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1 Introduction

In a recent paper [1], an elliptic system of second order differential equations under
indefinite Robin conditions was considered. The ODE version of this problem for a
vector function u(x) = (u1(x), . . . , uN (x)) reads

u′′(x) = g0(u(x)) + p(x) (1)

with the boundary condition

u′(0) = a0u(0), u′(1) = a1u(1) (2)

where a0, a1 ∈ R, p ∈ C([0, 1],RN ) and g0 ∈ C1(RN ,RN ) with g0(0) = 0.
Existence and uniqueness/multiplicity results are deduced from [1] in terms of the
interaction between the nonlinearity and the spectrum of the linear scalar operator
Lu := −u′′ under the boundary conditions (2). In order to formulate the statement in
a more precise way, denote by λ1 < λ2 < · · · → +∞ the eigenvalues of L and let
λ0 := −∞; then it is verified that the assumption

lim inf|u|→∞
〈g0(u), u〉

|u|2 > −λ1. (3)

implies that the problem has at least one solution. In particular, this includes the
case when g0 is superlinear, although the situation is exactly the opposite of the so-
called superlinear system, in which the superlinear term lies on the left-hand side
of the equation. The Dirichlet problem for this case was treated for example in [6],
where a strong superlinearity condition is imposed in order to obtain infinitely many
solutions. Differently, (3) can be understood as an asymptotic Hartman-like condition
(see [9]) and implies that the set of solutions is bounded. However, unlike the Hartman
assumption, when λ1 > 0 it does not imply 〈g0(u) + p(x), u〉 ≥ 0 for any u 	= 0.
For example, this occurs in the definite case a0 > 0 > a1 and, more generally, when
a0 > −1 and a1 < a0

a0+1 . Moreover, the solution is unique if g0 satisfies the strict
monotonicity assumption

〈g0(u) − g0(v) + λ1(u − v), u − v〉 > 0 (4)

for all u 	= v. In contrast with this latter conclusion, multiple solutions are obtained
under a complementary hypothesis, when the Jacobian matrix Dg0(0) is symmetric.
In more precise terms, if the eigenvalues γ1 ≤ · · · ≤ γN of Dg0(0) satisfy

λνk < −γk < λνk+1 (5)

for some νk ∈ N0 with

ν1 + · · · + νN odd (6)
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then the problem typically admits at least three solutions, provided that ‖p‖∞ is small
enough. It is worth noticing that if condition (4) holds, then −γ j ≤ λ1 for all j ; thus,
the assumption of the multiplicity result cannot be satisfied.

The proof is based on the degree computation of I − K , where K is an appropriate
fixed point operator. Condition (3) allows to prove that if R is sufficiently large then
K has no fixed points on ∂BR(0) and, furthermore, deg(I − K , BR(0), 0) = 1,
where ‘deg’ stands for the Leray–Schauder degree. On the other hand, condition (5)
is employed to guarantee that, when ρ > 0 is small enough, deg(I − K , Bρ(0), 0) =
−1. This implies that the degree over BR(0)\Bρ(0) is 2, which yields the desired
result.

It is remarked, however, that the degree computation over Bρ(0) in [1] is performed
by means of the linearisation K̂ of the operator K at v = 0 and relies strongly on
the fact that Dg0(0) is symmetric, as it happens for example in the variational case
g0 = ∇G0. Indeed, by a lemma on symmetric bilinear forms proved in [10] (see also
[5] for an application to a more abstract context), using condition (5) it is verified that
the linear system

u′′(x) = Dg0(0)u(x) (7)

has no nontrivial solutions satisfying the boundary condition (2) and, furthermore,
deg(I − K̂ , Bρ(0), 0) = (−1)ν1+···+νN ; thus, the conclusion follows from (6).

This work is devoted to investigate the general situation, in which Dg0(0) is no
longer symmetric and, in particular, condition (5) may make no sense. This situation
is specially interesting because it covers the non-variational case. A similar problem
underDirichlet conditionswas studied for example in [8] andmore generally in [12] by
studying the rotation of the associated vector field at 0 and ∞ under the assumption
that g0 is asymptotically linear and p = 0. In the symmetric case, asymptotically
linear systems under Dirichlet conditions have been also considered in [7], where a
multiplicity result was obtained for the problem u′′(x) = M(x, u(x))u(x) by means
of a generalised shooting method. Under the assumption that the symmetric N × N
matrix M converges uniformly to some M∞(x) as |u| → ∞, the proof is based on
a comparison between the number of moments of verticality of the matrices M0 :=
M(·, 0) and M∞.

In this work, both assumptions (symmetry and asymptotic linearity) are dropped.
We obtain a necessary and sufficient condition in terms of the eigenvalues {λ j } of the
associated linear scalar operator, which ensures that (7)–(2) has no nontrivial solutions
and, furthermore, that deg(I − K , Bρ(0), 0) = deg(I − K̂ , Bρ(0), 0) = −1. As we
shall see, when Dg0(0) is symmetric the condition is equivalent to (5)–(6), so the main
theorem in this work may be regarded as a natural extension of the results of [1] to the
non-symmetric case. We remark that the main theorem of this paper can be extended
to the elliptic case by slightly strengthening condition (3) as in [1]; however, the ODE
treated in this work has particular interest because it also admits, as shown below, a
shooting-type approach.

To this end, let us firstly observe that, for any fixed matrix M , the determinant of
M + λ j I is positive when j is large. Then the function
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s(M) :=
∞∏

j=1

sgn(det(M + λ j I ))

is in fact well defined as a finite product. Our main result reads:

Theorem 1.1 Assume that (3) holds. Then problem (1)–(2) has at least one solution.
If furthermore s(Dg0(0)) < 0, then there exists r > 0 such that (1)–(2) has at least
two solutions for ‖p‖∞ < r .

Remark 1.2 Using the Sard–Smale theorem [11], it is seen that, for a residual set
� ⊂ Br (0), the problem has at least three solutions for p ∈ �.

Remark 1.3 The result is readily extended to different boundary conditions, such as
(homogeneous) Dirichlet and Neumann among others. For the periodic problem, the
assumption takes a very precise and more restrictive form, because all the eigenvalues
except the first one have multiplicity equal to 2. Thus, s(M) = sgn(det(M + λ1 I ))
for arbitrary M , and hence the assumption for multiplicity simply reads:

sgn(det(Dg0(0) + λ1 I )) < 0.

The paper is organized as follows. In the next section, we introduce some notation
and present the basic facts concerning the spectrum of the associated linear operator.
Moreover, we define a compact fixed point operator that shall be used in the following
section for a proof of themain result. In Sect. 4, we sketch an alternative proof based on
a shooting-type method. This requires the use of a lemma that has some interest in its
own, since it implies that the degree of the operator I −K coincides with the Brouwer
degree of the shooting operator. An elementary example for the non-symmetric case
is given in Sect. 5. Finally, further comments and some open problems are posed in
the last section.

2 Preliminaries

In order to give a proof our main result, let us firstly observe that the scalar operator
Lu := −u′′ is symmetric (with respect to the L2 inner product) over the space of H2

functions that satisfy the boundary condition (2). By standard arguments, the existence
of a sequence consisting of all the eigenvalues λ1 ≤ λ2 ≤ λ3 ≤ · · · → +∞ of L
and an associated orthonormal basis of L2((0, 1),R) of eigenfunctions {ϕ j } j∈N is
deduced. For convenience, we shall denote λ0 := −∞. Moreover, if ϕ and ψ are
eigenfunctions associated to the same λ j , then the Wronskian determinant w(x) :=
ϕ(x)ψ ′(x) − ϕ′(x)ψ(x) vanishes on the boundary, which implies that ϕ and ψ are
linearly dependent, that is: λ j is simple for all j . Because of the Robin condition, it is
clear that ϕ j does not vanish on the boundary; moreover, the first eigenfunction ϕ1 is
a global minimizer of the functional

I (ϕ) :=
∫ 1

0

ϕ′(x)2

2
dx + a0

ϕ(0)2

2
− a1

ϕ(1)2

2
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subject to the restriction ‖ϕ‖L2 = 1. This shows that ϕ1 does not vanish in (0, 1)
because, otherwise, |ϕ1| would be another minimizer of I . The fact that ϕ1 cannot
have multiple roots implies that ϕ1 and |ϕ1| are linearly independent, a contradiction.
Observe, incidentally, that λ j = 0 for some j if and only if a1 = a0

a0+1 . In this case,
we conclude that if a0 > −1 (or equivalently, a1 < 1) then the (linear) eigenfunction
corresponding to λ j = 0 does not vanish and, by a comparison argument, it is deduced
that j = 1.

On the other hand, since I (ϕ) ≥ I (ϕ1) = λ1
2 , it is deduced that

λ1‖ϕ‖2L2 ≤ −
∫ 1

0
ϕ′′(x)ϕ(x) dx (8)

for any smooth function ϕ satisfying (2). In particular, for fixed η > 0 we may add
(η − λ1)‖ϕ‖2

L2 at both sides in order to obtain the following estimate:

‖ϕ‖L2 ≤ 1

η
‖ϕ′′ + (λ1 − η)ϕ‖L2 . (9)

This obviously yields

‖ϕ′′‖L2 ≤ ‖ϕ′′ + (λ1 − η)ϕ‖L2 + |λ1 − η|‖ϕ‖L2

≤
(
1 +

∣∣∣∣1 − λ1

η

∣∣∣∣

)
‖ϕ′′ + (λ1 − η)ϕ‖L2

whence an inequality analogous to (9) is deduced for the uniform norm

‖ϕ‖∞ ≤ c‖ϕ′′ + (λ1 − η)ϕ‖∞ (10)

for some appropriate constant c. If we define

X := {ϕ ∈ C2([0, 1],R) : ϕ satisfies (2)},

then (10) just expresses the obvious fact that the operator Lη : X → C([0, 1]) given
by Lηϕ := −ϕ′′ − (λ1 − η)ϕ is an isomorphism. Furthermore, Lη is strictly positive
in the L2 sense, because

∫ 1

0
Lηϕ(x)ϕ(x) dx ≥ η‖ϕ‖2L2 .

In particular, this implies that the Green function associated to Lη is positive and, as a
consequence, the following (strict) maximum principle is deduced: if ϕ ∈ X satisfies
Lηϕ(x) > 0 for all x , then ϕ(x) > 0 for all x .

The proof of our main theorem shall be based on the computation of the degree of
I−K , where the operator K : C([0, 1],RN ) → C([0, 1],RN ) is defined by Kv := u,
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the unique solution of the linear problem

{−Lηu(x) = g0(v(x)) + (λ1 − η)v(x)
u′(0) = a0u(0), u′(1) = a1u(1).

(11)

It is clear that K is compact and that u is a solution (1)–(2) if and only if u is a fixed
point of K .

Asmentioned in the introduction, the degree computation requires, in the first place,
to establish conditions guaranteeing that a linear problem

u′′(x) = Mu(x) (12)

has no nontrivial solutions satisfying (2). For convenience, we may fix J = J (M)

such that if j > J then

det(M + λ j I ) = λN
j det

(
M

λ j
+ I

)
> 0.

Thus we may define the function

s(M) :=
J∏

j=1

sgn(det(M + λ j I )). (13)

It shall be proved that uniqueness of solutions of (12)–(2) is equivalent to the condition
s(M) 	= 0, namely, thatM+λ j I is invertible for all j . In particular,whenM = Dg0(0)
is symmetric, this condition is clearly equivalent to (5);moreover, writingM = CDC1

with D diagonal, it is verified that

det(M + λ j I ) < 0 ⇐⇒ #{k : νk ≥ j} is odd

or, in other words,

sgn(det(M + λ j I )) = (−1)#{k:νk≥ j}.

Furthermore, it follows from basic combinatorics that, if J is large enough, then

J∑

j=1

#{k : νk ≥ j} = ν1 + · · · + νN .

Thus, condition s(Dg0(0)) < 0 in Theorem 1.1may be regarded as a natural extension
of (5)–(6) to the non-symmetric case.
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3 Proof of the main result

In order to prove Theorem 1.1, we shall compute the degree of I − K over large and
small balls, where the compact operator K : v �→ u is defined from problem (11).
To this end, let us firstly prove an auxiliary lemma concerning the linear operator KM

defined by KMv := u the unique solution of

{
u′′(x) + (λ1 − η)u(x) = Mv(x) + (λ1 − η)v(x)
u′(0) = a0u(0), u′(1) = a1u(1).

(14)

for an arbitrary matrix M ∈ R
N×N .

Lemma 3.1 Assume that s(M) 	= 0. Then KM has no nontrivial fixed points and,
moreover,

deg(I − KM , Bρ(0), 0) = s(M)

for all ρ > 0.

Proof Write u(x) = ∑∞
j=1 ϕ j (x)u j , where the column vector u j ∈ R

N is given by

(u j )k = ∫ 1
0 uk(x)ϕ j (x) dx for k = 1, . . . , N . Then u is a fixed point of KM if and

only if

∞∑

j=1

−λ jϕ j u
j =

∞∑

j=1

ϕ j Mu j ,

that is,

(M + λ j I )u
j = 0

for all j . This implies that u j = 0 for all j . Next, observe that

(KMu) j = M + (λ1 − η)I

λ1 − λ j − η
u j

and hence

(u − KMu) j = M + λ j I

λ j + η − λ1
u j := Mju

j .

It is readily verified that

∥∥∥∥∥∥

∑

j>k

ϕ j (KMu) j

∥∥∥∥∥∥∞
→ 0
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uniformly for ‖u‖∞ ≤ ρ as k → ∞; thus, deg(I−KM , Bρ(0), 0) is simply computed
as

∏

j≤k

sgn[det(Mj )]

for some k large enough. Since λ j + η −λ1 > 0 for all j , the latter quantity coincides
with s(M) and so completes the proof. ��

As a first application, we shall prove that the degree of I − K over a large ball is
equal to 1. In particular, this implies the existence of at least one solution under the
sole assumption (3).

Lemma 3.2 Assume that (3) holds. Then deg(I − K , BR(0), 0) = 1 for R � 0.

Proof Fix ε > 0 and C > 0 such that

〈g0(u), u〉 ≥ (ε − λ1)|u|2 − C

for all u ∈ R
N . We claim that there exists a constant R > 0 depending only on ε and

C such that if u is a solution of (1)–(2) with p = 0 then ‖u‖∞ < R. Indeed, multiply
the equation by u and integrate to obtain

λ1‖u‖2L2 +
∫ 1

0
〈u′′(x), u(x)〉 dx ≥ ε‖u‖2L2 − C.

Thus, from (8) we deduce that

‖u‖2L2 ≤ C

ε

and consequently

−
∫ 1

0
〈u′′(x), u(x)〉 dx ≤ mC,

where m = max
{

λ1
ε

, 1
}
. Integrating by parts, it follows that

‖u′‖2L2 ≤ mC + a1
|u(1)|2

2
− a0

|u(0)|2
2

= mC + ψ(1) − ψ(0),

where ψ(x) := [(a1 − a0)x + a0] |u(x)|2
2 . Writing

ψ(1) − ψ(0) =
∫ 1

0
ψ ′(x) dx

= a1 − a0
2

‖u‖2L2 +
∫ 1

0
[(a1 − a0)x + a0]〈u(x), u′(x)〉 dx
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and using the inequality |〈u(x), u′(x)〉| ≤ γ
4 |u(x)|2 + |u′(x)|2

γ
for some constant γ >

max{|a0|, |a1|}, it follows that

‖u′‖2L2 ≤ mC + C1‖u‖2L2 + C2‖u′‖2L2 ≤ mC + C1C

ε
+ C2‖u′‖2L2

where C2 < 1. This yields a bound for ‖u‖H1 and the claim follows from the embed-
ding H1((0, 1),Rn) ↪→ C([0, 1],Rn).

In particular, the same a priori estimate is obtained if g0(u) is replaced by tg0(u)+
(1 − t)(ε − λ1)u for t ∈ [0, 1] which, in turn, implies that

deg(I − K , BR(0), 0) = deg(I − KM , BR(0), 0)

with M := (ε − λ1)I . The conclusion is deduced then from Lemma 3.1. ��

The following lemma shows that, over small balls, the degree of I − K coincides
with the degree of its linearisation. The proof is standard, we include it here for the
sake of completeness.

Lemma 3.3 Assume that s(M) 	= 0, where M := Dg0(0). Then K has no fixed points
on ∂Bρ(0) and

deg(I − K , Bρ(0), 0) = deg(I − KM , Bρ(0), 0)

provided that ρ > 0 is small enough.

Proof Let ε > 0 to be specified and fix ρ such that

|g0(u) − Dg0(0)u| ≤ ε|u|

for |u| ≤ ρ. Then

‖Ku − KMu‖∞ ≤ c‖g0(u) − Dg0(0)u‖∞ ≤ cερ

if ‖u‖∞ ≤ ρ. We know from Lemma 3.1 that KM has no nontrivial fixed points, so by
compactnesswe deduce the existence of a constant θ > 0 such that ‖u−KMu‖∞ ≥ θρ

for u ∈ ∂Bρ(0). Hence, taking ε < θ
c it is seen that
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‖t Ku + (1 − t)KMu − u‖ ≥ θρ − cερ > 0

for t ∈ [0, 1] and u ∈ ∂Bρ(0), so the result follows. ��

Proof of Theorem 1.1 From the previous lemmas and the excision property of the
degree, we know, for some R > ρ > 0, that

deg(I − K , Bρ(0), 0) = −1, deg(I − K , BR(0)\Bρ(0), 0) = 2.

This implies the existence of r̂ > 0 such that the equation u − Ku = P has at least
two solutions when ‖P‖∞ < r̂ .

Now observe that, as mentioned, it follows from (10) that the application �(p) :=
P , where P is the unique solution of the problem

P ′′ + (λ1 − η)P = p P ′(0) = a0P(0), P ′(1) = a1P(1)

is an isomorphism. Thus, the result is deduced from the fact that u − Ku = �(p) if
and only if u is a solution of (1)–(2). ��

4 Alternative proof by the shooting method

In this section, we introduce a shooting type operator that allows to give a different
proof of Theorem 1.1. This requires to use the following lemma, that may have some
interest in its own since it reveals the connection between the Leray-Schauder degree
of the previous operator I − K and the Brouwer degree of the shooting operator.

Lemma 4.1 Let M ∈ R
N×N satisfy s(M) 	= 0 and consider the linear application

TM : RN → R
N defined by TM (v) := u′(1) − a1u(1), where u is the unique solution

of the initial value problem

u′′(x) = Mu(x), u′(0) = a0u(0) = a0v.

Then TM is an isomorphism and degB(TM , BR(0), 0) = sgn(det(TM )) = s(M) for
any R > 0.

Proof Write M = C−1UC , where U is an upper triangular matrix, then setting
w = Cu it is verified that TM = C−1TUC . Thus, we may assume that M is upper
triangular. Next, consider the diagonal matrix D with entries Dii := Mii and the
homotopy given by Mt := M + t (D − M). It is clear that det(Mt + λ j I ) is constant
and, consequently, s(Mt ) = s(M) for all t ∈ [0, 1]. This proves that the corresponding
mapping TMt is injective for all t and hence deg(TM , BR(0), 0) = deg(TM1 , BR, 0).
In other words, wemay assume thatM is diagonal, so the system is uncoupled, namely

u′′
k (x) = Mkkuk(x), k = 1, . . . N .
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Let νk := max{ j ≥ 0 : λ j < Mkk}, then from [2, Lemma 2.1] we know that

sgn(u′
k(1) − a1uk(1)) = (−1)νk

and the result follows. ��
We are in condition of defining a shooting operator as follows. In the first place,

since (3) holds we may assume, for some R � 0, that g0(u) = (ε −λ1)u for |u| ≥ R.
By standard results, this implies that, for each v ∈ R

N , the unique solution uv of (1)
with initial values u′(0) = a0u(0) = a0v is defined up to x = 1. Thus, the mapping

S(v) := u′
v(1) − a1uv(1)

is well defined and the zeros of S correspond to solutions of (1)–(2). Using the previous
lemma with M = (ε −λ1)I , it follows that deg(S, BR(0), 0) = 1. On the other hand,
for p = 0, by linearisation and using the same lemma with M = Dg0(0) it is deduced
that if s(M) < 0 then deg(S, Bρ(0), 0) = −1 for ρ small enough. Thus, the proof
follows for small p by a continuity argument. Details are left to the reader.

5 Example

For N = 2, consider the system

{
u′′
1(x) = u1(x)3 + au2(x) + p1(x)

u′′
2(x) = u2(x)3 + bu1(x) + p2(x)

under condition (2), with ab 	= λ2j for all j ∈ N. Here, g0 is superlinear since

〈g0(u), u〉 = u41 + u42 + (a + b)u1u2 ≥ u41 + u42
2

− C

for some constant C ; thus, condition (3) is fulfilled. Moreover,

Dg0(0, 0) =
(
0 a
b 0

)

so the linearisation at the origin is non-symmetric when a 	= b. Finally,

det (Dg0(0, 0) + λ j I ) = λ2j − ab 	= 0,

which implies that s(Dg0(0, 0)) is different from zero. Hence, the existence of gener-
ically three solutions follows from Theorem 1.1 when ‖p‖∞ is small, provided that

#{ j ∈ N : λ2j < ab}

is odd.
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6 Open problems

1. Find a suitable extension of the main result for the non-autonomous case g0 =
g0(x, u).

2. Is it possible to say something when s(Dg0(0))) > 0? For the scalar case with
a0, a1 > 0, it was shown in [2] that if λ1 < 0, g′

0(0) < 0 and

λk < −g′
0(0) < λk+1 (15)

for some even k > 0, then the problem admits at least five solutions for small p. It
was observed, moreover, that the condition g′

0(0) < 0 was redundant, because for
a0, a1 > 0 it is verified that λ2 > 0. The methods in this paper allow to improve
this result in the following way. Assume only that (15) holds for some even k > 0.
Then α := σϕ1 > 0 is a strict lower solution for σ > 0 small enough for the
problem with p = 0, because −λ1 ≥ λk > g′

0(0). Moreover, if θ � 0 then
β := θϕ1 is a strict upper solution since

ββ ′′ = −λ1β
2 ≤ g0(β)β + C − εβ2 < g0(β)β.

Using the maximum principle (see Sect. 2) and taking η > 0 sufficiently large it
is seen that any solution of the truncated problem

Lηu(x) = g0(P(x, u(x))) + (λ1 − η)P(x, u(x))

satisfying (2), where

P(x, u) :=
⎧
⎨

⎩

u α(x) ≤ u ≤ β(x)
β(x) u > β(x)
α(x) u < α(x)

lies strictly between α and β. This implies that the degree of I − K over the set
Uα,β := {u : α < u < β} is equal to 1, and the same is true forU−β,−α andU−β,β .
Because k is even, the degree is also equal to 1 over small balls. This shows that
the problem has (generically) five solutions for p small. If one applies the shooting
method instead, it is seen that the number of solutions is indeed 5. It would be
interesting to see whether or not this result can be extended for the non-scalar case.

3. Exact multiplicityAs shown in [3], for the scalar case it is seen that if g0 is strictly
increasing with g′

0(0) < −λ1 and g′
0(u) >

g0(u)
u for all u 	= 0, then the problem

has exactly three solutions for p > 0 small. This result gives a positive answer
to a question posed in [4], although it is not clear how it could be extended to the
case N > 1.
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