Figure 3A. However, it is important to note that the
ligand structural framework is usually unable to accommodate
both sites simultaneously, and thus only either one of them is
replaced (site 2 in this particular case). Therefore, although the
probes correctly predict these HBD interaction sites, only one of
the sites is computed as TP, the other being a FP (site 1 in Figure
3A). An interesting point is that the ligand places an aromatic C
with some H bond donor character over solvent site 1, although
this type of interactions were not taken into consideration in our
analysis. We conclude that, as general rule, when two solvent sites
are too close and making the same interaction with the protein,
only one of them will be functional in the ligand.
The second cause for wrong predictions is related to the

presence of apolar sites in amphiphilic environments. As shown
in Figure 3B for the same CDK2 binding site, the environment
allows the formation of not only the above-mentioned
hydrophilic sites but also hydrophobic sites (cyan spheres).
Because the ligand pyrimidine ring is mainly establishing a
hydrogen bond with the protein, as reproduced by the polar site
3, the hydrophobic site 5 is considered a false positive, although it
actually samples the hydrophobic part of the ring. It is worth
mentioning that this hydrophobic site (false positive) is
established aided by probe coupling with the nearby hydrophilic
sites 2 and 3 (true positives), as a consequence of using a dual
hydrophilic−hydrophobic cosolvent molecule.
Finally, there are some false positives due to sampling artifacts.

An acetonitrile hydrophobic site was found inside DHFR active
site located in an evident polar region where all the analyzed

Figure 3. (A,B) CDK2 binding site (PDB ID 2xmy) highlighting the hydrogen bond pharmacophoric interactions between Leu83 backbone and the
ligand (shown as sticks). Ethanol hydrophilic and hydrophobic sites, depicted as red and cyan spheres respectively, are superimposed to the ligand
structure. (C) DHFR active site (PDB ID 1dis) highlighting the hydrogen bond pharmacophoric interaction between the ligand and Asp26 carboxilate
(shown as sticks). Acetonitrile hydrophobic site depicted as a purple sphere is superimposed to the ligand structure.
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ligands place an hydrogen bond donor moiety interacting with a
carboxylate group from Asp26 (Figure 3C). Analyzing the MD
simulations in detail revealed that in one of the replicas, an
acetonitrile molecule remains trapped during several nano-
seconds due to steric reasons in the region where this
hydrophobic site was later established. This means that protein
flexibility is not always enough to allow free diffusion of solvent
probemolecules and thus careful inspection of the initial position
of the probes should be made.
Lastly, concerning false negatives or missing interactions that

account for the observed low sensitivities, the main cause is
related to the inadequate sampling capacity of solvent probes in
occluded binding regions. For example, glycogen phosphorylase
has a relatively buried active site and the lack of solvent
accessibility is evident in the MD simulations because the region
was practically unexplored by most probes. In these cases, water
has a clear advantage being able to penetrate faster and deeper. It
is worth mentioning that this active site is predicted as totally non
druggable by fpocket,34 with a practically null druggability score
(Table 1 in the Computational Methods). Less frequently, false
negatives were found when protein−ligand interactions are
established in regions highly exposed to the solvent, representing
secondary interaction sites that may only appear when the ligand
is already fixed in the cavity.
In conclusion, solvent mixture MD is able to predict protein−

ligand interaction sites, especially those defining the protein’s
pharmacophore, both with good sensitivity and specificity.
Interestingly, hydrophobic probes achieve better performance
than polar ones, thus it seems the directionality of hydrogen
bonds does not improve probe accuracy. Taken together, the
above-described results suggest that performing pure water and
water/ethanol MD simulations are jointly powerful enough to

determine both polar, combiningWS and ethanol−OH sites, and
nonpolar, as revealed by ethanol HS interactions sites, and thus
predict potential protein−ligand interactions, the other probes
being mostly redundant in terms of their predictive power. The
election of water or ethanol probes for obtaining hydrophilic sites
will depend on the desired application because water, although
being a more sensible probe even capable of reaching occluded
binding sites, presents an increased number of false positive sites,
hence making ethanol a more suitable option when specificity is
required. The second key point is that solvent probes are able to
find most pharmacophore defining interactions, as well as more
than half of all observed possible protein−ligand interactions.
The analysis also shows that usually more solvent sites are found
than those later mimicked by the ligand functional groups. This
fact could, however, reflect the incomplete sampling of the
potential interactions in the protein active site by the present set
of ligands or the presence of tightly bound waters capable of
bridging protein−ligand interactions. Leaving this aside, to
improve the predictive power of the solvent sites, we analyze
several of their properties in relation to the chance that they
define a pharmacophoric site in the following section.
As a final remark, to compare our method performance with

other established and simpler mapping strategy we also
computed protein hot spots with FTMap44 for coagulation
factor Xa and FGF receptor 1 kinase domain (a more thorough
comparison betweenMDbased and direct mappingmethods can
be found in ref 29). Briefly, the FTMap method docks 16
different probes to the protein surface, minimizes the energy and
generates different consensus clusters of probes to identify
druggable cavities in the structure of interest. As shown in Figure
S3, even though both methods are able to detect key active site
regions defining pharmacophoric interactions, those provided by

Figure 4. Probability density function for different probe types and solvent site properties. (A) Water sites probe finding probability (PFP). (B) Water
sites nearest protein distance (NPD). (C) Ethanol hydrophobic sites PFP. (D) Ethanol hydrophobic sites NPD. Red full line, green dots and blue
dashed line correspond to pharmacophoric, displaced and other (nondisplaced) solvent sites, respectively.
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the MD derived solvent sites are better defined in terms of
position and type of interactions. Although FTMap has the clear
advantage of jointly using a wide variety of probes, the relative
orientation of the different probe molecules from the same hot
spot are sometimes ambiguous mainly due to a high dispersion of
the clusters (as in the hinge region of FGF receptor 1 displayed in
Figure S3, lower panel). The defined localization of MD derived
solvent sites is probably related to the fact that explicit solvation
permits water competition which reduces the appearance of weak
interacting sites. Therefore, it is possible that although being very
useful for the assessment of pocket bindability and protein
druggability, FTMap is not precise enough to allow its sites to be
used in docking and ΔG estimations. However, more work is
needed to assess properly its potential for these applications.
Finally, although FTMap is faster in terms of computational cost,
performing ca. 100 ns of pure water and water/ethanol MD
simulations, as required for solvent site identification, can be
done in ca. 72 h using standard GPU implementation of AMBER,
and represents a minor cost compared to, for example, the
performance of Virtual Screening in which solvent information
may be used in order to improve results.
Detailed Analysis of Solvent Sites Properties. We

determined for all identified water and ethanol hydrophilic and
hydrophobic sites the following properties (defined in Computa-
tional Methods): (i) probe finding probability (PFP), which is a
direct measure of the protein−solvent site interaction free
energy, (ii) R90, which is a measure of the solvent site dispersion
and entropy, (iii) nearest protein to solvent site distance (NPD)
and (iv) site solvent accessible surface area (siSASA). Second, we
classified the solvent sites in three groups, based on the
information presented above: (a) those solvent sites reproducing
protein−ligand pharmacophoric interactions of their own type
(pharmacophoric solvent sites), (b) those solvent sites that
although overlapping with the ligands do not correspond to
pharmacophoric interactions (displaced solvent sites) and (c)
those identified sites that do not overlap with any of the analyzed
ligands.
Figure 4 presents the corresponding probability density

functions for those properties where pharmacophoric solvent
sites show a skewed distribution. The WS PFP (Figure 4A), for
example, shows Gaussian-like distributions with a long tail to
large PFP values (>10) that reveals the presence of tightly bound
waters. The plot also shows that the distribution for the

pharmacophoric solvent sites is slightly skewed to larger values
(maximum is ca. 7 compared to 5 for the others, first arrow in
Figure 4A) and even displays second peak at very high PFP values
(second arrow, Figure 4A). The minimal distance between WS
and the protein (Figure 4B) shows that there is a slight increase
of the proportion of pharmacophoric solvent sites at short
distances (<3.5 Å), thus in direct contact with the protein surface,
when compared to the others. On the other hand, both R90 and
siSASA show similar distribution for the three types of sites and
thus do not have capacity to discriminate among them. Similar
results are obtained for ethanol−OH sites (data not shown).
Finally, hydrophobic sites determined by ethanol methyl group
(Figure 4C,D) also show that pharmacophoric sites tend to have
larger PFP values and there is a slight increase in the fraction of
these sites between 3.5 and 4.5 Å from the protein surface,
whereas no significant differences are shown by other properties.
Summarizing, the analysis of the solvent site properties shows

that although there is not a large difference in the properties of
the pharmacophoric solvent sites with respect to other sites, a
good rule of thumb for selecting potential solvent sites
reproducing pharmacophoric interactions is to choose the ones
with high finding probability and close, i.e., in direct contact, with
the protein surface.
Finally, before moving forward to the potential use of the

determined solvent sites to improve ligand docking and estimate
ligand binding free energies, we need to determine the sampling
efficiency and statistical uncertainty related to PFP (and ΔG, eq
6) values of the solvent sites. We first determined the mean value
(x) and standard deviation (sd) in both parameters for each
solvent site in the three independent MD simulations. The
resulting coefficient of variation values, computed as sd/x, were
averaged for all sites corresponding to the same probe. The
results show that PFP values for water and ethanol sites, which
are used for docking and free energy estimates, have variation
values around 30% of the PFP, representing less than 16% ofΔG
(Table S3 shows ΔG coefficient of variation for all solvents).
Second, we determined the average number of times that a probe
molecule is exchanged in a given solvent site. The results,
presented in Table S4, show that although on average water
molecules are exchanged nearly 3 times in each nanosecond,
other solvents are exchanged between one and two times,
reaching more than 20 molecule exchanges per solvent site when
considering the whole 20 ns MD simulation. Both these results

Figure 5. (A) FGF receptor 1-SU2 cocrystal binding site structure (PDB ID 1agw) with displaced ethanol hydrophilic (red spheres) and hydrophobic
(light blue spheres) sites superimposed. (B) AmpC β-lactamase−WH6 cocrystal active site structure (PDB ID 2r9x) with selected displaced water (red
spheres) and hydrophobic ethanol (light blue spheres) sites superimposed.
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show that sampling efficiency and statistical uncertainty of the
solvent sites and their associated values are adequate for the
desired applications.
Using Solvent Site Derived Information To Improve

Molecular Docking. Previous works from our group showed
that it is possible to use water sites to improve significantly
docking of carbohydrates to lectins26,42 and also possibly
common drugs to target proteins, as shown by the docking of
HTC to AmpC β-lactamase used as a representative example.19

The rationale behind the improvement lies in the fact that WS,
found in the ligand free protein, mimic the positions of the
carbohydrate hydroxyl groups or, in general, ligand functional
groups with hydrogen bonding capabilities in the corresponding
protein−ligand complexes. Furthermore, WS PFP is a good
predictor of its chance of replacement. Therefore, and on the
basis of the present results, we decided to analyze whether we
could improve the docking of any type of ligand using both the
hydrophilic and hydrophobic sites determined by water and
ethanol. For this sake, and as performed in previous works, we
compared the performance of the conventional (or unmodified)
Autodock4 docking method (CADM) with the same docking
protocol biasing the potential with the determined solvent sites.
We will call this method solvent site biased docking method
(SSBDM). Details on the formulation of the biased potential can
be found in the Computational Methods.
Because we already analyzed the potential of the WS in

previous works, we decided to focus on ethanol amphiphilic
properties. Therefore, alongside with the use of ethanol−OH
sites to bias the position of ligand groups with hydrogen bonding

capabilities, we used ethanol derived hydrophobic sites to bias
the location of ligand aromatic rings. As a test case, we selected
FGF receptor 1 and first performed a typical redocking
experiment of the cocrystallized ligand (PDB ID 1agw) using
both docking methods. Figure 5A shows all the ethanol sites in
the FGFr1 binding site displaced by SU2 ligand, superimposed to
the complex crystal structure. The two hydrophobic sites,
depicted as light blue spheres, clearly overlay both ligand
aromatic rings, whereas two of the three hydrophilic sites (red
spheres) are well replaced by N/O ligand atoms.
When Autodock is used, it is common practice to perform 100

docking runs for each ligand and to cluster the resulting poses
into similar sets according to a heavy atom rmsd threshold
between them, thus defining a population value for each set or
cluster, which is also characterized by the lowest binding energy
of its members. Figure 6A shows the population vs binding
energy score plot for the conventional and biased redocking
methods. For the conventional method, the plot displays no clear
outlier, and the best ranked complex (best energy/highest
population) shows a ligand rmsd of 6.45 Å against the reference
structure. The origin of this deviation (Figure S4, panel A) is that
the predicted pose is displaced and deeply buried inside the
pocket when compared to the reference complex. Interestingly,
the best predicted pose for the CADM (rmsd of 1.60 Å) bears
poor binding energy score and population, therefore being the
worst ranked structure. The SSBDM significantly improves the
results. A clear outlier is now identified in the population vs
energy plot (Figure 6A, blue dots), which corresponds to a pose
displaying a rmsd of only 1.49 Å compared to the reference

Figure 6. Population vs binding free energy score (panels A and C) and Δpopulation vs ΔΔG score (panel D) plots using the conventional (CADM)
and biased (SSBDM) docking methods with ethanol hydrophilic and hydrophobic sites for FGF receptor 1. (A) Redocking of SU2 ligand (PDB ID
1agw). (B) Structure of the best ranked ligand pose obtained with the biased method superimposed to the reference crystal structure for the redocking
experiment shown in panel A. (C) Docking of SU2 ligand against three different protein structures obtained from explicit water MD simulations. (D)
Cross-docking experiments for all ligands from the data set against protein structure from PDB ID 4f64. The values indicated with arrows represent the
ligand heavy atom rmsd, in Å, between the predicted complex pose and the reference complex structure.
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complex. Superposition of predicted and reference complexes
(Figure 6B) shows that both ligands share the same molecular
interactions and are identically placed, except for a small rotation
of the outermost aliphatic ring, which is exposed to the solvent
and does not alter the overall binding mode. Figure 6C shows
similar improvement using the biased method when docking is
performed using different receptor structures derived from MD
simulations. These results are not quite unexpected because the
solvent sites already capture some of the receptor dynamics.
Finally, we cross-docked FGFr1 ligands from the data set (Table
1) to a single crystal structure using both methods. Figure 6D
plots the differences in predicted binding ΔG score (ΔΔG) and
population (Δpopulation) between the correct ligand pose (that
with rmsd < 2 Å) and the best ranked of the remaining poses. The
graphic shows that biased docking significantly improves the
results, finding the correct poses with the best energy and
population (upper left quadrant) in most cases. There is only one
incorrect prediction (lower right quadrant) for the biased
method corresponding to a relatively small ligand, extracted from
PDB ID 3js2, that bears no more than twomolecular interactions
with the protein and whose ligand pose is also wrongly predicted
by the conventional method. Overall, these results nicely
demonstrate the potential improvement of solvent site biased
docking using ethanol as a probe.
To complete the picture, we also tested the SSBDM using the

WS to bias hydrophilic interactions mixed with ethanol
hydrophobic sites to bias the position of aromatic rings. We
used as a test case the β-lactamase−WH6 complex (PDB ID
2r9x). Figure 5B shows the WS (red spheres) and ethanol HS

(light blue sphere) displaced by WH6 ligand, superimposed to
the complex crystal structure. As for the FGF receptor, we
performed redocking, MD receptor based and cross docking
experiments. The results presented in Figure 7 show that in most
cases SSBDM performance is better, although the improvement
is not as good as for FGF. For most ligands, the conventional
docking completely fails to identify the correct pose, whereas the
biased method is able to prioritize it either due to a lower binding
energy or a higher population. As an example, for WH6 ligand, in
the conventional redocking the lowest energy pose is completely
wrongly predicted (rmsd 4.61 Å) whereas the highest
population, which is the best predicted pose, displays an rmsd
of 2.58 Å (the ligand is adequately oriented but slightly shifted,
see Figure S4, panel B). The results for the biased docking
method considering all WS and ethanol HS formed in the active
site, on the contrary, shows a clear outlier with high population
above 70% and good relative binding energy score, and its pose
nicely resembles the crystal pose (rmsd = 1.38 Å), as shown in
Figure 7B. Finally, Figure 7C shows that only the biased method
is able to find the correct ligand pose when docking against MD
derived protein structures and Figure 7D shows that the biased
method used in cross docking experiments increases the number
of correct predictions with either energy or population outliers
from 10% to 60% of the assayed ligands.
Summarizing, the above-described results show that biasing

the docking using information on the potential interaction sites
derived from explicit mixed solvent MD simulations, significantly
improves the prediction of protein−ligand complex structures in
terms of both accuracy (obtained poses show lower rmsd against

Figure 7. Population vs binding free energy score (panels A and C) and Δpopulation vs ΔΔG score (panel D) plots using the conventional (CADM)
and biased (SSBDM) dockingmethods with water and ethanol hydrophobic sites for AmpC β-lactamase. (A) Redocking ofWH6 ligand (PDB ID 2r9x).
(B) Structure of the highest population ligand pose obtained with the biased method superimposed to the reference crystal structure for the redocking
experiment shown in panel A. (C) Docking of WH6 ligand against three different protein structures obtained from explicit water MD simulations. (D)
Cross-docking experiments for 10 ligands (Table S5) against protein structure from PDB ID 2r9x. The values indicated with arrows represent the ligand
heavy atom rmsd, in Å, between the predicted complex pose and the reference PDB complex structure.
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the reference) and predictive capacity (best predicted poses
show higher population and lower binding energies), thus
establishing a proof of concept that encourages future studies
toward its application in virtual screening campaigns.
Relation of Solvent Site Properties with Ligand

Binding Thermodynamics. Our final analysis concerns the
use of solvent sites to estimate ligand binding free energies,
building at the same time a solvent site based scoring function to
rank a set of ligands according to their binding affinity. To test
this idea, we selected two proteins, human coagulation factor Xa
and E. coli AmpC β-lactamase, for which there is a wide set of
known ligands whose binding mode and affinity have been
experimentally characterized (see the list of complexes in the
Supporting Information, Tables S6 and S7). To compute the
binding free energy (ΔGpred) of any ligand, starting from the
protein−ligand complex crystal structure, we added the energy
contribution of all solvent sites overlapping ligand atoms capable
of establishing the same type of interactions (see Computational
Methods). We used the hydrophobic sites determined from
ethanol methyl group and the hydrophilic sites derived from
either ethanol−OH or water. We will show the results using the
ethanol derived hydrophilic sites because they are slightly better
than those obtained using the WS. These are shown in Figure 8
and summarized in Table 5.
Figure 8A shows ΔGpred vs the experimentally determined

binding free energy (ΔGexp) for both proteins, including all
available ligands in the set. The results show that performance is
highly dependent on the protein system. The correlation for

AmpC β-lactamase is surprisingly good (R2 = 0.92, rmse = 1.53
kcal/mol) and shows the potential of the solvent sites to
compute free energies from protein−ligand crystal complexes.
Although for factor Xa the results are not as well correlated (R2 =
0.38, rmse = 4.49 kcal/mol), a closer look shows some interesting
points that allow further improvement. First, when analyzing the
ligands chemical diversity it is evident that whereas for β-
lactamase most ligands are small and of similar size, factor Xa
ligands are diverse in size and chemical composition, many being
larger with several torsions, and so the entropy loss due to ligand
binding, which is not accounted by the present method, would be
variable between ligands. Second, because we are only
considering the replacement of solvent sites to compute ΔG,
those ligands that replace the same sites have the same ΔGpred
despite being dissimilar and thus showing different affinities. This
behavior is evidenced in the plot as ligands lying on the same
horizontal line. A final point of notice concerning this plot is that
although ΔG values are slightly underestimated (20−50%), the
accuracy is far better than that observed for MM-GB(PB)SA
based estimations.45

To analyze further the method predictive power, for each
protein we separated the ligands in groups of more than three
members according to their chemical similarity and computed
the correlation between ΔGexp and ΔGpred separately for each
group. The results for factor Xa, also presented in Table 5, show
that correlations are significantly improved, although mean error
values are still large and there is significant variation in the
performance depending on the set under study. For β-lactamase,

Figure 8. Predicted binding free energy from replaced ethanol hydrophilic and hydrophobic sites vs experimental binding free energy plots for human
coagulation factor Xa and E. coli AmpC β-lactamase. (A) Predicted vs experimental bindingΔG plots for all the ligands from the set (see Tables S6 and
S7 in the Supporting Information): β-lactamase depicted as red dots and factor Xa as blue triangles. (B and C) Predicted vs experimental bindingΔΔG
plots for similar ligand pairs for β-lactamase (B) and factor Xa (C). Linear regression curves are shown for all plots. R2 and other meaningful parameter
values for these linear regressions are shown in Table 5.

Table 5. Linear Regression Results for Different Ligand sets of β-Lactamase and Factor Xa

correlated variable ligand set (protein)a # ligands R2 slope rmse (kcal/mol)b ΔΔG sign predictionc

absolute (ΔG) correlation all ligands (β-lactamase) 26 0.92 0.68 1.53 na
all ligands (factor Xa) 72 0.38 0.78 4.49 na
similarity set 1 (factor Xa) 5 0.80 2.01 2.10 na
similarity set 2 (factor Xa) 9 0.68 1.29 3.78 na
similarity set 3 (factor Xa) 7 0.73 0.77 4.16 na
similarity set 4 (factor Xa) 4 0.91 2.07 3.50 na

relative (ΔΔG) correlation similar pairs (β-lactamase) 7d 0.94 0.82 0.76 88%
similar pairs (factor Xa) 43d 0.58 1.08 1.31 97%

aSee Tables S6 and S7 in SI for ligand set composition. bRoot mean squared error (rmse) is calculated from predicted and experimental ΔG (or
ΔΔG) values. cFor ΔΔG correlations, sign prediction is also calculated and corresponds to the percentage of times that predicted and experimental
ΔΔG values had the same sign, taking into account the cases in which predicted ΔΔG values were different from 0 (ΔΔGpred ≠ 0 in 81% of the cases
for β-lactamase and 52% for factor Xa); na = not applicable. dThe number of points involved in the regression analysis is 21 for β-lactamase and 63
for factor Xa, reflecting the total number of similar pairs.
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there is only one set of similar ligands and the initial correlation is
kept (R2 = 0.91).
As a further attempt to improve the performance of our

method, we decided to compute relative binding free energies
(ΔΔGpred) between pairs of similar compounds from all the
similarity sets. Figure 8B,C shows ΔΔGpred results for all the
similar pairs. The β-lactamase (Figure 8B) preserves its excellent
performance. Table 5 shows that not only the good correlation
measured by R2 and the approximate unitary slope are
maintained, but also a low rmse value of 0.76 kcal/mol is
obtained and, most important, a correct sign prediction is
attained. Out of all the cases in whichΔΔGpred is different from 0,
predicted and experimental values have the same sign in 88% of
them. This is of great relevance when evaluating whether a ligand
is to be more (or less) potent than another one.
Switching to factor Xa (Figure 8C), it becomes evident that the

correlation (R2 is 0.58) is better than that for the absolute values.
Moreover, the slope is practically 1 and the rmse value is now
acceptable (1.31 kcal/mol). Most important, ΔΔG sign
prediction is again well accomplished because out of 33 non-
null ΔΔG predictions, 32 had the same sign as ΔΔGexp, so there
is only one wrongly predicted case (ΔΔGexp = 0.9 kcal/mol and
ΔΔGpred = −0.1 kcal/mol). The results thus evidence that the
important information the method is able to yield when complex
structural information is available, concerns its high confidence in
predicting the relative potency of binding ligands when ΔΔGpred
has nonzero value (i.e., ligands replacing at least one different
solvent site). On the contrary, a weakness of the method is that it
is not always able to provide this information, i.e., whenΔΔGpred
= 0 (19% of the cases for β-lactamase and 48% for factor Xa).
Concerning the fact that ligands replacing the same solvent

sites will display the same ΔGpred, it is clear that other
contributions, ligand binding entropy, size, etc., should be
included to prevent it. Although, this is out of the scope of the
present work, and despite the limited sample, we can measure
how much of the overall variance in theΔGexp is captured by the
solvent sites, and how much is left out. Our results show that
although ΔGexp shows an overall mean variance of 1.0 kcal/mol
for the sets of similar ligands analyzed in factor Xa (2.7 kcal/mol
for β-lactamase), the average variance of the sets replacing exactly
the same solvent sites is only 0.3 kcal/mol for both proteins. In
other words, the solvent sites are able to represent the same range
of affinities observed experimentally, but there is still ca. 30%
variation in the binding free energies that results from other
properties that contribute to the ligand binding free energy.

■ DISCUSSION
Given the potential of MD simulations in explicit solvent, with
the addition of molecular probes to reveal ligand interaction sites,
in the past decade several groups used this kind of approach to
characterize protein binding sites and relate them to the known
protein−ligand complexes.29−31,46 Most of them focused on
small sets of protein−ligand complexes and a few probes. They
were usually directed toward the detection and characterization
of the binding site in terms of their potential interactions, and
suggested, but felt short, on further applications of the probe
derived information, such as binding free energy estimations.
The first part of our work extends (to 121 complexes in 18
different proteins) and confirms previous observations, related to
the probes capabilities to unravel future protein−ligand
interactions. Most important, having tested a variety of water
miscible solvent probes (water, ethanol, acetamide, methyl-
ammonium acetate and acetonitrile) in the same proteins, allows

us to conclude that pure water and water/ethanol simulations are
jointly powerful enough to determine both polar and non polar
interaction sites, the other probes being mostly redundant.
Moreover, even if no highly hydrophobic probe (such as benzene
or propane as in the SILCS method30,47) was used, more than
85% of the aliphatic and aromatic hydrophobic interaction sites
could be determined combining both ethanol and acetonitrile
methyl probes. This could be important because highly
hydrophobic probes (butane or phenol) have been shown to
result partially in protein denaturation.48 Also, in line with
previous reports,29 analysis of the solvent site properties shows
that those sites with higher finding probability, which is
translated in higher affinity (see eq 6 in the Computational
Methods), tend to be those that correspond to pharmacophoric
sites.
Moving toward potential applications, we first showed how

solvent sites can be used to improve molecular docking
calculations. In line with our previous works, focused on
lectin−carbohydrate complexes, we used the PFP and R90 to
modify the grid maps computed by Autodock4 scoring function,
favoring those ligand poses where polar and/or nonpolar
functional groups replace the corresponding hydrophilic and/
or hydrophobic solvent sites, respectively. Docking results are
significantly improved in terms of accuracy, i.e., the method
capacity to reproduce the structure of the protein−ligand
reference complex, and precision, with right results displaying
better energy and population than the false positives. Detailed
analysis of how the solvent site biased docking method improves
Autodock performance shows that key to success is a better
scoring function and not an increased sampling. Having thus
established the proof of concept for using the solvent sites to
improve docking, the next logical step is to implement them in a
virtual screening scheme.
The second application of the solvent sites concerns their use

for estimating ligand binding free energies. Employing a similar
approach as that used for docking, we were able to estimate ΔG
values showing in some cases, as for AmpC β-lactamase,
exceptional agreement with experimentally derived data. In
general, predicted binding free energy values slightly under-
estimate the experimental ones and results are better when ΔG
for similar sets of ligands are compared or if relative,ΔΔG, values
between pairs of similar ligands are computed. As expected, and
in agreement with other works on the subject,20 the predictive
power depends strongly on the set of ligands that are evaluated.
The main limitations for predicting binding free energies by

the present method arise from the presence of set of ligands that
either replace the exact same solvent sites or are too small
(fragments) and thus replace no more than one solvent site. For
the first type of ligands, the problem is of moderate relevance
because the variance in experimental ΔG values is rather small
when compared to the overall range of ΔGexp evaluated for the
two assayed proteins. In any case, although the variation inside
these ligand sets cannot be predicted, the ligands can be properly
compared with ligands from other sets and be well discriminated
in terms of their absolute binding free energy.
It is interesting to compare the present method with that

developed by Abel’s group,20 where the energy, entropy and
relative position of water sites were used to build a scoring
function useful to predict binding ΔΔG between congeneric
ligand pairs that differ by only small chemical modifications. Our
implementation is simpler because it only considers in a binary
fashion whether the ligand replaces (or not) a given solvent site.
Although, this clear has limitations, it nonetheless shows good
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performance in a comparative way. In any case, to asses these
methods predictive power, as well as other alternatives, further
systematic work is needed.
A last point of notice concerns the fact that albeit surely failing

to consider several contributions to the binding free energy, both
ΔGpred and the biased docking scoring function are able to reveal
the relevant aspects of the underlying thermodynamics of the
binding process. In other words, the solvent site related free
energy (derived from eq 6) must be a very good estimate of the
free energy contribution of the corresponding ligand fragment
(or functional group) that replaces it to the overall ligand affinity.
Two questions then arises. The first one is related to what

contributions we are missing and how could they be added in
order to be able to estimate different ΔG values for different
ligands that nonetheless replace the same sites. Detailed analysis
of our results suggests that one key factor is to account for those
interactions that are not represented by the solvent sites.
Although this seems obvious, it is not straightforward to
implement in order to avoid double counting of interactions.
Also important seems to be the desolvation of the ligand beyond
the functional groups that replace the sites, and mostly related to
ligand size. Third, loss of conformational entropy of both ligand
and receptor should be considered, specially for large and flexible
ligands. Finally, the presented approach also assumes additivity
and independence between solvent sites, ignores molecular
orientation and group identity and neglects the difference in the
entropic cost of fixing many solvent molecules compared to only
one ligand. The second point concerns comparison with other
methods such as MM-GB(PB)SA that are known to have poor
performance, especially for ligands bearing charged groups.45

Our results strongly suggest that solvent probes correctly
describe the free energy of transferring the corresponding
group from the bulk solvent to the binding site. This implies that
within a given force field, and if proper sampling is achieved,
probe interactions between bulk water and the protein binding
site are well balanced resulting in accurate free energy differences.
On the contrary, MM-GB(PB)SA methods usually combine
direct explicit evaluation of the ligand−protein interaction
energy with a continuum model to determine solvation energies
and the contributions are not well balanced. The fact that force
fields in explicit solvent are able to balance correctly protein−
ligand and protein−solvent interactions is also supported by
more recent works showing that accurate absolute binding free
energies can be obtained by directly sampling the ligand binding
and release processes in explicit solvent MD simulations49 or by
using free energy perturbation methods.50 Although, our solvent
site method is not as accurate and does not yield the detail
achieved by this type of simulations, its computational cost is
significantly smaller, especially when the same receptor is
evaluated against many ligands.

■ CONCLUSION
By performing MD simulations in explicit water and water−
cosolvent (ethanol, acetamide, methylammonium acetate,
acetonitrile) mixtures for a large set of proteins, we show that
combining water and ethanol identified hot spots (solvent sites)
allows to sample over 70% of all possible protein−ligand
interactions, especially those that are most important and
represent the protein pharmacophore. We also show that
information derived from the other probes is redundant. Finally,
and most relevant, we demonstrate that the identified solvent
sites can be used to improve significantly ligand docking in terms
of accuracy and precision, and that accurate predictions of ligand

binding free energies, together with a relative ranking of ligands
affinity, can be performed.
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