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ABSTRACT
Additive models provide an attractive setup to estimate regression
functions in a nonparametric context. They provide a flexible and
interpretable model, where each regression function depends only
on a single explanatory variable and can be estimated at an opti-
mal univariate rate. Most estimation procedures for thesemodels are
highly sensitive to the presence of even a small proportion of out-
liers in the data. In this paper, we show that a relatively simple robust
version of the backfitting algorithm (consisting of using robust local
polynomial smoothers) corresponds to the solution of awell-defined
optimisation problem. This formulation allows us to find mild condi-
tions to showFisher consistency and to study the convergence of the
algorithm. Our numerical experiments show that the resulting esti-
mators have good robustness and efficiency properties. We illustrate
the use of these estimators on a real data set where the robust fit
reveals the presence of influential outliers.
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1. Introduction

Consider a general regression model, where a response variable Y ∈ R is related to a vec-
torX = (X1, . . . ,Xd)

t ∈ R
d of explanatory variables through the following nonparametric

regression model:

Y = g0(X)+ σ0ε. (1)

The error ε is assumed to be independent from X and centred at zero, while σ0 is the error
scale parameter. When ε has a finite first moment, we have the usual regression represen-
tation E(Y |X) = g0(X). Standard estimators for g0 can thus be derived relying on local
estimates of the conditional mean, such as kernel polynomial regression estimators. It is
easy to see that such procedures can be seriously affected either by a small proportion of
outliers in the response variable, or when the distribution of Y |X has heavy tails. Note,
however, that even when ε does not have a finite first moment, the function g0(X) can
still be interpreted as a location parameter for the distribution of Y |X. In this case, local
robust estimators can be used to estimate the regression function as, for example, the local
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M-estimators proposed in Boente and Fraiman (1989) and the local regression quantiles
studied in Welsh (1996).

Unfortunately both robust and non-robust nonparametric regression estimators are
affected by the curse of dimensionality, which is caused by the fact that the expected num-
ber of observations in local neighbourhoods decreases exponentially as a function of d, the
number of covariates. This results in regression estimators with a very slow convergence
rate. Stone (1985) showed that additive models can avoid these problems and produce
nonparametric multiple regression estimators with a univariate rate of convergence. In an
additive model, the regression function is assumed to satisfy

g0(X) = μ0 +
d∑

j=1
g0,j(Xj), (2)

whereμ0 ∈ R, g0,j : R→ R, 1 ≤ j ≤ d, are unknown smooth functionswithE(g0,j(Xj)) =
0. Such a model retains the ease of interpretation of linear regression models, where each
component g0,j can be thought as the effect of the jth covariate on the centre of the condi-
tional distribution of Y. Moreover, Linton (1997), Fan, Härdle, and Mammen (1998) and
Mammen, Linton, and Nielsen (1999) obtained different oracle properties showing that
each additive component can be estimated as well as when all the other ones are known.

Several algorithms to fit additive models have been proposed in the literature. In this
paper, we focus on the backfitting algorithm as introduced in Friedman and Stuetzle (1981)
and discussed further in Buja, Hastie, and Tibshirani (1989). The backfitting algorithm can
be intuitively motivated by observing that, if Equation (2) holds, then

g0,j(x) = E

⎛⎝Y − α −
∑
��=j

g0,�(X�)

∣∣∣∣∣∣Xj = x

⎞⎠ . (3)

Hence, given a sample, the backfitting algorithm iteratively estimates the components g0,j,
1 ≤ j ≤ d, using a univariate smoother of the partial residuals in Equation (3) as functions
of the jth covariate. This algorithm is widely used due to its flexiblity (different univariate
smoothers can be used), ease of implementation and intuitive motivation. Furthermore, it
has been shown towork very well in simulation studies (Sperlich, Linton, andHärdle 1999)
and applications, although its statistical properties are difficult to study due to its iterative
nature. Some results regarding its bias and conditional variance can be found in Opsomer
and Ruppert (1997), Wand (1999) and Opsomer (2000).

When second moments exist, Breiman and Friedman (1985) showed that, under cer-
tain regularity conditions, the backfitting procedure finds functions m1(X1), . . . ,md(Xd)

minimising E(Y − μ0 −
∑d

i=1mj(Xj))
2 over the space of functions with E[mj(Xj)] =

0 and finite second moments. In other words, even if the regression function g0 in
Equation (1) does not satisfy the additive model (2), the backfitting algorithm finds the
orthogonal projection of the regression function onto the linear space of additive func-
tions in L2. Equivalently, backfitting finds the closest additive approximation (in the L2
sense) to E(Y |X1, . . . ,Xd). Furthermore, the backfitting algorithm is a coordinate-wise
descent algorithm minimising the squared loss functional above. The sample version
of the algorithm solves a system of nd× nd normal equations and corresponds to the
Gauss–Seidel algorithm for linear systems of equations.
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746 G. BOENTE ET AL.

If the smoother chosen to estimate (3) is not resistant to outliers then the estimated
additive components can be seriously affected by a relatively small proportion of atypi-
cal observations. Given the local nature of nonparametric regression estimators, we will
be concerned with the case where outliers are present in the response variable. Bianco
and Boente (1998) considered robust estimators for additive models using kernel regres-
sion, which are a robust version of those defined in Baek and Wehrly (1993). The main
drawback of this approach is that it assumes that Y − g0,j(Xj) is independent from Xj,
which is difficult to justify or verify in practice. Outlier-resistant fits for generalised addi-
tive models have been considered recently in the literature. When the variance is a known
function of the mean and the dispersion parameter is known, we refer to Alimadad and
Salibián-Barrera (2012) and Wong, Yao, and Lee (2014), who consider robust fits based
on backfitting and penalised splines M-estimators, respectively. In the case of model (1),
the approach of Wong et al. (2014) reduces to that of Oh, Nychka, and Lee (2007)
which is an alternative based on penalised splines. On the other hand, Croux, Gijbels,
and Prosdocimi (2011) provides a robust fit for generalised additive models with nui-
sance parameters using penalised splines, but no theoretical support is provided for their
method.

In this paper, we consider an intuitively appealing way to obtain robust estimators for
model (1) which combines the backfitting algorithm with robust univariate smoothers.
For example, one can consider those proposed in Boente and Fraiman (1989), Härdle and
Tsybakov (1988), Härdle (1990) and Oh et al. (2007). One of the main contributions of
this paper is to show that this intuitive approach to obtain a robust backfitting algorithm
is well justified. Specifically, we show that applying the backfitting algorithm using the
robust nonparametric regression estimators of Boente and Fraiman (1989) corresponds
to minimising E[ρ((Y − μ0 −

∑d
i=1mj(Xj))/σ0)] over functions m1(X1), . . . ,md(Xd)

with E[mj(Xj)] = 0, where ρ is a loss function. Furthermore, this robust backfitting cor-
responds to a coordinate-wise descent algorithm and can be shown to converge. We
also establish sufficient conditions for these robust backfitting estimators to be Fisher
consistent for the true additive components when Equation (2) holds. Our numerical
experiments confirm that these estimators have very good finite-sample properties, both
in terms of robustness, and efficiency with respect to the classical approach when the
data do not contain outliers. These robust estimators cannot be interpreted as orthogonal
projections of the regression function onto the space of additive functions of the predic-
tors. However, the first-order conditions for the minimum of this optimisation problem
are closely related to the robust conditional location functional defined in Boente and
Fraiman (1989).

The rest of the paper is organised as follows. In Section 2, we show that the robust
backfitting algorithm mentioned above corresponds to a coordinate-descent algorithm to
minimise a robust functional using a convex loss function.We also prove that the resulting
estimator is Fisher consistent, which means that the solution to the population version of
the problem is the object of interest (in our case, the true regression function). The conver-
gence of this algorithm is studied in Section 2.1, while its finite-sample version using local
M-regression smoothers is presented in Section 3. The results of our numerical experi-
ments conducted to evaluate the performance of the proposed procedure are reported in
Section 4. Finally, in Section 5 we illustrate the advantage of using robust backfitting on a
real data set. All proofs are relegated to the appendix.
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2. The robust backfitting functional

In this section, we introduce a population-level version of the robust backfitting algorithm.
By showing that the robust backfitting corresponds to a coordinate-descent algorithm to
minimise a ‘robust functional’, we are able to find sufficient conditions for the robust
backfitting to be Fisher-consistent.

In what follows, we will assume that (Xt,Y)t is a random vector satisfying the additive
model (2), where Y ∈ R and X = (X1, . . . ,Xd)

t, that is,

Y = μ0 +
d∑

j=1
g0,j(Xj)+ σ0ε. (4)

As it is customary, to ensure identifiability of the components of the model, we will further
assume thatEg0,j(Xj) = 0, 1 ≤ j ≤ d. When secondmoments exist, it is easy to see that the
backfitting estimators solve the following minimisation problem

min
(ν,m)∈R×Had

E

⎛⎝Y − ν −
d∑

j=1
mj(Xj)

⎞⎠2

, (5)

where Had = {m(x) =∑d
j=1mj(xj), mj ∈ Hj} ⊂ H, H = {r(x) : E(r(X)) = 0, E

(r2(X)) <∞} and Hj is the Hilbert space of measurable functions mj of Xj, with zero
mean and finite second moment, that is, Emj(Xj) = 0 and Em2

j (Xj) <∞. The solution
to Equation (5) is characterised by its residual Y − μ− g(X) being orthogonal to Had.
Since this space is spanned byH�, 1 ≤ � ≤ d, the solution of Equation (5) satisfies E(Y −
μ−∑d

j=1 gj(Xj)) = 0 and E(Y − μ−∑d
j=1 gj(Xj) |X�) = 0, for 1 ≤ � ≤ d, from where

it follows that μ = E(Y) and g�(X�) = E(Y − μ−∑j �=� gj(Xj) |X�), 1 ≤ � ≤ d. Given
a sample, the backfitting algorithm iterates the above system of equations replacing the
conditional expectations with nonparametric regression estimators (e.g. local polynomial
smoothers).

To reduce the effect of outliers on the regression estimates, we replace the square loss
function in Equation (5) by a function with bounded derivative such as the Huber or
Tukey’s-loss functions. For these losses,ρc(u) = c2ρ1(u/c), where c>0 is a tuning constant
to achieve a given efficiency. The Huber-type loss corresponds to ρ1 = ρh with ρh(u) =
u2/2 if |u| ≤ 1, ρh(u) = |u| − 1/2 otherwise, and the Tukey bisquare loss to ρ1(u) =
ρt(u) = min(3u2 − 3u4 + u6, 1). Other possible choices are ρ1(u) =

√
1+ u2 − 1 which

is a smooth approximation of the Huber function and ρ1(u) = u arctan(u)− 0.5 ln(1+
u2) which has derivative ρ′1(u) = arctan(u). The bounded derivative of the loss function
controls the effect of outlying values in the response variable (sometimes called ‘vertical
outliers’ in the literature).

Formally, our objective function is given by ϒ(ν,m) = ϒ(ν,m, σ0) with

ϒ(ν,m, σ) = Eρ

(
Y − ν −∑d

j=1mj(Xj)

σ

)
, (6)

where ρ : R→ [0,∞) is even, ν ∈ R and the functionsmj ∈ Hj, 1 ≤ j ≤ d. Let P be a dis-
tribution in R

d+1 and let (Xt,Y)t ∼ P. Define the functional (μ(P), g(P)) as the solution
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748 G. BOENTE ET AL.

of the following optimisation problem:

(μ(P), g(P)) = argmin
(ν,m)∈R×Had

ϒ(ν,m), (7)

where g(P)(X) =∑d
j=1 gj(P)(Xj) ∈ Had.

To prove that the functional in Equation (7) is Fisher-consistent and to derive first-order
conditions for the point where it attains its minimum value, we will need the following
assumptions:

(E1) The random variable ε has a density function f0(t) that is even, non-increasing in |t|,
and strictly decreasing for |t| in a neighbourhood of 0.

(R1) The function ρ : R→ [0,∞) is continuous, non-decreasing, ρ(0) = 0, and ρ(u) =
ρ(−u). Moreover, if 0 ≤ u < v with ρ(v) < supt ρ(t) then ρ(u) < ρ(v).

(A1) Given functionsmj ∈ Hj, ifP(
∑d

j=1mj(Xj) = 0) = 1 then, for all 1 ≤ j ≤ d, we have
P(mj(Xj) = 0) = 1

Remark 2.1: Assumption (E1) is a standard condition needed to ensure Fisher-
consistency of an M−location functional (see, e.g. Maronna, Martin, and Yohai 2006).
Assumption (R1) is satisfied by the so-called family of ‘rho functions’ in Maronna
et al. (2006), which includemany commonly used robust loss functions, such as thosemen-
tioned above. Since the loss function ρ can be chosen by the user, this assumption is not
restrictive. Finally, assumption (A1) allows us to write the functional g(P) in Equation (7)
uniquely as g(P) =∑d

j=1 gj(P).

Assumption (A1) appears to be the most restrictive and deserves some discussion. It
is closely related to the identifiability of the additive model (4) and holds if the explana-
tory variables are independent from each other. Indeed, let us denote (x,Xα) the vector
with the αth coordinate equal to x and the other ones equal to Xj, j �= α and by m(x) =∑d

j=1mj(xj), for mj ∈ Hj. For any fixed 1 ≤ α ≤ d, the condition P(m(X) = 0) = 1
implies that for almost every xα , P(m(xα ,Xα) = 0 |Xα = xα) = 1. Using that the com-
ponents of X are independent, we obtain that P(m(xα ,Xα) = 0) = 1 which implies that∫
m(xα ,uα) dFXα (u) = 0, where FXα denotes the distribution function of Xα . Note that

since Emj(Xj) = 0 for all j,
∫
m(xα ,uα) dFXα (u) = mα(xα)+

∫ ∑
j �=α mj(uj) dFXα (u) =

mα(xα). Hence, mα(xα) = 0, for almost every xα as desired. However, if the compo-
nents of X are not independent, then P(m(xα ,Xα) = 0 |Xα = xα) = 1 does not imply∫
m(xα ,uα) dFXα (u) = 0. This has already been observed by Hastie and Tibshirani (1990,

p. 107). The fact thatHad is closed inH entails that undermild assumptions, theminimum
of E(Y −m(X))2 overHad exists and is unique. However, the individual functionsmj(xj)
may not be uniquely determined since the dependence among the covariates may lead to
more than one representation for the same surface (see also Breiman and Friedman 1985).
In fact, condition (A1) is analogous to Assumption 5.1 of Breiman and Friedman (1985). It
is also worth noticing that Stone (1985) gives conditions to ensure that (A1) holds. Indeed,
Lemma 1 in Stone (1985) implies Proposition 2.1 which gives weak conditions for the
unique representation and hence, as shown in Theorem 2.1, for the Fisher-consistency of
the functional g(P). Its proof is omitted since it follows straightforwardly.
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Proposition 2.1: Assume that X has compact support S and that its density fX is bounded
in S and such that infx∈S fX(x) > 0. Let Vj = mj(Xj) be random variables such that
P(
∑d

j=1 Vj = 0) = 1 and E(Vj) = 0, then P(Vj = 0) = 1.

The next Theorem establishes the Fisher-consistency of the functional (μ(P), g(P)).
In other words, it shows that the solution to the optimisation problem (7) are the target
quantities to be estimated under model (4).

Theorem 2.1: Assume that the random vector (Xt,Y)t ∈ R
d+1 satisfies Equation (4) and

let P stand for its distribution.

(a) If (E1) and (R1) hold, then, for each fixed σ > 0, ϒ(ν,m, σ) in Equation (6) achieves
its unique minimum overR×Had at (μ(P), g(P)) = (μ(P),∑d

j=1 gj(P)), regardless of
the value of σ , when μ(P) = μ0 and P(

∑d
j=1 gj(P)(Xj) =

∑d
j=1 g0,j(Xj)) = 1.

(b) If in addition (A1) holds, the unique minimum (μ(P), g(P)) = (μ(P),∑d
j=1 gj(P))

satisfies μ(P) = μ0 and P(gj(P)(Xj) = g0,j(Xj)) = 1 for 1 ≤ j ≤ d.

It is worth noticing that a minimiser (μ(P), g(P)) of Equation (7) always exists if ρ is a
strictly convex function, even if (E1) does not hold. If in addition (A1) holds, theminimiser
will have a unique representation.

For ν ∈ R, x = (x1, . . . , xd)t ∈ R
d and m = (m1, . . . ,md)

t ∈ H1 × · · · ×Hd let
�(ν,m, x) = (	0(ν,m),	1(ν,m, x1), . . . ,	d(ν,m, xd))t, where

	0(ν,m) = E

[
ψ

(
Y − ν −∑d

j=1mj(Xj)

σ0

)]

	�(ν,m, x�) = E

[
ψ

(
Y − ν −∑d

j=1mj(Xj)

σ0

)∣∣∣∣∣X� = x�

]
, 1 ≤ � ≤ d. (8)

Our next theorem shows that it is possible to choose the solution g(P) of Equation (7) so
that its additive components gj = gj(P) satisfy first-order conditions which are generalisa-
tions of those corresponding to the classical case where ρ(u) = u2.

Theorem 2.2: Let ρ be a differentiable function satisfying (R1) and such that its deriva-
tive ρ′ = ψ is bounded and continuous. Let (Xt,Y)t ∼ P be a random vector such
that (μ(P), g(P)) is a minimiser of ϒ(ν,m) over R×Had where μ(P) ∈ R, g(P) =∑d

j=1 gj(P) ∈ Had, that is, (μ(P), g(P)) is the solution of Equation (7). Then, (μ(P), g(P))
satisfies the system of equations �(ν,m, x) = 0 almost surely PX.

Remark 2.2: (a) It is also worth mentioning that if (Xt,Y)t satisfies Equation (4) with
the errors satisfying (E1), then �(μ0, g0, x) = 0. Moreover, if the model is heteroscedas-
tic, that is, if Y = g0(X)+ σ0(X)ε = μ0 +

∑d
j=1 g0,j(Xj)+ σ0(X)ε, where the errors ε

are symmetrically distributed and the score function ψ is odd, then (μ0, g0) satisfies
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750 G. BOENTE ET AL.

Eψ((Y − μ0 −
∑d

j=1 g0,j(Xj))/σ0(X)) = 0 and for 1 ≤ � ≤ d,

E

[
1

σ0(X)
ψ

(
Y − μ0 −

∑
j �=� g0,j(Xj)− g0,�(X�)

σ0(X)

)∣∣∣∣∣X�
]
= 0,

which provides a way to extend the robust backfitting algorithm to heteroscedastic models.
(b) Assume now that missing responses can arise in the sample, that is, we have a sam-

ple (Xt
i ,Yi, δi)t, 1 ≤ i ≤ n, where δi = 1 if Yi is observed and δi = 0 if Yi is missing, and

(Xt
i ,Yi)

t satisfy an additive heteroscedasticmodel. Let (Xt,Y , δ)t be a random vector with
the same distribution as (Xt

i ,Yi, δi)t. Moreover, assume that responses may be missing at
random (mar), that is, P(δ = 1 | (X,Y)) = P(δ = 1 |X) = p(X). Define (μ(P), g(P)) =
argmin(ν,m)∈R×Had ϒδ(ν,m) where ϒδ(ν,m) = Eδρ((Y − ν −∑d

j=1mj(Xj))/σ0(X)) =
Ep(X)ρ((Y − ν −∑d

j=1mj(Xj))/σ0(X)). Analogous arguments to those considered in the
proof of Theorem 2.1, allow to show that, if (E1) and (R1) hold, ϒδ(ν,m) achieves its
unique minimum at (ν,m) ∈ R×H where ν = μ0 and P(m(X) =∑d

j=1 g0,j(Xj)) = 1.
Besides, if in addition (A1) holds, the unique minimum satisfies that μ(P) = μ0 and
P(gj(P)(Xj) = g0,j(Xj)) = 1, that is, the functional is Fisher-consistent.

On the other hand, the proof of Theorem 2.2 can be also generalised to the case of an
homocedastic additive model (4) with missing responses. Effectively, when infx p(x) > 0,
using the mar assumption, it is possible to show that there exists a unique measurable
solution g̃�(x) of λ�,δ(x, a) = 0 where

λ�,δ(x, a) = E

{
p(X) ψ

(
Y − μ(P)−∑j �=� gj(P)(Xj)− a

σ0

)∣∣∣∣∣X� = x

}
.

More precisely, let �δ(ν,m, x) = (	0,δ(ν,m),	1,δ(ν,m, x1), . . . ,	d,δ(ν,m, xd))t with
m = (m1, . . . ,md)

t, 	0,δ(ν,m) = E[p(X)ψ((Y − ν −∑d
j=1mj(Xj))/σ0)] and, for 1 ≤

� ≤ d, 	�,δ(ν,m, x�) = E[p(X)ψ((Y − μ(P)−∑j �=�mj(Xj)−m�(X�))/σ )|X� = x�].
Similar arguments to those considered in the proof of Theorem 2.2, allow to show that if
there exists a unique minimiser (μ(P), g(P)) ∈ R×Had ofϒδ(ν,m), then (μ(P), g(P)) is
a solution of�δ(ν,m, x) = 0. Note that instead of a simplified approach, a propensity score
approach may be considered taking δ/p(X) instead of δ. In this case, ϒδ(ν,m) = ϒ(ν,m)
defined in Equation (6) and	�,δ = 	� defined in Equation (8). The propensity approach is
useful when preliminary estimates of the missing probability are available, otherwise, the
simplified approach is preferred.

2.1. The population version of the robust backfitting algorithm

In this section, we derive an algorithm to solve Equation (7) and study its convergence. For
simplicity, we will assume that the vector (Xt,Y)t is completely observed and that it satis-
fies Equation (4). By Theorem 2.2, the robust functional (μ(P), g(P)) satisfies Equation (8).
To simplify the notation, in what follows we will put μ = μ(P) and gj = gj(P), 1 ≤ j ≤ d
and

∑m
s=� as will be understood as 0 ifm < �. The robust backfitting algorithm is given in

Algorithm 1.
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Algorithm 1 Population version of the robust backfitting

1: Let � = 0 and g(0) = (g(0)1 , . . . , g(0)d )t be an initial set of additive components, for
example: g(0) = 0 and μ0 an initial location parameter.

2: repeat
3: �← �+ 1
4: for j = 1 to d do
5: Let R(�)j = Y − μ(�−1) −∑j−1

s=1 g̃
(�)
s (Xs)−

∑d
s=j+1 g

(�−1)
s (Xs)

6: Let g̃(�)j solve

E

⎡⎣ψ
⎛⎝R(�)j − g̃(�)j (Xj)

σ0

⎞⎠∣∣∣∣∣∣Xj

⎤⎦ = 0 a.s.

7: end for
8: for j = 1 to d do
9: g(�)j = g̃(�)j − E[g̃(�)j (Xj)].
10: end for
11: Let μ(�) solve

E

⎡⎣ψ
⎛⎝Y − μ(�) −∑d

j=1 g
(�)
j (Xj)

σ0

⎞⎠⎤⎦ = 0 .

12: until convergence

Our next Theorem shows that each Step � of the algorithm above reduces the objective
function ϒ(μ(�), g(�)).

Theorem 2.3: Let ρ be a differentiable function satisfying (R1) and such that its deriva-
tive ρ′ = ψ is a strictly increasing, bounded and continuous function with limt→+∞ ψ(t) >
0 and limt→−∞ ψ(t) < 0. Let (μ(�), g(�))�≥1 = (μ(�), g(�)1 , . . . , g(�)d )�≥1 be the sequence
obtained with Algorithm 1. Then, the sequence {ϒ(μ(�), g(�))}�≥1 is non-increasing.

3. The sample version of the robust backfitting algorithm

In practice, given a random sample (Xt
i ,Yi)

t 1 ≤ i ≤ n from the additive model (4) we
apply Algorithm 1 replacing the unknown conditional expectations with univariate robust
smoothers. Different smoothers can be considered, including splines, kernel weights or
even nearest neighbours with kernel weights. In what follows we describe the algorithm
for kernel polynomialM-estimators.

Let K : R→ R be a kernel function and let Kh(t) = (1/h)K(t/h). The estimators of
the solutions of (8) using kernelM−polynomial estimators of order q ≥ 0 are given by the
solution to the following system of equations:

1
n

n∑
i=1

ψ

(
Yi − μ̂−

∑d
j=1 ĝj(Xi,j)

σ̂0

)
= 0
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1
n

n∑
i=1

Khj(Xi,j − xj)ψ

(
Yi − μ̂−

∑
��=j ĝ�(Xi,�)−

∑q
s=0 βs,jZi,j,s

σ̂0

)
Zi,j(xj) = 0, 1 ≤ j ≤ d,

where Zi,j(xj) = (Zi,j,0,Zi,j,1, . . . ,Zi,j,q)t with Zi,j,s = (Xi,j − xj)s, 0 ≤ s ≤ d. Then, we have
ĝj(xj) = β0,j, 1 ≤ j ≤ d. The corresponding algorithm is described in detail in Algorithm 2.
The same procedure can be applied when responses are missing.

Algorithm 2 The sample version of the robust backfitting

1: Let � = 0 and ĝ(0) = (ĝ(0)1 , . . . , ĝ(0)d )t be an initial set of additive components, for
example: ĝ(0) = 0, and let σ̂0 be a robust residual scale estimator. Moreover, let μ̂(0)

an initial location estimator such as anM-location estimator of the responses.
2: repeat
3: �← �+ 1
4: for j = 1 to d do
5: for i0 = 1 to n do
6: Let xj = Xi0,j
7: for i = 1 to n do
8: Let Zi,j(xj) = (1, (Xi,j − xj), (Xi,j − xj)2, . . . , (Xi,j − xj)q)t and R̂(�)i,j = Yi −

μ̂(�) −∑j−1
s=1 g̃

(�)
s (Xi,s)−

∑d
s=j+1 ĝ

(�−1)
s (Xi,s).

9: end for
10: Let β̂ j(xj) = (β̂0j(xj), β̂1j(xj), . . . , β̂qj(xj))t be the solution to

1
n

n∑
i=1

Kh(Xi,j − xj) ψ

⎛⎝ R̂(�)i,j − β̂ j(xj)tZi,j(xj)

σ̂0

⎞⎠Zi,j(xj) = 0 .

11: Let g̃(�)j (xj) = β̂0j(xj).
12: end for
13: end for
14: for j = 1 to d do
15: ĝ(�)j = g̃(�)j −

∑n
i=1 g̃

(�)
j (Xi,j)/n.

16: end for
17: Let μ̂(�) solve

1
n

n∑
i=1

ψ

⎛⎝Yi − μ̂(�) −
∑d

j=1 ĝ
(�)
j (Xi,j)

σ̂0

⎞⎠ = 0 .

18: until convergence

Remark 3.1: A possible choice of the preliminary scale estimator σ̂0 is obtained by calcu-
lating themad of the residuals obtainedwith a simple and robust nonparametric regression
estimator, as local medians. In that case we have σ̂0 = mad1≤i≤n{Yi − Ŷi}, where Ŷi =
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median1≤j≤n{Yj : |Xj,k − Xi,k| ≤ hk, ∀ 1 ≤ k ≤ d}. The bandwidths hk are preliminary
values to be selected, or alternatively they can be chosen as the distance between Xi,k and
its rth nearest neighbour among {Xj,k}j �=i.

3.1. Selection of the smoothing parameter

As with other nonparametric procedures, the selection of the smoothing parameter is an
important practical issue when fitting additive models. The importance of using a robust
criterion for selecting smoothing parameters, even when one uses robust estimators, has
been described, for instance, by Leung, Marriott, and Wu (1993), Wang and Scott (1994),
Boente, Fraiman, and Meloche (1997), Cantoni and Ronchetti (2001) and Leung (2005).
Several proposals have been made in the literature, including L1 cross-validation (Wang
and Scott 1994), a robust version of Cp and cross-validation (Cantoni and Ronchetti 2001)
and a robust plug-in procedure discussed in Boente et al. (1997).

Here we use an intuitively simple robust K-fold cross-validation method related to the
procedure described in Bianco and Boente (2007). As usual, first randomly partition the
data set into K disjoint subsets of approximately equal sizes, with indices Cj, 1 ≤ j ≤ K, so
that

⋃K
j=1 Cj = {1, . . . , n}. Let G ⊂ R

d be the set of bandwidth combinations to be consid-

ered, and let ĝ(j)h (X) be the robust backfitting predictor for X, computed with smoothing
parameters h = (h1, . . . , hd) ∈ G and without using the observations with indices in Cj.
For each i = 1, . . . , n, the prediction residuals êi are

êi = Yi − ĝ(j)h (Xi), i ∈ Cj, j = 1, . . . ,K.

The classical cross-validation procedure selects the bandwidth minimising the mean
squared prediction error:

L(h) = 1
n

n∑
i=1

ê2i =
1
n

n∑
i=1
(êi − ê)2 + ê

2
, (9)

where ê =∑n
i=1 êi/n. To obtain a more robust cross-validation criterion, one can

replace the squared prediction error above with a ρ-function (Leung 2005; Bianco and
Boente 2007). This approach has good robustness properties when one uses a bounded
ρ-function. However, Bianco and Boente (2007) also showed that in this case the selected
bandwidths are noticeably more variable than when one uses a robust alternative to the
variance/squared bias expression on the right-hand side of Equation (9). Specifically, let
μn(ê1, . . . , ên) and σn(ê1, . . . , ên) denote robust estimators of location and for the observed
prediction errors ê1, . . . , ên. For example, we can takeμn and σn to be their samplemedian
and mad (median of the absolute deviations with respect to the median), respectively. The
robust cross-validation smoothing parameters are selected by minimising over h ∈ G the
following criterion:

Lr(h) = μ2
n(ê1, . . . , ên)+ σ 2

n (ê1, . . . , ên). (10)

Leave-one-out cross-validation is a particularly important case of K-fold obtained when
K=n and Cj = {j}, 1 ≤ j ≤ n. This approach has also been considered in Boente and
Rodriguez (2008) for partially linear models.
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4. Numerical studies

In this section, we report the results of our numerical experiments designed to compare
our proposed estimator with other alternatives proposed in the literature. All computations
were carried out using an R implementation of our algorithm, publicly available on-line at
http://github.com/msalibian/RBF.

We generated data following additive models with d=2 and d=4 components.
Our experiments involved N=500 samples for each simulation setting. For models
with two additive components (d=2) we include here the results obtained with sam-
ples of size n=100 and bandwidths chosen using K-fold cross-validation. For d=4
we used n=500 and fixed bandwidths set to their asymptotic optimal values. Addi-
tional results for d=2 and n=500 are reported in Boente, Martinez, and Salibian-
Barrera (2015).

We considered samples without outliers, four types of possible data contaminations,
independent and correlated covariates, and also cases where the response variable was
missing, as described in Remark 2.2. More specifically, we first generated observa-
tions (Xt

i ,Yi)
t satisfying the additive model Y = g0(X)+ u = μ0 +

∑d
j=1 g0,j(Xj)+ u,

where u = σ0ε. We then generated independent Bernoulli random variables {δi}ni=1 such
that P(δi = 1|Yi,Xi) = P(δi = 1|Xi) = p(Xi). For models with d=4 we considered the
case without missing data (p(x) ≡ 1) and also used p(x) = p4(x) = 0.4+ 0.5(cos(x1x3 +
0.2))2, which produces approximately 33% of missing Yi’s. Since other robust estimators
proposed in the literature for this model cannot be applied directly to samples with miss-
ing observations, we ran a series of experiments with d=2, n=100 and no missing data.
Comparisons between the robust and classical backfitting algorithm for d=2 and miss-
ing data generated with p(x) = p2(x) = 0.4+ 0.5(cos(x1 + 0.2))2 can be found in Boente
et al. (2015).

We compared the following estimators:

• The classical backfitting estimator (denoted ĝbc) adapted to missing responses.
• A robust backfitting estimator (denoted ĝbr,h) using Huber’s loss function. This loss

function ρc satisfies ρ′c(u) = ψc(u) = min(c, max(−c, u)), and we used c=1.345.
• A robust backfitting estimator (denoted ĝbr,t) using Tukey’s bisquare loss function. This

loss function satisfies ρ′c(u) = ψc(u) = u(1− (u/c)2)2I[−c,c](u), and we used c=4.685.
These estimators were computed using the Huber estimator ĝbr,h as the initial estimator
in Step 1 of Algorithm 2.

• The estimator defined in Bianco and Boente (1998) (denoted ĝbb).
• The estimator proposed by Croux et al. (2011) (denoted ĝcr).

The univariate smoothers were computed using the Epanechnikov kernel K(u) =
0.75(1− u2)I[−1,1](u). We used local linear polynomials with q=0 and q=1 in
Algorithm 2. Not surprisingly, our results for d=2 show that in general local linear
smoothers outperform locally constant ones. Hence, here we only report the results for
q=1, but see Boente et al. (2015) for additional tables. In what follows, classical backfit-
ting estimates obtained using local linear smoothers (q=1) are indicated as ĝbc,1, while
the robust counterparts based on Tukey’s bisquare and Huber’s loss functions are denoted
ĝbr,t,1 and ĝbr,h,1, respectively. Note that in order to perform a fair comparison between
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estimators we adapted the proposal in Bianco and Boente (1998) to the case q=1, which
we denote by ĝbb,1.

The performance of each estimator ĝj of g0,j, 1 ≤ j ≤ d, was measured through the
following approximated integrated squared error (ise):

ise(ĝj) = 1∑n
i=1 δi

n∑
i=1
(g0,j(Xij)− ĝj(Xij))

2δi,

where Xij is the jth component of Xi and δi = 0 if the ith response was missing and δi = 1
otherwise. An approximation of the mean integrated squared error (mise) was obtained by
averaging the ise above over all replications. A similar measure was used to compare the
estimators of the regression function g0 = μ0 +

∑d
j=1 g0,j.

4.1. Monte Carlo studywith d=2 additive components

Our data were generated according to the additive model in Equation (2) with n =
100, σ0 = 0.5 μ0 = 0, g0,1(x1) = 24(x1 − 0.5)2 − 2 and g0,2(x2) = 2π sin(πx2)− 4. The
distributions of X1 and X2 were U([0, 1]) and we considered two situations for the dis-
tribution of the vector (X1,X2)

t: independent components, and cor(X1,X2) = 0.7. The
latter was generated as follows. Let Z ∼ N2(0,�) be a bivariate Gaussian random vec-
tor where �1,1 = �2,2 = 1 and �1,2 = �2,1 = 2 sin(ρπ/6), with ρ ∈ (−1, 1). Let Xj =
�(Zj), j=1,2, where � is the cumulative distribution function of a standard normal dis-
tribution. It follows that the marginal distribution of each Xj is U([0, 1]), j=1,2 and that
their correlation equals ρ.

To select the bandwidths of the classical backfitting estimator we used the standard K-
fold cross-validation procedure with a square loss function, while for the robust backfitting
and the estimator of Bianco andBoente (1998)we used the robustK-foldmethoddescribed
in Section 3.1. In all these cases we set K=5. The parameters involved in the estimators
defined by Croux et al. (2011) were chosen as described therein.

For the error distribution, we considered the following settings:

• C0: ui ∼ N(0, σ 2
0 ).

• C1: ui ∼ (1− 0.15)N(0, σ 2
0 )+ 0.15N(15, 0.01).

• C2: ui ∼ N(15, 0.01) for all i’s such that Xi ∈ D0.3, whereDη = [0.2, 0.2+ η]2.
• C3: ui ∼ N(10, 0.01) for all i’s such that Xi ∈ D0.09, whereDη is as above.
• C4: ui ∼ (1− 0.30)N(0, σ 2

0 )+ 0.30N(15, 0.01) for all i’s such that Xi ∈ D0.3.

The first case, C0, corresponds to samples without outliers and they will illustrate the
loss of efficiency incurred by using a robust estimator when it may not be needed. The four
contamination settings introduce asymmetrically distributed outliers, which are expected
to induce significant bias in all the estimators. The goal of this experiment is to study the
magnitude of this bias, which is expected to be bounded for the robust estimators, and
lower than that of the classic estimator. The contamination setting C1 corresponds to a
gross-error model where all observations have the same chance of being contaminated. On
the other hand, caseC2 is highly pathological in the sense that all observations with covari-
ates in the square [0.2, 0.5]× [0.2, 0.5] are severely affected, while C3 is similar but in the
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756 G. BOENTE ET AL.

region [0.2, 0.29]× [0.2, 0.29]. The difference betweenC2 andC3 is that the asymptotically
optimal bandwidths are wider than the contaminated region in C3. Finally, case C4 is a
gross-error model with a higher probability of observing an outlier, but these are restricted
to the square [0.2, 05]× [0.2, 0.5]. Figures 1 and 2 illustrate these contamination scenarios
on one randomly generated sample with independent and correlated covariates, respec-
tively. The panels correspond to settings C2, C3 and C4, with solid triangles indicating
contaminated cases.

Note that for the case of correlated covariates the contamination setting C2 produces
samples with a very high number of outliers in neighbourhoods of points with one coor-
dinate between 0.2 and 0.5 (see Figure 2). Since all the estimators considered in our
experiment were severely affected in this setting, we omit the corresponding results here.

Tables 1 and 2 report the obtained values of the mise, for the regression function g0 =
μ0 + g0,1 + g0,2 and each additive component g0,1 and g0,2, respectively. Since the values of
ise for some estimators have notably heavy tails which substantially distort their averages,
we also report their median and 5% upper trimmed mean:

1
�N0.95�

�N0.95�∑
j=1

ise(j),

where ise(1) ≤ ise(2) ≤ · · · ≤ ise(N) and �x� denotes the integer part of x.
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Figure 1. Scatter plots of covariates (X1, X2)t ∼ U([0, 1]2) with solid triangles indicating observations
with contaminated response variables, for contamination settings C2, C3 and C4. The square regions
indicate the setsDη for each scenario.
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Figure 2. Scatter plots of covariates (X1, X2)t with solid triangles indicating observations with contami-
nated response variables, for contamination settings C2, C3 and C4. The square regions indicate the sets
Dη for each scenario and the covariates have correlation 0.7 with marginal uniform distribution.
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Table 1. Summarymeasures of the ise of the estimators of the regression function g0 = μ0 +
∑2

j=1 g0,j
and the additive components g0,1 and g0,2 under different contaminations and when the covariates are
independent.

ĝbc ĝcr ĝbb ĝbr,h ĝbr,t ĝ1,bc ĝ1,cr ĝ1,bb ĝ1,br,h ĝ1,br,t ĝ2,bc ĝ2,cr ĝ2,bb ĝ2,br,h ĝ2,br,t

mise C0 0.032 0.135 0.391 0.038 0.038 0.049 0.093 0.562 0.052 0.052 0.050 0.112 0.462 0.054 0.053
C1 7.641 3.676 0.430 0.681 0.336 1.188 0.491 0.420 0.314 0.182 1.130 0.476 0.377 0.255 0.203
C2 8.113 2.336 0.474 1.867 0.740 3.223 1.068 0.324 0.930 0.376 3.113 0.502 0.329 0.631 0.338
C3 0.153 0.073 0.385 0.041 0.039 0.104 0.064 0.548 0.054 0.053 0.102 0.076 0.452 0.055 0.054
C4 1.125 0.138 0.376 0.049 0.037 0.522 0.108 0.475 0.059 0.052 0.452 0.069 0.386 0.055 0.053

5%ise C0 0.031 0.033 0.346 0.036 0.035 0.041 0.048 0.502 0.044 0.044 0.041 0.045 0.417 0.045 0.044
C1 7.224 3.246 0.329 0.305 0.046 1.032 0.399 0.358 0.095 0.052 0.997 0.383 0.300 0.088 0.051
C2 7.562 1.698 0.330 1.090 0.076 2.998 0.862 0.266 0.431 0.051 2.873 0.276 0.225 0.170 0.052
C3 0.109 0.033 0.339 0.038 0.036 0.085 0.046 0.492 0.046 0.045 0.079 0.041 0.406 0.046 0.045
C4 0.971 0.101 0.333 0.045 0.035 0.451 0.089 0.420 0.051 0.044 0.380 0.052 0.344 0.046 0.044

medise C0 0.030 0.031 0.316 0.035 0.034 0.033 0.037 0.477 0.036 0.037 0.031 0.032 0.405 0.035 0.034
C1 7.179 2.947 0.313 0.194 0.042 0.915 0.343 0.343 0.076 0.044 0.873 0.305 0.298 0.073 0.039
C2 7.498 1.410 0.309 0.220 0.039 2.945 0.767 0.243 0.142 0.041 2.896 0.209 0.214 0.097 0.040
C3 0.072 0.032 0.317 0.036 0.035 0.069 0.038 0.467 0.040 0.038 0.057 0.030 0.397 0.037 0.035
C4 0.827 0.074 0.312 0.042 0.034 0.397 0.075 0.390 0.043 0.038 0.314 0.041 0.334 0.036 0.035

Note: We report the mise, the 5% left trimmed mean (labelled 5%ise) and the median of the ise, indicated as medise.

Table 2. Summarymeasures of the ise of the estimators of the regression function g0 = μ0 +
∑2

j=1 g0,j
and the additive components g0,1 and g0,2 under different contaminations andwhen the covariates have
correlation 0.7.

ĝbc ĝcr ĝbb ĝbr,h ĝbr,t ĝ1,bc ĝ1,cr ĝ1,bb ĝ1,br,h ĝ1,br,t ĝ2,bc ĝ2,cr ĝ2,bb ĝ2,br,h ĝ2,br,t

mise C0 0.035 0.107 1.299 0.043 0.045 0.062 0.120 1.581 0.070 0.073 0.065 0.141 1.358 0.074 0.078
C1 7.581 3.756 1.417 0.605 0.327 1.773 0.918 1.467 0.329 0.260 1.674 0.955 1.289 0.252 0.159
C3 0.286 0.056 1.281 0.049 0.044 0.173 0.071 1.561 0.075 0.072 0.168 0.074 1.345 0.076 0.076
C4 1.690 0.234 1.182 0.064 0.043 0.710 0.182 1.430 0.084 0.071 0.617 0.102 1.247 0.076 0.074

5%ise C0 0.033 0.033 1.235 0.039 0.041 0.053 0.058 1.502 0.061 0.064 0.056 0.058 1.297 0.065 0.068
C1 7.120 3.255 1.114 0.299 0.051 1.557 0.752 1.310 0.143 0.073 1.414 0.752 1.145 0.126 0.073
C3 0.229 0.039 1.226 0.046 0.041 0.147 0.058 1.484 0.066 0.063 0.141 0.052 1.286 0.067 0.067
C4 1.504 0.183 1.133 0.057 0.040 0.628 0.154 1.359 0.074 0.062 0.531 0.082 1.190 0.066 0.064

medise C0 0.034 0.032 1.253 0.038 0.040 0.047 0.048 1.519 0.054 0.055 0.047 0.047 1.301 0.056 0.059
C1 7.135 2.919 1.107 0.201 0.046 1.372 0.589 1.298 0.113 0.068 1.266 0.534 1.155 0.101 0.063
C3 0.123 0.036 1.238 0.043 0.038 0.124 0.051 1.493 0.060 0.057 0.108 0.045 1.281 0.058 0.058
C4 1.383 0.138 1.145 0.054 0.038 0.542 0.132 1.379 0.067 0.055 0.458 0.070 1.207 0.058 0.058

Note: We report the mise, the 5% left trimmed mean (labelled 5%ise) and the median of the ise, indicated as medise.

As expected, when the data do not contain outliers the robust backfitting estimators
ĝbr,h and ĝbr,t are slightly less efficient than the least squares one, although the differences
are very small. On the other hand, the estimators ĝcr and ĝbb show much larger mean
square errors than our proposal. Also note that the performance of ĝbb deteriorates further
when the covariates are correlated (Table 2) since these estimators are biased unless Y −
g0,j(Xj) is independent from Xj, j=1,2.

For the contamination casesC1 andC2, when using the backfitting algorithm combined
with local linear smoothers, the mise of the classical estimator for g0 is notably larger than
those of all robust estimators (more than 20 times larger) for independent covariates. This
difference is smaller when estimating each component g0,1 and g0,2, but remains fairly large
nonetheless. A similar behaviour is observed under C1 when the covariates are correlated.
This contamination causes the most damage to the estimator of Croux et al. (2011), with a
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resulting mise which is 10 times that of the robust backfitting and 30 times that obtained
under C0.

Comparing the three summary measures in Tables 1 and 2 we see that the ise’s for ĝbr,h
and ĝbr,t have very heavy tails. By looking at the 5% upper trimmed mean and median of
the ise’s, we note that as we progressively reduce the impact of the tails, the performance
summaries of the estimator based on Tukey’s bisquare loss function under the different
contamination settings (C1 throughC4) are very close to that observed with clean samples.
The second most stable robust estimator was ĝbr,h.

In general, when the data contain outliers, we note that the robust backfitting estima-
tors give noticeably better regression estimators (both for g0 and its components) than the
classical one and outperforms the estimators proposed in Bianco and Boente (1998) and
Croux et al. (2011). Based on the above results, from its stability with respect to the stud-
ied contaminations and the lower bias under the central model, we recommend the robust
backfitting algorithm combined with local linear smoothers computed with Tukey’s loss
function.

4.2. Monte Carlo studywith d=4 additive components

For this model we generated covariates Xi = (Xi1,Xi2,Xi3,Xi4) ∼ U([−3, 3]4), indepen-
dent errors εi ∼ N(0, 1), set μ0 = 0 and σ0 = 0.15. The additive components were:
g0,1(x1) = x31/12, g0,2(x2) = sin(−x2), g0,3(x3) = x23/2− 1.5, g0,4(x4) = ex4/4− (e3 −
e−3)/24. Based on the results obtained for two additive components, with d=4 we only
compared the classical backfitting estimator and the robust proposal described in this
paper. In addition to the settings C0 and C1 described above, we modified the contam-
ination setting C2 so that ui ∼ N(15, 0.01) for all i such that Xi,j ∈ [−1.5, 1.5] for all
1 ≤ j ≤ 4.

Due to the intensive computational effort required to perform K−fold cross–validation
with 4 bandwidths, we report here results obtained using fixed bandwidths set to their
optimal asymptotic value. These fixed bandwidths were computed assuming that the
other components in the model are known (Härdle, Müller, Sperlich, and Werwatz 2004),
resulting in hMISE

opt = (0.36, 0.38, 0.34, 0.29). However, it was difficult to obtain a reliable
estimate for the residual scale σ0 using these bandwidths (see Remark 3.1), since many
4-dimensional neighbourhoods did not contain sufficient observations. To solve this prob-
lem we used hσ = (0.93, 0.93, 0.93, 0.93) to estimate σ0 (using this vector of bandwidths
we expect an average of 5 points in each 4-dimensional neighbourhood). We then applied
the backfitting algorithm with the optimal bandwidths hMISE

opt .
Tables 3–5 report the mise for the different estimators, contamination settings and

missing mechanisms. Our experiments with and without missing responses yield similar
conclusions regarding the advantage of the robust procedure over the classical backfitting.
As expected, when responses are missing, all the ise’s are slightly inflated. It is also not
surprising that when the data do not contain outliers (C0), the robust estimators have a
slightly larger mise than their classical counterparts. However, when outliers are present,
both robust estimators provide a substantially better performance than the classical one,
given similar results to those for clean data. The different summary measures show that
the ise’s of the estimators based on Tukey’s bisquare score function are more stable across
the different contamination settings than those using Huber’s score function. A similar
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Table 3. Summarymeasures for the ise of the estimators of the regression function g0 = μ0 +
∑4

j=1 g0,j
under different contaminations and missing mechanisms.

p(x) ≡ 1 p(x) = p4(x)

ĝbc ĝbr,h ĝbr,t ĝbc ĝbr,h ĝbr,t

mise C0 0.0023 0.0023 0.0023 0.0033 0.0033 0.0033
C1 7.6095 0.0497 0.0046 8.8581 0.1563 0.0932
C2 4.8224 0.0221 0.0025 6.0121 0.0258 0.0038

5%ise C0 0.0023 0.0023 0.0023 0.0032 0.0032 0.0032
C1 7.4435 0.0430 0.0027 8.6458 0.0618 0.0085
C2 4.6718 0.0209 0.0024 5.8007 0.0226 0.0035

medise C0 0.0023 0.0023 0.0023 0.0033 0.0033 0.0033
C1 7.5283 0.0421 0.0027 8.7854 0.0435 0.0040
C2 4.7560 0.0203 0.0024 5.9358 0.0215 0.0035

Table 4. Summary measures for the ise of the estimators of the additive component g0,1 and g0,2 under
different contaminations and missing mechanisms.

p(x) ≡ 1 p(x) = p4(x)

ĝ1,BC ĝ1,br,h ĝ1,br,t ĝ2,bc ĝ2,br,h ĝ2,br,t ĝ1,bc ĝ1,br,h ĝ1,br,t ĝ2,bc ĝ2,br,h ĝ2,br,t

mise C0 0.0020 0.0020 0.0020 0.0016 0.0016 0.0016 0.0030 0.0030 0.0030 0.0024 0.0024 0.0024
C1 0.6356 0.0066 0.0021 0.6189 0.0081 0.0026 0.9703 0.0250 0.0178 0.8982 0.0226 0.0136
C2 0.9897 0.0060 0.0020 0.9482 0.0055 0.0016 1.1960 0.0073 0.0030 1.2339 0.0067 0.0024

5%ise C0 0.0017 0.0017 0.0017 0.0014 0.0014 0.0014 0.0025 0.0025 0.0025 0.0020 0.0020 0.0020
C1 0.6023 0.0061 0.0018 0.5865 0.0057 0.0014 0.9201 0.0083 0.0027 0.8493 0.0070 0.0022
C2 0.9520 0.0056 0.0017 0.9154 0.0051 0.0014 1.1434 0.0066 0.0026 1.1887 0.0062 0.0020

medise C0 0.0013 0.0013 0.0013 0.0011 0.0011 0.0011 0.0019 0.0019 0.0019 0.0016 0.0016 0.0016
C1 0.5909 0.0059 0.0014 0.5879 0.0054 0.0012 0.9060 0.0075 0.0021 0.8413 0.0064 0.0018
C2 0.9677 0.0056 0.0013 0.9260 0.0050 0.0011 1.1591 0.0061 0.0020 1.2041 0.0059 0.0016

Notes: p(x) ≡ 1 corresponds to the case of no missing responses and p4(x) = 0.4+ 0.5 cos2(x1 x3 + 0.2) to missing
responses according top4.We report themise, the5% left trimmedmean (labelled5%ise) and themedianof the ise, indicated
as medise.

Table 5. Summary measures for the ise of the estimators of the additive component g0,3 and g0,4 under
different contaminations and missing mechanisms.

p(x) ≡ 1 p(x) = p4(x)

ĝ3,bc ĝ3,br,h ĝ3,br,t ĝ4,bc ĝ4,br,h ĝ4,br,t ĝ3,bc ĝ3,br,h ĝ3,br,t ĝ4,bc ĝ4,br,h ĝ4,br,t

mise C0 0.0042 0.0042 0.0042 0.0036 0.0036 0.0036 0.0082 0.0082 0.0082 0.0058 0.0058 0.0058
C1 0.6741 0.0106 0.0052 0.7558 0.0097 0.0037 1.0679 0.0449 0.0337 1.2310 0.0583 0.0429
C2 1.0007 0.0085 0.0042 1.0592 0.0078 0.0036 1.2256 0.0126 0.0082 1.3877 0.0117 0.0061

5%ise C0 0.0032 0.0032 0.0032 0.0029 0.0029 0.0029 0.0065 0.0065 0.0065 0.0046 0.0046 0.0046
C1 0.6406 0.0081 0.0034 0.7226 0.0085 0.0030 1.0099 0.0136 0.0070 1.1701 0.0135 0.0055
C2 0.9660 0.0074 0.0033 1.0247 0.0071 0.0029 1.1756 0.0109 0.0066 1.3374 0.0094 0.0047

medise C0 0.0023 0.0023 0.0023 0.0022 0.0022 0.0022 0.0044 0.0044 0.0044 0.0034 0.0034 0.0034
C1 0.6297 0.0075 0.0024 0.7153 0.0078 0.0023 1.0010 0.0115 0.0046 1.1628 0.0112 0.0037
C2 0.9907 0.0069 0.0023 1.0447 0.0066 0.0022 1.1953 0.0096 0.0045 1.3391 0.0084 0.0035

Notes: p(x) ≡ 1 corresponds to the case of no missing responses and p4(x) = 0.4+ 0.5 cos2(x1x3 + 0.2) to missing
responses according top4.We report themise, the5% left trimmedmean (labelled5%ise) and themedianof the ise, indicated
as medise.

behaviour was observed for models with missing data and d=2 (see Boente et al. 2015).
Based on these observations, we also recommend using our robust backfitting method
using local linear smoothers and Tukey’s loss function.
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5. Real data example

In this section, we compare the performance of the robust backfitting described in this
paper with the classical one on a real data set. We considered the airquality data
set available in R. The data set corresponds to 153 daily air quality measurements in the
New York region between May and September, 1973 (see Chambers, Cleveland, Kleiner,
and Tukey 1983). The interest is in explaining mean Ozone concentration (‘O3’, mea-
sured in ppb) as a function of 3 potential explanatory variables: temperature (‘Temp’, in
degrees Fahrenheit), wind speed (‘Wind’, in mph) and solar radiance measured in the fre-
quency band 4000–7700 (‘Solar.R’, in Langleys). In our analysis, we only considered the
111 cases that do not contain missing observations. Dengyi and Kawagochi (1986) and
Lacour et al. (2006) report a positive correlation between ozone concentration and tem-
perature in the Antarctica during Spring and also, in France during the 2003 heat wave.
Cleveland (1985) finds that the relationship between ozone concentration and wind speed
is nonlinear, with higher wind speeds associated to lower Ozone concentrations. Sim-
ple visual exploration of the data indicates that the relationship between ozone and the
other variables does not appear to be linear, so we propose to fit an additive model of the
form O3 = μ0 + g0,1(Temp)+ g0,2(Wind)+ g0,3(Solar.R)+ u, where the errors u = σ0ε
are assumed to be independent, homoscedastic and with location parameter 0.

Based on the results obtained in Section 4, we used local linear backfitting estimators
with the classical squared loss function and also with Tukey’s bisquare loss (with tun-
ing constant c=4.685) to provide a robust alternative. Bandwidths were selected using
a 3-dimensional grid search. For the bandwidth hj of the jth covariate, 1 ≤ j ≤ 3, we con-
sidered 6 possible values (equal to multiples of its estimated standard deviation): Gj =
{σ̂j/2, σ̂j, 1.5σ̂j, 2σ̂j, 2.5σ̂j, 3σ̂j}, where σ̂j = sd(Xj). Our 3-dimensional grid is the product of
these sets:G = G1 × G2 × G3 ⊂ R

3. Let (Xt
1,Y1)

t, . . . , (Xt
n,Yn)

t be the considered obser-
vations (n=111). The usual leave-one-out cross-validation criterion in this setting is given
by Lls(h) = (1/n)

∑n
i=1(Yi − ĝ−ibc,h(Xi))

2, where ĝ−ibc,h(Xi) denotes the backfitting predic-
tor for Xi, computed with bandwidth h ∈ G and without using the ith observation. For
the classical backfitting estimator the smallest value of Lls over the grid G was obtained at
hls = (9.53, 10.67, 91.15).

As mentioned in Section 3, when outliers may be present in the data, it is important to
use a robust selection criterion for smoothing parameters, even when considering robust
estimators. For this real data set, we have considered the robust leave–one–out cross-
validation criterion defined through Lr(h) in Equation (10) taking μn as the median and
σn as the mad. More precisely, let ĝ−ibr,t,h(Xi) denote the robust backfitting predictor at Xi,
computedwith the smoothing parameter h ∈ G andwithout using the ith observation. The
robust cross-validation criterion used is

Lr(h) =
(
median1≤i≤n{Yi − ĝ−ibr,t,h(Xi)}

)2 + (mad1≤i≤n{Yi − ĝ−ibr,t,h(Xi)}
)2

.

The minimum of Lr over G was obtained at hr = (4.76, 8.89, 136.73), which leads to a
smaller bandwidth for the first additive component and a larger one for the third than the
ones chosen with the classical approach. This suggests that some influential observations
may be present, which lead to oversmoothing of the classical estimator of the first additive
component.
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Figure 3 shows the estimated regression components for each explanatory variable, both
for the classical and robust estimators. The plots of the partial residual are given in the sup-
plemental file available on-line. Although the shape of the estimated additive components
are similar, some important differences in their pattern can be highlighted. On the one
hand, the classical estimator appears to magnify the effect of the covariates on the additive
components of the regression function. With the classical estimator increasing tempera-
tures correspond to a highermean ozone concentration, but only for temperatures between
70 and 90 degrees (F). Higher temperatures correspond to lower mean ozone concentra-
tions, and the same happens for increasing wind speeds and low values of solar radiance. At
the same time, lowwind speeds and solar radiance values between 150 and 250 correspond
to highermean levels of ozone. Intriguingly, lower temperatures are seen to result in a slight
increase in mean ozone concentration. On the other hand, the robust estimator suggests
covariate effects that are more moderate. For example, in the case of temperature, we note
that the corresponding additive component is practically constant for temperatures up to

Temp Wind
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Figure 3. Estimated curves for the classical (in dashed lines) and robust (in solid lines) backfitting
estimators with data-driven bandwidths hls and hr, respectively.
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Figure 4. Boxplot of the residuals obtained using the robust fit with data-driven bandwidth hr.
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Temp Wind
60 70 80 90 5 10 15 20 0 50 100 150 200 250 300

−
20

−
10

0
10

20
30

40

−
10

0
10

20
30

40

−
10

−
5

0
5

Solar.R

Figure 5. Estimated curves for the classical backfitting estimator, ĝ(−5)j (in dashed lines) with data-

driven bandwidth h(−5)ls and for the robust ones (in solid lines) computed with all the data and with
data-driven bandwidth hr.

75 degrees, and for temperatures beyond 90 degrees does not decrease as markedly as the
classical one.

We can use the residuals obtained with the robust fit to explore the presence of potential
outliers in the data. Figure 4 shows the corresponding residual boxplot which indicates 5
clear outliers (observations 23, 34, 53, 68 and 77). To study the influence of these observa-
tions on the classical fit we repeat the analysis without them. The obtained cross-validation
bandwidths for the classical estimator are now h(−5)ls = (4.85, 10.52, 138.87). Note that
these values are very similar to those obtainedwith the robust estimator combinedwith the
robust cross-validation criterion. Figure 5 shows the estimates, ĝ(−5)j , j = 1, . . . , 3, obtained
with the classical estimator using the ‘cleaned’ data together with the robust ones obtained
with the original data set. We see that both sets of fits are now very similar. In other words,
the robust fit automatically down-weighted potential outliers and returned estimated addi-
tive components based on the remaining observations that are almost identical to the
classical ones when the outliers are removed by hand. Furthermore, the residuals obtained
from the robust fit allow us to identify potential outliers.

Supplemental material

The supplementary file includes two Sections labelled S.1 and S.2

[S.1:Empirical influence] To study the sensitivity of the robust backfittingwith respect to single
outliers, we provide a numerical study of the empirical influence function.

[S.2:Real data example] This section contains partial residuals plots for each explanatory vari-
able, both for the classical and robust estimators. For the classical estimators, partial residuals
are given for the complete data set and for the data without the outliers.
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Appendix. Proofs

Proof of Theorem 2.1: (a) We will show that if (ν,m) ∈ R×Had is such that either ν �= μ0 or
P(
∑d

j=1mj(Xj) =
∑d

j=1 g0,j(Xj)) < 1 then ϒ(ν,m, σ) > ϒ(μ0, g0, σ). For any (ν,m) ∈ R×Had

we have

ϒ(ν,m, σ) = Eρ

(
Y − ν −∑d

j=1mj(Xj)

σ

)
= EX

(
Eε|X

{
ρ

(
ε̃ − b(X)

σ

)})
,

where b(x) = ν − μ+∑d
j=1(mj(xj)− g0,j(xj)) and ε̃ = εσ0/σ . Furthermore, since ε is indepen-

dent ofX, it follows thatϒ(ν,m, σ) = EXEε{ρ(ε̃ − [b(X)/σ ])}. To simplify the notation, let a(x) =
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b(x)/σ and B0 = {x : b(x) = 0}. We have

ϒ(ν,m, σ) =
∫
B0

Eε(ρ(ε̃)) dFX(x)+
∫
Bc
0

Eε(ρ(ε̃ − a(x))) dFX(x). (A1)

Note that if either ν �= μ0 or P(
∑d

j=1mj(Xj) =
∑d

j=1 g0,j(Xj)) < 1 then P(B0) < 1. To see this,
assume that P(B0) = 1 which implies that E[b(X)] = 0. Since E[mj(Xj)] = E[g0,j(Xj)] = 0, for all
1 ≤ j ≤ d, we have that ν = μ0.Moreover, it then follows thatP(

∑d
j=1mj(Xj) =

∑d
j=1 g0,j(Xj)) = 1,

which is a contradiction.
It is worth noticing that ε̃ satisfies (E1) since ε does. In addition, Lemma 3.1 of Yohai (1987) and

assumptions (E1) and (R1) imply that for all a �= 0, Eε[ρ(ε̃ − a)] > Eε[ρ(ε̃)].
Hence, if (ν,m) ∈ R×Had is such that either ν �= μ0 or P(

∑d
j=1mj(Xj) =

∑d
j=1 g0,j(Xj)) < 1

we have P(B0) < 1, and then from Equation (A1) it follows that

ϒ(ν,m, σ) >
∫
B0

Eε(ρ(ε̃)) dFX(x)+
∫
Bc
0

Eε(ρ(ε̃)) dFX(x) = Eε(ρ(ε̃)) = ϒ(μ0, g0, σ).

(b) Follows immediately from (a) and A1 noting that gj(P)− g0,j ∈ Hj, 1 ≤ j ≤ d. �

Proof of Theorem 2.2: For the sake of simplicity, denote μ = μ(P) and gj = gj(P). Note that
ϒ(μ, g) ≤ ϒ(ν, g), since ϒ(μ, g) ≤ ϒ(ν,m). Then, if we denote L(ν) = ϒ(ν, g), we have that
μ = argminν∈R L(ν) which leads to L′(μ) = 0. Noting that L′(ν) = −(1/σ0)Eψ((Y − ν −

∑d
j=1

gj(Xj))/σ0), we obtain that 	0(μ, g(P)) = 0, as desired.
Let 1 ≤ j ≤ d be fixed and consider the problem of minimising ϒ(μ,m) with respect to mj

for any m(x) ∈ Had such that its jth component is mj(Xj), the other ones been equal to gs. To
be more precise, for any mj ∈ Hj let m(j) ∈ Had be defined as m(j)(x) = mj(xj)+

∑
s�=j gs(xs).

Denote Lj(mj) = ϒ(μ,m(j)) = Eρ((Y − μ−mj(Xj)−
∑

s�=j gs(Xs))/σ0). Note that the fact that
ϒ(μ, g) ≤ ϒ(ν,m) for anym ∈ Had, entails that Lj(gj) ≤ Lj(mj). Hence, for any direction η ∈ Hj,
the partial Gateaux derivative of Lj at gj along η should vanish. Denote this Gateaux derivative as
∂Lj(gj; η). Furthermore, let νη(t) = Lj(gj + tη) and note that ∂Lj(gj; η) = ν′η(0), where

ν′η(0) = lim
t→0

1
t
E

[
ρ

(
Rj − gj(Xj)− tη(Xj)

σ0

)
− ρ

(
Rj − gj(Xj)

σ0

)]
, (A2)

with Rj = Y − μ−∑s�=j gs(Xs). Then, the first-order condition states that ν′η(0) = 0, for any η ∈
Hj. Note that for any (x1, x2, . . . , xd, y)t we have

∂

∂t

{
ρ

(
rj − gj(xj)− tη(xj)

σ

)}
= ψ

(
rj − gj(xj)− tη(xj)

σ

)(
−η(xj)

σ

)
,

where rj = y− μ−∑��=j g�(x�). Now we use Equation (A2) and the Dominating Convergence
Theorem to obtain ν′η(t) = −(1/σ0)E[ψ((Rj − gj(Xj)− tη(Xj))/σ0)η(Xj)], so that ∂Lj(gj; η) =
−(1/σ0)E[ψ((Rj − gj(Xj))/σ0)η(Xj)]. Hence, the first-order condition ν′η(0) = 0 is

E

[
ψ

(
Rj − gj(Xj)

σ0

)
η(Xj)

]
= 0, ∀η ∈ Hj. (A3)

Let h be any measurable function such that E|h(Xj)| <∞ and denote ah = Eh(Xj). Then, η = h−
ah ∈ Hj, so from Equation (A3) we get that

E

[
ψ

(
Rj − gj(Xj)

σ0

)
h(Xj)

]
= ahE

[
ψ

(
Rj − gj(Xj)

σ0

)]
. (A4)

Recall that we have shown that 	0(μ, g(P)) = 0, that is,

Eψ

(
Rj − gj(Xj)

σ0

)
= 0. (A5)
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Therefore, from Equations (A4) and (A5), we obtain that E[ψ((Rj − gj(Xj))/σ0)h(Xj)] = 0, for any
integrable function h, which implies that E[ψ((Rj − gj(Xj))/σ0) |Xj = x] = 0 a.s. concluding the
proof since 	j(μ, g, xj) = E[ψ((Rj − gj(xj))/σ0) |Xj = xj]. �

Proof of Theorem 2.3: Since the value of the objective function is not changed, we will assume that
Eg̃(�)j (Xj) = 0. Hence, g(�)j = g̃(�)j and μ(�) = μ̃(�). Note that the last equation in the �th iteration

of the algorithm is equivalent to solving μ(�) = argminμ∈R Eρ((R(�)0 − μ)/σ0), where R(�)0 = Y −∑d
j=1 g

(�)
j (Xj), sinceψ is strictly increasing so that the equation has a unique solution. On the other

hand, in the (k+ 1)th equation of the �th iteration, we seek for a solution a = gk(Xk) ∈ Hk of

E

⎡⎣ψ
⎛⎝Y − μ(�−1) −∑k−1

j=1 g(�)j (Xj)−
∑d

j=k+1 g
(�−1)
j (Xj)− a

σ0

⎞⎠∣∣∣∣∣∣Xk

⎤⎦ = 0,

which corresponds to finding the M-conditional location functional, as defined in Boente and
Fraiman (1989), of the partial residuals R(�)k = Y − μ(�−1) −∑k−1

j=1 g(�)j (Xj)−
∑d

j=k+1 g
(�−1)
j (Xj).

Using again that ψ is strictly increasing, we obtain that

g(�)k (Xk) = argmin
mk∈Hk

E

[
ρ

(
R(�)k −mk(Xk)

σ0

)∣∣∣∣∣Xk

]
.

Hence, taking expectation with respect to Xk, we get that

g(�)k = argmin
mk∈Hk

E

[
ρ

(
R(�)k −mk(Xk)

σ0

)]
.

Hence, for the �th iteration, the system of equations in Algorithm 1 is equivalent to the following
system of equations

g(�)k = argmin
mk∈Hk

E

[
ρ

(
R(�)k −mk(Xk)

σ0

)]
1 ≤ k ≤ d

μ(�) = argmin
ν∈R

Eρ

(
R(�)0 − ν
σ0

)
.

(A6)

Let us show that this entails that {υ�}�≥1 is a decreasing sequence where υ� = ϒ(μ(�), g(�)). Let 1d
be the d−dimensional vector with all its components equal to 1. To reinforce the additive structure,
denote�(ν,m) = ϒ(ν, 1tm) = Eρ((Y − ν −∑d

j=1mj(Xj))/σ0), wherem = (m1, . . . ,md)
t.

We begin with Step 1. The first equation of the first iteration seeks for the first additive com-
ponent through g(1)1 = argminm1∈H1

Eρ((R(1)1 −m1(X1))/σ0). Hence, choosing m1 = g(0)1 , we get
that�(μ(0), g(1)1 , g(0)2 , . . . , g(0)d ) ≤ �(μ(0), g(0)1 , g(0)2 , . . . , g(0)d ) = �(μ(0), g(0)) ≤ �(μ(0), g(0)).

Assume that�(μ(0), g(1)1 , . . . , g(1)k−1, g
(0)
k , . . . , g(0)d ) ≤ �(μ(0), g(0)) and consider the kth equation

of the first iteration. Then, as g(1)k = argminmk∈Hk
E[ρ((R(1)k −mk(Xk))/σ0)], we get �(μ(0),

g(1)1 , . . . , g(1)k , g(0)k+1 . . . , g
(0)
d ) ≤ �(μ(0), g(1)1 , . . . , g(1)k−1, g

(0)
k , . . . , g(0)d ), choosing mk = g(0)k . Applying

these arguments for 1 ≤ k ≤ d we finally get for k= d that

�(μ(0), g(1)) = �(μ(1), g(1)1 , . . . , g(1)d ) ≤ �(μ(0), g(1)1 , . . . , g(1)d−1, g
(0)
d ) ≤ �(μ(0), g(0)). (A7)

Finally, using the last equation in (A6), we have that μ(1) = argminν∈R Eρ((R(1)0 − ν)/σ0) =
argminν∈R�(ν, g(1)), which entails that for any ν ∈ R, �(μ(1), g(1)) ≤ �(ν, g(1)). In particu-
lar, taking ν = μ(0) we obtain that �(μ(1), g(1)) ≤ �(μ(0), g(1)) ≤ �(μ(0), g(0)), where the last
inequality follows from Equation (A7). Therefore, we have shown that υ1 ≤ υ0.
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Let us consider � > 1 and assume that υs ≤ υs−1 for s = 1, . . . , �. As above, the kth equation
in (A6) leads to

�(μ(�−1), g(�)1 , . . . , g(�)k , g(�−1)k+1 , . . . , g(�−1)d ) ≤ �(μ(�−1), g(�)1 , . . . , g(�)k−1, g
(�−1)
k , g(�−1)k+1 , . . . , g(�−1)d ).

(A8)

Using Equation (A8) iteratively for k = 1, . . . , d, we get �(μ(�−1), g(�)) ≤ �(μ(�−1), g(�−1)) =
υ�−1. Finally, using similar arguments as those considered above, we get easily that υ� =
�(μ(�), g(�)) ≤ �(μ(�−1), g(�)), so that υ� ≤ υ�−1. �
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